Sparse grids and optimisation

Lecture 1: Challenges and structure of multidimensional problems

Markus Hegland ${ }^{1}$, ANU

10.-16. July, MATRIX workshop on approximation and optimisation

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4) Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4) Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Challenges of numerical analysis

- numerical techniques are major driver of innovation in industrial societies and indispensable for design of aeroplanes, weather forecast, environmental monitoring, medical diagnostics, robotics and image processing
- fundamental techniques and their foundations well established
- techniques include finite elements, finite differences and finite volumes, they are widely available but do not work for
- ill-posed problems
- high-dimensional problems
- in both cases one requires specially adapted techniques and theory and practice of these techniques are active area of research
- recent developments in High Performance Computing (HPC) and new algorithms allow solution of new multidimensional problems - but introduce new challenges

Computational challenges in HPC

Examples: PDEs, data, parameters

- PDEs $u=\operatorname{argmin}_{v \in V} J(v)$
- elliptic PDEs $J(v)=\frac{1}{2} a(v, v)-f(v)$
- least squares solution $J(v)=\int(L v(x)-f(x))^{2} d x$
- eigenvalues $J(v)=\frac{a(v, v)}{b(v, v)}$ (Rayleigh quotient)
- fitting data $u=\operatorname{argmin}_{v \in V} L(v)$
- penalised least squares $L(v)=\frac{1}{N} \sum_{i=1}^{N}\left(v\left(x_{i}\right)-y_{i}\right)^{2}+a(v, v)$
- MAP for density $p(x)=\exp u(x)$

$$
L(v)=\frac{1}{N} \sum_{i=1}^{N} v\left(x_{i}\right)+\log \int \exp (v(x)) d x+a(v, v)
$$

- parametric problems combine PDEs and data fitting

$$
u=\operatorname{argmin}\{L(u(\mu) ; \mu) \mid v=u(\mu), \mu \in M\}
$$

with PDE constraint $u(\mu)=\operatorname{argmin}_{v} J(v ; \mu)$

- quantities of interest $q=s(u)$ target of approximation, e.g. energy, moments, likelihood, cost, risk

Integrating multiplicities

HPC tackles a "multi-challenge"

- multi-disciplinary domains and education
- multi-physics models
- multi-scale models
- multi-dimensional numerics
- multi-level numerics
- multi-core systems

The prevailing paradigm in modern computational science and HPC combines multiple resources and approaches with a wide range of different properties to gain new insights into immensely complex systems in the natural, engineering and social sciences.
This reflects the multi-skilled and multi-cultural societies in which modern science is developed.

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4 Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Interpolation

- evaluation of function expensive
- compute some, interpolate
- logarithm tables by H. Briggs 1617
piecewise linear interpolant

- fast evaluation
- reasonable accuracy
- stable, positive

logarithm table

from: Wikipedia

A more accurate and flexible approach

$$
f_{l}(x)=c_{1} \phi\left(\left|x-x_{1}\right|\right)+\cdots+c_{m} \phi\left(\left|x-x_{m}\right|\right) \quad \text { interpolation function }
$$

piecewise linear

Gaussian $\phi(r)=e^{-r^{2} / \gamma}$

interpolation equations

$$
\left[\begin{array}{cccc}
\phi(0) & \phi\left(\left|x_{1}-x_{2}\right|\right) & \cdots & \phi\left(\left|x_{1}-x_{m}\right|\right) \\
\phi\left(\left|x_{2}-x_{1}\right|\right) & \phi(0) & \cdots & \phi\left(\left|x_{2}-x_{m}\right|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\left|x_{m}-x_{1}\right|\right) & \phi\left(\left|x_{m}-x_{2}\right|\right) & \cdots & \phi(0)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right]
$$

Multidimensional interpolation

use $\phi\left(\left\|x-x_{i}\right\|\right)$ where $\left\|x-x_{i}\right\|$ is Euclidean distance of x and x_{i}

error $O\left(m^{-2 / d}\right)$

random points x_{i}

error $O\left(m^{-1 / 2}\right)$

- up to $d=4$ dimensions and smooth functions regular grid competitive
- for higher dimensions random interpolation points better
- theory for random points uses law of large numbers

