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HPC – Tackling the multi challenge The new computational science

Challenges of numerical analysis

numerical techniques are major driver of innovation in industrial
societies and indispensable for design of aeroplanes, weather forecast,
environmental monitoring, medical diagnostics, robotics and image
processing

fundamental techniques and their foundations well established

techniques include finite elements, finite differences and finite
volumes, they are widely available but do not work for

ill-posed problems
high-dimensional problems

in both cases one requires specially adapted techniques and theory
and practice of these techniques are active area of research

recent developments in High Performance Computing (HPC) and new
algorithms allow solution of new multidimensional problems – but
introduce new challenges
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HPC – Tackling the multi challenge The new computational science

Computational challenges in HPC

it’s getting tougher

from simulation to optimisation

from assumed parameters
to estimation and identifi-
cation

combine data and pde models

multiphysics

user interaction

energy costs

computational faults
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HPC – Tackling the multi challenge The new computational science

Examples: PDEs, data, parameters

PDEs u = argminv∈V J(v)

elliptic PDEs J(v) = 1
2 a(v , v)− f (v)

least squares solution J(v) =
∫

(Lv(x)− f (x))2 dx

eigenvalues J(v) = a(v ,v)
b(v ,v) (Rayleigh quotient)

fitting data u = argminv∈V L(v)

penalised least squares L(v) = 1
N

∑N
i=1(v(xi )− yi )

2 + a(v , v)

MAP for density p(x) = exp u(x)

L(v) =
1

N

N∑
i=1

v(xi ) + log

∫
exp(v(x)) dx + a(v , v)

parametric problems combine PDEs and data fitting

u = argmin{L(u(µ);µ) | v = u(µ), µ ∈ M}
with PDE constraint u(µ) = argminv J(v ;µ)
quantities of interest q = s(u) target of approximation, e.g. energy,
moments, likelihood, cost, risk
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HPC – Tackling the multi challenge The new computational science

Integrating multiplicities

HPC tackles a ”multi-challenge”

multi-disciplinary domains and education

multi-physics models

multi-scale models

multi-dimensional numerics

multi-level numerics

multi-core systems

The prevailing paradigm in modern computational science and HPC
combines multiple resources and approaches with a wide range of different
properties to gain new insights into immensely complex systems in the
natural, engineering and social sciences.
This reflects the multi-skilled and multi-cultural societies in which modern
science is developed.
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Examples of multidimensional problems Interpolation

Interpolation

evaluation of function expensive

compute some, interpolate

logarithm tables by H. Briggs 1617

piecewise linear interpolant

1 2 3 4 5

0

0.5

1

1.5

x
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g

(x
)

fast evaluation

reasonable accuracy

stable, positive

logarithm table

from: Wikipedia
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Examples of multidimensional problems Interpolation

A more accurate and flexible approach

fI (x) = c1 φ(|x − x1|) + · · ·+ cm φ(|x − xm|) interpolation function

piecewise linear
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Gaussian φ(r) = e−r
2/γ
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interpolation equations


φ(0) φ(|x1 − x2|) · · · φ(|x1 − xm|)

φ(|x2 − x1|) φ(0) · · · φ(|x2 − xm|)
...

...
. . .

...
φ(|xm − x1|) φ(|xm − x2|) · · · φ(0)




c1

c2
...

cm

 =


f (x1)
f (x2)

...
f (xm)


10 / 64



Examples of multidimensional problems Interpolation

Multidimensional interpolation

use φ(‖x − xi‖) where ‖x − xi‖ is Euclidean distance of x and xi

xi on regular grid
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0
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error O(m−2/d)

random points xi

0 2 4 6 8 10
0

2

4

6

8

10

error O(m−1/2)

up to d = 4 dimensions and smooth functions regular grid competitive

for higher dimensions random interpolation points better

theory for random points uses law of large numbers
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Examples of multidimensional problems Interpolation

