# RECONSTRUCTION of 3D OBJECTS from their 2D CROSS-SECTIONS by a SUBDIVISION SCHEME for SETS 

Nira Dyn

School of Mathematical Sciences
Tel Aviv University, Israel

## Outline of the talk

- A short Introduction to subdivision schemes generating curves

The Corner Cutting (Chaikin) scheme
The 4-point interpolatory subdivision scheme Approximation order of the two schemes

Subdivision schemes and wavelets

- Few facts about SETS
- The reconstruction problem and the approximation of set-valued functions from samples
- Examples


## Linear subdivision schemes for the refinement of points

Efficient computational methods for the generation of smooth curves/surfaces from discrete sets of points with topological relations.

Subdivision schemes for curves:

- The data is a polygonal line called the control polygon $\mathcal{P}^{0}$.
- The scheme generates a sequence of finer control polygons.

- The uniform limit of the sequence $\left\{\mathcal{P}^{k}\right\}$ (if it exists) is the curve generated by the scheme.


## Corner Cutting




## Corner Cutting




## Corner Cutting

A control point
The limit curve

The control polygon

Formulation of the Corner Cutting (chaikin) scheme

- There are two rules defining the points in the next refinement level [Chaikin 1947]

One for the points with even indices

$$
P_{2 i}^{k+1}=\frac{3}{4} P_{i}^{k}+\frac{1}{4} P_{i+1}^{k}
$$

One for the points with odd indices

$$
P_{2 i+1}^{k+1}=\frac{1}{4} P_{i}^{k}+\frac{3}{4} P_{i+1}^{k}
$$

- The same refinement is done everywhere and in any refinement level
- The polygonal line at refinement level $k$ is the piecewise linear function interpolating the data $\left\{\left(P_{i}^{k}, 2^{-k} i\right)\right\}$

The 4-point scheme


## The 4-point scheme



## The 4-point scheme



## The 4-point scheme



The 4-point scheme


## The 4-point scheme



## The 4-point scheme



The 4-point scheme



## The 4-point scheme



## The 4-point scheme



## The 4-point scheme

A control point
The limit curve


The control polygon

## Subdivision curves

Non interpolatory subdivision schemes

- Corner Cutting

Interpolatory subdivision schemes

- The 4-point scheme


## Formulation of the 4-point scheme

- Two rules define the points in the next refinement level [Dubuc 1986], [Dyn, Gregory, Levin 1987]

One for the points with even indices

$$
P_{2 i}^{k+1}=P_{i}^{k}
$$

One for the points with odd indices

$$
P_{2 i+1}^{k+1}=\frac{9}{8}\left(\frac{P_{i}^{k}+P_{i+1}^{k}}{2}\right)-\frac{1}{8}\left(\frac{P_{i-1}^{k}+P_{i+2}^{k}}{2}\right)
$$

Note that the above can be written also as

$$
P_{2 i+1}^{k+1}=\frac{\left(\frac{9}{8} P_{i+1}^{k}-\frac{1}{8} P_{i+2}^{k}\right)+\left(\frac{9}{8} P_{i}^{k}-\frac{1}{8} P_{i-1}^{k}\right)}{2}
$$

- The odd refinement rule is derived by interpolating the four points with a cubic polynomial, and reading its value at $2^{-k}\left(i+\frac{1}{2}\right)$

The two schemes CONVERGE to $C^{1}$ limits

## Approximation order of the two schemes

Let $\mathcal{P}^{0}$ be samples of a function $f$ at the points $h \mathbb{Z},(h>0)$
Let $f_{c c}^{\infty}$ be the limit of the Corner Cutting scheme applied to $\mathcal{P}^{0}$
Let $f_{4 p}^{\infty}$ be the limit of the 4-point scheme applied to $\mathcal{P}^{0}$
For $f$ Hölder $-\nu, \nu \in(0,1]$

$$
|f(t+\delta)-f(t)| \leq \text { Const } \times|\delta|^{\nu}
$$

the two schemes have approximation order $\nu$

$$
\begin{aligned}
& \left|f(t)-f_{c c}^{\infty}(t)\right| \leq \text { Const } \times h^{\nu} \\
& \left|f(t)-f_{4 p}^{\infty}(t)\right| \leq \text { Const } \times h^{\nu}
\end{aligned}
$$