The concentration of measure

- in high dimensions any pair of random points have same distance
- consequently interpolant is close to constant with high probability
interpolation matrix for $d=100$

$$
\left[\phi\left(\left\|x_{i}-x_{j}\right\|\right)\right]_{i, j=1, \ldots, n}=\left[\begin{array}{cccccc}
1 & 0.79 & 0.77 & 0.74 & 0.78 & 0.79 \\
0.79 & 1 & 0.80 & 0.77 & 0.77 & 0.80 \\
0.77 & 0.80 & 1 & 0.77 & 0.76 & 0.77 \\
0.74 & 0.77 & 0.77 & 1 & 0.78 & 0.78 \\
0.78 & 0.77 & 0.76 & 0.78 & 1 & 0.77 \\
0.79 & 0.80 & 0.77 & 0.78 & 0.77 & 1
\end{array}\right]
$$

other instances of concentration of measure

- most of volume of sphere (Earth) close to surface
- law of large numbers, statistical convergence theory
[Lévy, 20s, Milman 70s, Gromov, Talagrand 90s+]

When concentration is not a problem for interpolation

- when the points of interest are on low-dimensional sub-manifold
- when function which is to be interpolated has known simple structure, e.g., is linear or additive:

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

or is close to such a function

- when function only depends on few dimensions

$$
f\left(x_{1}, \ldots, x_{d}\right)=g\left(x_{1}, x_{2}, x_{3}\right)
$$

dimension is not only a curse
in high dimensions any non-empty neighbourhood contains large numbers of points which can be used for error reduction by averaging
[Anderssen, H. 1999]

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4 Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Density estimation

- large data sets, queries expensive
- data set $=$ probability measure over feature space
- histogram $=$ piecewise constant approximation of measure
- extract relevant information fast from histogram

application

- mean, variance, moments
- number and location of modes
- skewness and tail behaviour

All modern theories of statistical inference take as their starting point the idea of the probability density function of the observations.
E. Parzen (1961) in An Approach to Time Series Analysis

histogram

A more accurate and flexible approach

$$
p_{K}(x)=\frac{\phi\left(\left|x-x_{1}\right| / \sigma\right)}{m \sigma}+\cdots+\frac{\phi\left(\left|x-x_{m}\right| / \sigma\right)}{m \sigma} \quad \text { kernel density estimator }
$$

piecewise constant

- more accurate representation of smooth densities
- control smoothness with width parameter σ, can depend on x
- no need to solve linear system of equations
- more flexible: also for multidimensional distributions

Challenges of multidimensional density estimation

low dimensional case

for any x only the $\phi\left(\left|x-x_{i}\right| / \sigma\right)$ for neighbouring x_{i} are nonzero, gives efficient estimator as every point has only few neighbours

$$
p_{K}(x)=\sum_{x_{i} \in \mathcal{N}(x)} \phi\left(\left|x-x_{i}\right| / \sigma\right) / m \sigma
$$

high dimensional case

all x_{i} are neighbours, need to consider all data points to evaluate density

$$
p_{K}(x)=\sum_{i=1}^{m} \phi\left(\left|x-x_{i}\right| / \sigma\right) / m \sigma
$$

very high dimensional case

if x, x_{1}, \ldots, x_{m} are i.i.d. then all components $\phi\left(\left|x-x_{i}\right| / \sigma\right) / m \sigma$ of the same size, density asymptotically uniform $p_{K}(x) \approx E\left(\phi\left(\left|X_{i}-X_{j}\right| / \sigma\right)\right) / \sigma_{17 / 64}$

When concentration is not a problem for density estimation

- when the points of interest are on low-dimensional submanifold
- when unknown p has known simple structure, e.g.