The concentration of measure

in high dimensions any pair of random points have same distance

consequently interpolant is close to constant with high probability

interpolation matrix for d = 100

[φ(‖xi − xj‖)]i ,j=1,...,n =



1 0.79 0.77 0.74 0.78 0.79
0.79 1 0.80 0.77 0.77 0.80
0.77 0.80 1 0.77 0.76 0.77
0.74 0.77 0.77 1 0.78 0.78
0.78 0.77 0.76 0.78 1 0.77
0.79 0.80 0.77 0.78 0.77 1


other instances of concentration of measure

most of volume of sphere (Earth) close to surface

law of large numbers, statistical convergence theory

[Lévy, 20s, Milman 70s, Gromov, Talagrand 90s+] 12 / 64



Examples of multidimensional problems Interpolation

When concentration is not a problem for interpolation

when the points of interest are on low-dimensional sub-manifold

when function which is to be interpolated has known simple structure,
e.g., is linear or additive:

f (x1, . . . , xd) =
d∑

i=1

fi (xi )

or is close to such a function

when function only depends on few dimensions

f (x1, . . . , xd) = g(x1, x2, x3)

dimension is not only a curse

in high dimensions any non-empty neighbourhood contains large numbers
of points which can be used for error reduction by averaging
[Anderssen, H. 1999] 13 / 64
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Examples of multidimensional problems Density estimation

Density estimation

large data sets, queries expensive

data set = probability measure over feature space

histogram = piecewise constant approximation of measure

extract relevant information fast from histogram

application

mean, variance, moments

number and location of modes

skewness and tail behaviour

All modern theories of statistical
inference take as their starting point
the idea of the probability density
function of the observations.
E. Parzen (1961) in An Approach to Time Series Analysis

histogram
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Examples of multidimensional problems Density estimation

A more accurate and flexible approach

pK (x) =
φ(|x − x1|/σ)

mσ
+ · · ·+ φ(|x − xm|/σ)

mσ
kernel density estimator

piecewise constant

−3 −2 −1 0 1 2 3
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Gaussian φ(r) = e−r2/2
√

2π
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0
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r

φ
(r

)

more accurate representation of smooth densities

control smoothness with width parameter σ, can depend on x

no need to solve linear system of equations

more flexible: also for multidimensional distributions
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Examples of multidimensional problems Density estimation

Challenges of multidimensional density estimation

low dimensional case

for any x only the φ(|x − xi |/σ) for neighbouring xi are nonzero, gives
efficient estimator as every point has only few neighbours

pK (x) =
∑

xi∈N (x)

φ(|x − xi |/σ)/mσ

high dimensional case

all xi are neighbours, need to consider all data points to evaluate density

pK (x) =
m∑
i=1

φ(|x − xi |/σ)/mσ

very high dimensional case

if x , x1, . . . , xm are i.i.d. then all components φ(|x − xi |/σ)/mσ of the
same size, density asymptotically uniform pK (x) ≈ E (φ(|Xi − Xj |/σ))/σ17 / 64



Examples of multidimensional problems Density estimation

When concentration is not a problem for density estimation

when the points of interest are on low-dimensional submanifold

when unknown p has known simple structure, e.g.

p(x1, . . . , xd) =
d∏

i=1

pi (xi )

more generally, the density is described by graphical model which
leads to a factorisation as in

p(x1, x2, x3) =
p(x1, x2) p(x2, x3)

p(x2)

mixture model

p(x) =
K∑
i=1

pi (x)πi

where pi (x) = p(x |x ∈ Ωi ) has some known form and πi = p(Ωi ) 18 / 64
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Examples of multidimensional problems Partial differential equations

Partial differential equations

Partial differential equations are a very widely used tool in computational
science

examples of equations

ih
∂ψ

∂t
= − h2

2m
∆ψ + Vψ Schrödinger equation, quantum chemistry

dp

dt
=
∑
z

(Sz − I )Λzp Chemical master equation, molecular biology

∂f

∂t
+ vT∇x f + q(E + v × B)∇pf = 0 Vlasov equation, plasma physics

dimensionality

ψ and p can depend on hundreds of variables, f depends on five variables

20 / 64



Examples of multidimensional problems Partial differential equations

Controlling the function values

Sobolev norms

important tool for PDE theory

‖u‖2
k = (−1)k

∫
Ω

u(x)∆ku(x) dx

for u ∈ C∞0 (Ω) and completion

bounded solutions for d ≤ 3

PDE regularity theory

‖u‖2 <∞

Sobolev embedding

|u(x)| ≤ C‖u‖2

case d > 3

embedding for k ≥
⌊
d
2

⌋
+ 1

|u(x)| ≤ C‖u‖k

k = 2 from regularity theory

mixed norms

‖u‖2
mix =

∫ ∣∣∣∣ ∂du(x)

