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Chebyshev approximation
Polynomial approximation

Theorem (Polynomial approximation1)
p ∈ Pn is a best polynomial approximation of a function f if and
only if there exists a sequence of at least n + 2 points of maximal
deviation and the sign of the deviation at these points alternate.

Definition
We call such a sequence a sequence of alternating extreme points.

1Chebyshev.



Ways to prove
Chebyshev’s Theorem can be proven in different ways. We outline
three approaches.

I Algebraic proofs (Borel, 1905)Algebraic proofs (Borel, 1905)Algebraic proofs (Borel, 1905) rely on the fundamental
theorem of algebra (a nontrivial polynomial of degree d
vanishes at most d times). This is the classical approach.

I Convex analytic proofs (Laurent, 1972)Convex analytic proofs (Laurent, 1972)Convex analytic proofs (Laurent, 1972) use the fact that any
polynomial can be written as a linear combination of
monomials to formulate the problem of best polynomial
approximation:
minimiseΦ(aaa) = supt∈[a,b]

∣∣∣f (t)−∑n
i=0 aiti

∣∣∣, s.t. aaa ∈ Rn+1.

Chebyshev’s Theorem is derived from the necessary and
sufficient condition for optimality 0 ∈ ∂Φ(a∗).

I

Semi-infinite programming proofs (Glashoff and Gustafson, 1983)Semi-infinite programming proofs (Glashoff and Gustafson, 1983)Semi-infinite programming proofs (Glashoff and Gustafson, 1983)
use a linear semi-infinite programming reformulation:

minimise u subject to
∣∣∣f (t)− n∑

i=0

aiti
∣∣∣ ≤ u, ∀t ∈ [a, b] (1)



Different proofs: discussion

I Despite superficial differences between these three proofs, it is
possible to break them up into building blocks and establish a
correspondence between these building blocks
(Interconnection Diagram).

I At the same time, each of these proofs highlights a different
perspective on the same approximation problem by drawing
from different mathematical toolsets (functional analysis,
convex analysis).



Examples
Many different generalisations of Chebyshev’s Theorem have been
obtained, and for a large majority their proofs rely on the
generalisation of one of the proofs given above. For instance,

I generalisations of the convex subdifferential enable us to
study nonconvex versions of the approximation problem (free
knots polynomial splines);

I the reverse approximation problem (maximising the length of
an interval where the deviation is below a certain value) can be
modelled through a generalised SIP (Still, 1999);

I through function analytical considerations we are no longer
restricted to polynomial approximation but can consider other
families of functions.

The methodology of this proposal consists in building upon the
diversity of these generalisations to propagate results between
them and construct more powerful tools in approximation theory,
variational analysis and semi-infinite programming. Exploiting the
interconnections between these different methodologies is a
completely new way of approaching approximation problems.



Open problems

Our ambition is to attack notoriously difficult problems in
approximation theory that generalise classic Chebyshev
approximation results.
The two problems that we propose to investigate generalise
Chebyshev’s approximation problem in two different directions.
1. The first one, approximation by polynomial splines with free

knots, leads to a nonconvex optimisation problem, which we
can study using nonconvex analysis.

2. The second one is multivariate approximation. It is still a
convex problem, but the functions under consideration are
muchmore complex.



Polynomial splines

Definition (Polynomial Spline)
A polynomial spline is a piecewise polynomial function. Each
polynomial piece lies on an interval [ξi , ξi+1], i = 0, . . . ,N − 1. The
points ξ0 and ξN are the external knots, and the points ξi ,
(i = 1, . . . ,N − 1) are the internal knots of the polynomial spline.
A spline is generally not infinitely differentiable at its knots. Its
degree is defined as the maximum degree of all its polynomial
pieces. We let Sn be the set of polynomial splines of degree at most
n.



Problem formulation

Consider the problem of finding a best approximation by a
continuous spline s(t, ξξξ,aaa) ∈ Sn :

minimiseΨ(s) = sup
t∈[ξ0,ξN ]

∣∣s(t, ξξξ,aaa)− f (t)
∣∣, (2)

where ξξξ is the vector of knots and aaa is the vector of coefficients of
the polynomial pieces. Any spline is a linear function of the
coefficients aaa and so if the knots are fixed the problem of
minimising the functionΨ from (2) with respect to aaa is convex.If the
knots are also variable, this problem is nonconvex.



Polynomial splines formulation

Splines are formulated as:

s(t) = a00 +
N−1∑
i=0

n∑
j=1

aij(t − ξi)
j
+, (3)

where t+ = max(0, t) is the truncated power function,
ξi , i = 0, . . . ,N − 1 are knots and aij is the j-th coefficient for the
i-th polynomial piece.



Necessary optimality conditions

The characterisation theorem is given as:

Theorem
For a polynomial spline s ∈ Sn with N + 1 knots ξ0, . . . , ξN to be a
best Chebyshev approximation to a continuous function f over the
interval [ξ0, ξN ], the following two conditions need to be satisfied:
1. there exists an interval [ξp, ξq] containing an alternating

sequence of at least n(q − p) + 2 + l points, where l is the
number of points where the spline is not differentiable inside
(ξp, ξq);

2. if the spline is non-differentiable at an end point of this
sequence, then at this point either its right derivative is strictly
greater than its left derivative and (s − f ) is negative, or its
right derivative is strictly less than its left derivative and (s − f )
is positive.



Discussions

This result is interesting from several points of view.
1. It corresponds to a necessary and sufficient condition for

stationarity in the sense of Demyanov-Rubinov, that is, there is
no negative directional derivative.

2. It improves other best approximation conditions, at least when
only continuity is required.

3. Since many optimisation methods verify necessary optimality
conditions as their termination conditions, the improvement
in necessary optimality conditions leads to an improvement in
the approximation quality.
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