## General formulation

- The subdivision scheme is defined by an operator $S$
- $S$ is linear and local

$$
\begin{gathered}
\mathcal{P}^{k}=\left\{P_{i}^{k} \in \mathbb{R}^{d}: i \in \mathbb{Z}\right\} \\
\mathcal{P}^{k+1}=S \mathcal{P}^{k} \Longleftrightarrow P_{i}^{k+1}=\sum_{j} a_{i-2 j} P_{j}^{k}
\end{gathered}
$$

$\mathbf{a}=\left\{a_{i}: i \in \sigma(\mathbf{a})\right\},|\sigma(\mathbf{a})|<\infty$, is the mask of the scheme

- There are two rules:

$$
P_{2 i}^{k+1}=\sum_{j} a_{2 j} P_{i-j}^{k}, \quad P_{2 i+1}^{k+1}=\sum_{j} a_{2 j+1} P_{i-j}^{k}
$$

$S_{\mathrm{a}}$ - the subdivision with the mask a
The limit of the scheme, if it exists, is denoted by $S_{\mathrm{a}}^{\infty} \mathcal{P}^{0}$

## Subdivision schemes and wavelets

The subdivision refinement rule: $f_{i}^{k+1}=\sum_{j} a_{i-2 j} f_{j}^{k}$

The basic limit function $\phi_{\mathrm{a}}=S_{\mathrm{a}}^{\infty} \delta$
with $\delta_{0}=1$ and otherwise $\delta_{i}=0$

For any initial data $\mathbf{f}^{0}=\left\{f_{i}^{0} \in \mathbb{R}: i \in \mathbb{Z}\right\}$

$$
\begin{gathered}
\left(S_{\mathbf{a}}^{\infty} \mathbf{f}^{0}\right)(x)=\sum_{i} f_{i}^{0} \phi_{\mathbf{a}}(x-i) \subseteq V_{0} \\
V_{0}=\operatorname{span}\left\{\phi_{\mathbf{a}}(\cdot-i): i \in \mathbb{Z}\right\}
\end{gathered}
$$

Since $\left(S_{\mathbf{a}} \delta\right)_{i}=\sum_{j} a_{i-2 j} \delta_{j}=a_{i}$

$$
\phi_{\mathbf{a}}(x)=\left(S_{\mathbf{a}}^{\infty} \delta\right)(x)=S_{\mathbf{a}}^{\infty}\left(S_{\mathbf{a}} \delta\right)=\sum_{i} a_{i} \phi_{\mathbf{a}}(2 x-i)
$$

The function $\phi_{\mathbf{a}}$ is a scaling function

The function $\phi_{\mathrm{a}}$ defines a sequence of nested spaces

$$
V_{j}=\operatorname{span}\left\{\phi_{\mathbf{a}}\left(2^{j}(x-i): i \in \mathbb{Z}\right\}\right.
$$

satisfying

$$
\ldots \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \ldots
$$

Few facts about SETS

In our approach to the reconstruction of 3D objects from their 2D cross-sections, we regard the cross-sections as subsets of $\mathbb{R}^{2}$, and refine them by subdivision schemes adapted to sets

To measure the error in the reconstruction we need a measure for the distance between two sets

Two Metrics of sets are commonly used
(i) The Hausdorff metric

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} \inf _{b \in B}|a-b|, \sup _{b \in B} \inf _{a \in A}|a-b|\right\}
$$

(ii) The symmetric difference metric

$$
d_{\mu}(A, B)=\operatorname{Area}((A \backslash B) \cup(B \backslash A))
$$