∂x1 · · · ∂xd

∣∣∣∣2 dx

and so |u(x)| ≤ Cd‖u‖2
mix
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Sparse Grids Grids

The grid

approximate unknown function
u(x , y)

compute only values u(xi , yj) on
discrete grid points

interpolate values u(x , y) for
other points (x , y)

regular isotropic grid: xi = ih
and yj = jh

the challenge: curse of dimension

In two dimensions 1/h2 grid points, in d dimensions 1/hd grid points but
accuracy proportional to h2
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Sparse Grids Grids

Anisotropic grids

more general regular grids

choose fine grid when u(x , y) has large gradients

choose coarse grid when u(x , y) is smooth

gradients may be different in different directions

choose anisotropic grid when u(x , y) varies differently in different
directions

with anisotropic grids one can approximate multi-dimensional
u(x1, . . . , xd) if u very smooth in most xk 24 / 64



Sparse Grids Grids

Grids and sampling

full grid captures all scales

subgrid captures less scales

evaluation of u(x , y) on
the grid corresponds to
sampling u on the grid
points

sampling on a fine grid
captures high frequencies
– small scale fluctuations
(Nyqvist/Shannon)

with anisotropic grids
one can capture small
scales in one dimension
and different scales in
another

25 / 64



Sparse Grids Grids

Sparse grid = union of regular anisotropic grids

a simple sparse grid

∪ =

sparse grid in frequency / scale space

∪ =

captures fine scales in both dimensions but not joint fine scales
26 / 64



Sparse Grids Grids

Another sparse grid

sparse grid points sparse grid frequency diagram

the frequency diagram displays 1/4 of a hyperbolic cross
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Sparse Grids Grids

Sparse grids and the curse of dimension

four dimensional case

10−1 101 103 105 107 109 1011

10−4

10−3

10−2

10−1

100

number of grid points

er
ro

r

isotropic grid
sparse grid

only asymptotic error rates given
here

constants and preasymptotics
also depend on dimension

practical experience: with sparse
grids up to 10 dimensions

Zenger 1991

number of points error

regular isotropic grids h−d h2

sparse grids h−1 | log2 h|d−1 h2 | log2 h|d−1
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Sparse Grids Grids

The big plan – dimension independence

problem of sparse grids: exponential d-dependence of time and error
through

factors | log2(h)|d−1

factors of the form C d

aim: remove all exponential d-dependence so that

error ∼ h2

time ∼ 1/h

as in the case d = 1

ideas:

parallel solution on subgrids (see next section) gives 1/h time
stronger (energy) sparse grids give h2 error
weighted mixed norms and special basis functions to deal with C d

dependence
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Sparse Grids Grids

Spatially adaptive (sparse) grids

choosing a sparse sub-grid of the sparse grid

adaptively choose necessary sparse grid points and corresponding
(hierarchical) basis functions

requires an error indicator function

grid points inserted only where necessary

acts as extra regularisation (like smoothing) for machine learning
applications

modified basis functions for boundary to remove the Cd

implemented in SG++ software package by Dirk Pflüger (Universität
Stuttgart), 2010

from: D. Pflüger
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Sparse Grids The combination technique

Combining two regular grids

= + −

solution on combined
grid is approximated as a
linear combination of the
solution on the regular
component grids

the components include
the maximal generators
and all intersections

union and intersection grids
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Sparse Grids The combination technique

Weak solutions of boundary value problems

boundary value problem

−∆u(x) = f (x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

weak solution

a(u, v) = 〈f , v〉, v ∈ H1
0 (Ω)

where

a(u, v) =

∫
Ω
∇u(x)T∇v(x) dx

〈f , v〉 =

∫
Ω

f (x)v(x) dx

approximate solution uh ∈ Vh

a(uh, vh) = 〈f , vh〉, vh ∈ Vh

Approximate solution can be
viewed as a projection

uh = Phu

which is orthogonal with respect
to the energy norm

33 / 64



Sparse Grids The combination technique

Combination approximations

regular grid approximation

regular grid Gh

function space Vh

Galerkin equations for uh

a(uh, vh) = 〈f , vh〉

for all vh ∈ Vh

sparse grid approximation

sparse grid GSG =
⋃

h Gh

function space VSG =
∑

h Vh

Galerkin equations for uSG

a(uSG, vSG) = 〈f , vSG〉

for all vSG ∈ VSG

combination technique – where HPC comes in

compute all uh in parallel and combine solutions using parallel reduction:

uC =
∑
h

chuh

Big question: when is uC ≈ uSG?
34 / 64



Sparse Grids The combination technique

Sparse grid combination technique

sparse grid points sparse grid frequency diagram

combination formula

uC = u1,16 + u2,8 + u4,4 + u8,2 + u16,1 − u1,8 − u2,4 − u4,2 − u8,1
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Sparse Grids The combination technique

Inclusion / exclusion principle in combinatorics

A

B

for the cardinality of sets

|A ∪ B| = |A|+ |B| − |A ∩ B|

more general for additive α:

α(A∪B) = α(A) +α(B)−α(A∩B)

Theorem (de Moivre)

If A1, . . . ,Am form intersection structure then

α

(
m⋃
i=1

Ai

)
=

m∑
i=1

ci α(Ai ), for some ci ∈ Z

36 / 64



Sparse Grids The combination technique

When the combination approximation is the sparse grid
solution

Lemma

if the grids Gh and the spaces Vh form an intersection structure

if the Galerkin projections Ph commute, i.e.,

PhPh′ = Ph′Ph, for all h,h′

then
uC = uSG

i.e., the combination technique provides the sparse grid solution

Proof.

This is a consequence of the inclusion-exclusion principle as it follows from
the commutativity that Ph is additive

37 / 64



Sparse Grids The combination technique

Tensor products – the classical sparse grid

V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ V
hierarchy of functions of one
variable

tensor product function space

Vi ⊗ Vj space of functions
generated by products
u1 ⊗ u2(x1, x2) = ui (x1)uj(x2)
where ui ∈ Vi and uj ∈ Vj

classical sparse grid space

VSG =
∑
i+j=n

Vi ⊗ Vj

combination coefficients

cij =


1 i + j = n

−1 i + j = n − 1

0 else

Vi ⊗ Vj form an intersection structure as

(Vi1 ⊗ Vj1) ∩ (Vi2 ⊗ Vj2) = Vmin(i1,i2) ⊗ Vmin(j1,j2)

and combination formula exact if a(u1 ⊗ u2, v1 ⊗ v2) = a(u1, v1)a(u2, v2)

[Griebel, Schneider, Zenger 1992] 38 / 64



Sparse Grids The combination technique

Extrapolation

assumption: error model

error of approximation in Vij = Vi ⊗ Vj is of form

eij = e
(1)
i + e

(2)
j + rij

is type of ANOVA decomposition for the error

consequence: error of combination technique

eh =
∑
i+j≤n

cijeij = e
(1)
n + e

(2)
n +

∑
i+j≤n

cij rij

if last term very small then eh ≈ en,n i.e., the combination technique
approximation using only components in Vi ⊗ Vj with i + j ≤ n get a
similar approximation order as the one in Vnn

[Bungartz et al 1994, Pflaum and Zhou 1999, Liem, Lu Shih 1995 (splitting
extrapolation)] 39 / 64



Sparse Grids The combination technique

Breakdown of the combination technique

regression problem

minimise

1

M

M∑
i=1

(u(xi )− yi )
2 + λ ‖∇u‖2

with λ = 10−4 (left) and λ = 10−6

(right)

combination approximation is not
necessarily better for finer grids

[Garcke 2004, H. 2003, H., Garcke, Challis 2007]
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Sparse Grids The combination technique

Opticom

“Optimal combination technique”: choose the coefficients ci such that J
is optimised with

J(c1, . . . , cm) = ‖u −
m∑
i=1

ciui‖2
E

=
m∑

i ,j=1

cicj a(ui , uj)− 2
m∑
i=1

ci‖ui‖2
E + ‖u‖2

E

normal equations
‖u1‖2

E a(u1, u2) · · · a(u1, um)
a(u2, u1) ‖u2‖2

E · · · a(u2, um)
...

...
. . .

...
a(um, u1) a(um, u2) · · · ‖um‖2

E




c1

c2
...

cm

 =


‖u1‖2

E

‖u2‖2
E

...
‖um‖2

E


Solution of the system of order O(m3) at most but one needs to determine
the O(m2) matrix elements each costing O(n) in machine learning 41 / 64



Sparse Grids The combination technique

Opticom is better than the sub-grid solutions

Let VSG =
∑n

i=1 Vi ⊂ V , a(·, ·) be V-elliptic and bounded symmetric
bilinear form, ui ∈ Vi defined by

a(ui , vi ) = a(u, vi ), for all vi ∈ Vi

and ci be the Opticom coefficients. Then the error in the energy norm
satisfies

‖u − uSG‖E ≤ ‖u −
n∑

i=1

ciui‖E ≤ min
i=1,...,n

‖u − ui‖E

The standard combination technique does not have this property

42 / 64



Sparse Grids The combination technique

The optimality of Opticom

Proposition

Let VSG =
∑n

i=1 Vi ⊂ V , a(·, ·) be V-elliptic and bounded bilinear form,
ui ∈ Vi defined by

a(ui , vi ) = a(u, vi ), for all ui ∈ Vi

and ci be the Opticom coefficients. Then for some κ > 0 one has

‖u −
n∑

i=1

ciui‖V ≤ κ‖u −
n∑

i=1

c̃iui‖V for any c̃i ∈ R

Proof.

This is a direct application of Céa’s Lemma

43 / 64



Sparse Grids The combination technique

Norm reduction with Opticom

Proposition

Let VSG =
∑n

i=1 Vi ⊂ V a(·, ·) be V-elliptic and bounded symmetric
bilinear form, ui ∈ Vi defined by

a(ui , vi ) = a(u, vi ), for all vi ∈ Vi

and ci be the Opticom coefficients. Then one has for the energy norm
defined by a(·, ·) the bound

‖u −
n∑

i=1

ciui‖E ≤ ‖u‖E

and either ‖f −
∑n

i=1 ciui‖E < ‖u‖E or f ⊥ Vh thus ui = 0, i , . . . , n.

44 / 64



Sparse Grids The combination technique

Proof.

‖u‖2
E = ‖u −

n∑
i=1

ciui‖2
E + ‖

n∑
i=1

ciui‖2
E

If the best approximation is zero then u has to be orthogonal to all ui . As
u − ui is orthogonal to Vh it follows that all the v which are orthogonal to
ui are also orthogonal to u and it follows that u is orthogonal to Vi

45 / 64



Sparse Grids The combination technique

An iterative method

Opticom iterative refinement

u(0) = 0

a(u
(k+1)
i , vi ) = a(u − u(k), vi ), vi ∈ Vi

c
(k+1)
i such that

∥∥∥∥∥
n∑

i=1

c
(k+1)
i u

(k+1)
i − (u − u(k))

∥∥∥∥∥
E

minimal

u(k+1) = u(k) +
n∑

i=1

ciu
(k+1)
i

algorithm converges to the sparse grid solution
variant of parallel subspace correction [Xu 1992]
also combine with Newton [Griebel, H. 2010]
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Data distributions

the machine learning problem

given data x1, . . . xN in Rd find density f (x) such that

f ≈ 1

N

N∑
k=1

δxk

[Tapia & Thompson 1978, Silverman 1986, Scott 1992]
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Data distributions

from data smoothing to sums of simpler approximations

function approximation: RBF =⇒ sums of products

f (x) =
N∑
i=1

ciκ(x − xi ) =⇒ f (x) =
K∑

k=1

ck

K∏
j=1

fj ,k(ξj)

where x = (ξ1, . . . , ξd) and xi are data points

density estimation: kernel density estimators =⇒ mixture models

f (x) =
1

N

N∑
i=1

κ(x − xi ) =⇒ f (x) =
K∑

k=1

πk N(x | µk ,Ck)

[McLachlan and Peel, 2000]
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Data distributions Bayes and MAP

Bayesian inference

given data and models
data, e.g. x = (x1, . . . , xN) typically x ∈ RNd

likelihood of data: p(x | z)
prior of parameters z : p(z) – models “reasonable assumptions” about z

Bayes’ rule – how to adapt p(z) in light of the evidence

p(z | x) =
p(x | z)p(z)

p(x)
where p(x) =

∫
p(x | z)p(z) dz

p(x) is pX (X = x), p(z | x) is pX |Z (X = x | Z = z) etc
what to do with the posterior

expectations E (Y ) =
∫

yp(y | z)p(z | x) dx dy
probability distributions p(y) =

∫
p(y | z)p(z | x) dy

maximum zmax = argmaxz p(z | x) = argmaxz p(x | z)p(z)

tractability
the computation of p(x), p(y) and E (y) require in general
highdimensional integrals ⇒ approximation
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Data distributions Bayes and MAP

density estimation

data: x = (x1, . . . , xN) drawn randomly from some unknown
probability distribution

probability density model: f (xk) = p(xk | u) = exp(u(xk)− γ(u))
where γ(u) is such that

∫
p(xk | u) dxk = 1

estimation problem: for given data x1, . . . , xN find û(x̂) such that
p(xk | û) approximates underlying density

likelihood:

p(x | u) = exp

(
n∑

i=1

u(xi )− n γ(u)

)
choose û such that likelihood large

parametric case: maximum likelihood method

problem underdetermined in nonparametric case
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Data distributions Bayes and MAP

MAP with Gaussian process priors

prior for u: Gaussian probability measure ν over space of functions =
Gaussian process prior – we consider covariance C = C1 ⊗ · · · ⊗ Cd

posterior based on likelihood ρ(u) = p(x | u):

dµ = ρ dν

is a well defined measure if ρ ∈ L1(ν)

maximum a-posteriori (MAP) method: estimate u as mode of
posterior

Laplace approximation of posterior: Gaussian process with
expectation u
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Data distributions Bayes and MAP

a variational problem

characterisation of mode u of µ:

ρ(u) ≥ dλv
dλ

(u) ρ(u + v), for all v ∈ H

where λv (A) = λ(v + A)

this leads to minimisation of functional

j(u) =
1

n
‖u‖2

CM −
1

n

n∑
i=1

u(xi ) + log

∫
X

exp(u(x)) dx

where ‖ · ‖CM is Cameron-Martin norm defined by prior

[H. 2007, Griebel, H. 2010]
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Data distributions Bayes and MAP

Newton-Galerkin Opticom method

Newton Galerkin un+1 = un + ∆un, ∆un minimises

J(∆u) =
1

2
Hun(∆u,∆u) + (F (un),∆u)H

Sparse grid space V =
∑

j V (j)

Sparse grid combination technique ∆un =
∑k

j=1 cj∆u
(i)
n where

components ∆u
(j)
n minimise J(∆u) over V (j)

Opticom method: choose combination coefficients cj to minimise

J(
∑k

j=1 cj∆u
(j)
n ) ⇒ descent method, converges to sparse grid

solution, not some combination approximation

inexact Newton method [Deuflhard, Weiser 1996, Deuflhard 2004]
alternative: nonlinear additive Schwarz [Dryja, Hackbusch 1997]

[H., Griebel 2007]
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Data distributions Bayes and MAP

errors of sparse grid approximation for 2D case

approximation of the normal distribution: maximum likelihood projection
and our estimator

l e
(1)
1,l

e
(1)
1,l

e
(1)
1,l+1

e
(1)
2,l

e
(1)
2,l

e
(1)
2,l+1

e
(3)
1,l

e
(3)
1,l

e
(3)
1,l+1

e
(3)
2,l

e
(3)
2,l

e
(3)
2,l+1

1 1.42e+00 – – – 8.05e-02 – 1.33e-01 –
2 3.12e-01 4.55e+00 1.16e+00 – 7.97e-02 1.01e+00 1.27e-01 1.04e+00
3 7.37e-02 4.23e+00 2.44e-01 4.75e+00 3.11e-02 2.56e+00 6.39e-02 1.99e+00
4 1.94e-02 3.81e+00 6.34e-02 3.85e+00 9.63e-03 3.23e+00 1.89e-02 3.38e+00
5 4.92e-03 3.93e+00 1.60e-02 3.96e+00 3.13e-03 3.08e+00 6.14e-03 3.08e+00
6 1.23e-03 4.00e+00 4.17e-03 3.83e+00 8.04e-04 3.89e+00 1.72e-03 3.56e+00
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Data distributions Bayes and MAP

3D density

[Griebel, H. 2010]
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Data distributions Minimising KL divergence
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Data distributions Minimising KL divergence

two variational problems

method Ritz-Galerkin for uh variational Bayes for q

error energy norm KL-divergence
‖u − uh‖E = KL(q || p(· | x)) =√

a(u − uh, u − uh)
∫

q(z) log
(
p(z|x)
q(z)

)
dz

optimisation minimise maximise
problem J(uh) = L(q) =

1
2 a(uh, uh)− 〈f , uh〉

∫
q(z) log

(
p(x ,z)
q(z)

)
dz

property V -ellipticity convexity

right column: use

KL(q || p(· | x))− L(q) = log p(x)

data: f on left and p(x , z) on right
[Beal 2003, MacKay 2003, Bishop 2006]
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Data distributions Minimising KL divergence

fix point characterisation of best product

Proposition (characterisation)

If q =
∏m

i=1 qj is best approximant then

uj(zj) =

∫
log(p(x , z))

∏
i 6=j

qi (zi ) dzi

qj(zj) =
exp(uj(zj))∫

exp(uj(wj)) dwj

Proof.

L(q) =

∫ m∏
i=1

qi (zi )

(
log(p(x , z)−

m∑
i=1

log qi (zi )

)
dzi

=

∫
(uj(zj)− log qj(zj) ) qj(zj) dzj + F ({qi}i 6=j)

idea from mean field approximation
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Data distributions Minimising KL divergence

iterative solver

start with q
(0)
1 , . . . , q

(0)
m

n = 1, 2, . . .

j = 1, . . . ,m

u
(n)
j (zj) =

∫
log p(x , z)

j−1∏
i=1

q
(n)
i (zi ) dzi

m∏
i=j+1

q
(n−1)
i (zi ) dzi

q
(n)
j (zj) =

exp u
(n)
j (zj)∫

exp u
(n)
j (wj) dwi

convergence as KL-divergence convex in uj
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Data distributions Minimising KL divergence

mixture models

probability distribution for n-th observation

p(xn | u) =
K∑

k=1

πk pk(xn | uk)

components pk are separable ⇒ sums of separable functions

problem: estimation of p given data x = (x1, . . . , xN)

difficulty: while each pk has product structure which is adapted to KL
minimisation the sum is a problem

idea: introduce latent (or hidden) variables z1, . . . , zN which are
binary vectors indicating the class k of observation n thus

p(xn | u) =
K∑

k=1

p(xn | uk , zn = ek) p(zn = ek) =
∑
zn

p(xn, zn | u)

is interpreted as a marginal distribution and u = (u1, . . . , uK )
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Data distributions Minimising KL divergence

likelihood, priors and posterior

likelihood of x = (x1, . . . , xn)

p(x | z , u) =
N∏

n=1

K∏
k=1

p(xn | uk)znk – sum disappeared

prior for latent variables zn

p(z | π) =
N∏

n=1

K∏
k=1

πznkk

priors for π and u: p(π) and p(u)

posterior distribution p(z , π, u | x) = p(x , z , π, u)/p(x) where

p(x , z , π, u) = p(x | z , u) p(z | π) p(π) p(u)
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Data distributions Minimising KL divergence

variational Bayes for mixture models

aim: q(z , π, u) approximation of posterior p(z , π, u | x)

product Ansatz: q(z , π, u) = q(z)q(π, u)

fix point formulation from minimal KL divergence

q(z) =
N∏

n=1

K∏
k=1

r znknk

q(π, u) = C p(π)
K∏

k=1

p(uk)
N∏

n=1

K∏
k=1

(πk p(xn | uk))rnk

where rnk = ρnk/(
∑

k ρnk) and ρnk = Eπ[log πk ] + Eu[log p(xn | u)]
and

approximate p(xn | uk) as product to get tractability
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Conclusions

Conclusions

with the wide availability of new computational resources high
performance computing ideas now enter mainstream computational
science

HPC is getting increasingly complex with a shift towards new
problems and approaches characterised by the “multi-challenge”

an increasingly important challenge originates from the multi and high
dimensionality of many models in physics, chemistry, biology,
statistics and engineering

new theory and algorithms are needed

sparse grid combination technique deals with dimensionality and is
ideally suited for HPC

the Opticom method is able to overcome a stability issue of the
original combination technique

next: high-dimensional inverse problems?
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