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p_{i}\left(x_{i}\right)
$$

- more generally, the density is described by graphical model which leads to a factorisation as in

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\frac{p\left(x_{1}, x_{2}\right) p\left(x_{2}, x_{3}\right)}{p\left(x_{2}\right)}
$$

- mixture model

$$
p(x)=\sum_{i=1}^{K} p_{i}(x) \pi_{i}
$$

where $p_{i}(x)=p\left(x \mid x \in \Omega_{i}\right)$ has some known form and $\pi_{i}=p\left(\Omega_{i}\right)$

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4) Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Partial differential equations

Partial differential equations are a very widely used tool in computational science

examples of equations

ih $\frac{\partial \psi}{\partial t}=-\frac{h^{2}}{2 m} \Delta \psi+V \psi \quad$ Schrödinger equation, quantum chemistry $\frac{d p}{d t}=\sum_{z}\left(S_{z}-I\right) \Lambda_{z} p \quad$ Chemical master equation, molecular biology
$\frac{\partial f}{\partial t}+v^{T} \nabla_{x} f+q(E+v \times B) \nabla_{p} f=0 \quad$ Vlasov equation, plasma physics

dimensionality

ψ and p can depend on hundreds of variables, f depends on five variables

Controlling the function values

Sobolev norms

important tool for PDE theory

$$
\|u\|_{k}^{2}=(-1)^{k} \int_{\Omega} u(x) \Delta^{k} u(x) d x
$$

for $u \in C_{0}^{\infty}(\Omega)$ and completion

case $d>3$

- embedding for $k \geq\left\lfloor\frac{d}{2}\right\rfloor+1$

$$
|u(x)| \leq C\|u\|_{k}
$$

- $k=2$ from regularity theory
bounded solutions for $d \leq 3$
- PDE regularity theory

$$
\|u\|_{2}<\infty
$$

- Sobolev embedding

$$
|u(x)| \leq C\|u\|_{2}
$$

mixed norms

$$
\|u\|_{\text {mix }}^{2}=\int\left|\frac{\partial^{d} u(x)}{\partial x_{1} \cdots \partial x_{d}}\right|^{2} d x
$$

and so $|u(x)| \leq C^{d}\|u\|_{\text {mix }}^{2}$

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4 Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

The grid

- approximate unknown function $u(x, y)$
- compute only values $u\left(x_{i}, y_{j}\right)$ on discrete grid points
- interpolate values $u(x, y)$ for other points (x, y)
- regular isotropic grid: $x_{i}=i h$ and $y_{j}=j h$
the challenge: curse of dimension
In two dimensions $1 / h^{2}$ grid points, in d dimensions $1 / h^{d}$ grid points but accuracy proportional to h^{2}

Anisotropic grids

more general regular grids

- choose fine grid when $u(x, y)$ has large gradients
- choose coarse grid when $u(x, y)$ is smooth
- gradients may be different in different directions
- choose anisotropic grid when $u(x, y)$ varies differently in different directions
with anisotropic grids one can approximate multi-dimensional $u\left(x_{1}, \ldots, x_{d}\right)$ if u very smooth in most x_{k}

Grids and sampling

full grid captures all scales

subgrid captures less scales

- evaluation of $u(x, y)$ on the grid corresponds to sampling u on the grid points
- sampling on a fine grid captures high frequencies - small scale fluctuations (Nyqvist/Shannon)
- with anisotropic grids one can capture small scales in one dimension and different scales in another

Sparse grid $=$ union of regular anisotropic grids

a simple sparse grid

sparse grid in frequency / scale space

$=$
captures fine scales in both dimensions but not joint fine scales \qquad

Another sparse grid

sparse grid points

sparse grid frequency diagram

the frequency diagram displays $1 / 4$ of a hyperbolic cross

Sparse grids and the curse of dimension

four dimensional case

- only asymptotic error rates given here
- constants and preasymptotics also depend on dimension
- practical experience: with sparse grids up to 10 dimensions
- Zenger 1991

	number of points	error
regular isotropic grids	h^{-d}	h^{2}
sparse grids	$h^{-1}\left\|\log _{2} h\right\|^{d-1}$	$h^{2}\left\|\log _{2} h\right\|^{d-1}$

The big plan - dimension independence

- problem of sparse grids: exponential d-dependence of time and error through
- factors $\left|\log _{2}(h)\right|^{d-1}$
- factors of the form C^{d}
- aim: remove all exponential d-dependence so that
- error $\sim h^{2}$
- time $\sim 1 / h$
as in the case $d=1$
- ideas:
- parallel solution on subgrids (see next section) gives $1 / h$ time
- stronger (energy) sparse grids give h^{2} error
- weighted mixed norms and special basis functions to deal with C^{d} dependence

Spatially adaptive (sparse) grids

choosing a sparse sub-grid of the sparse grid

- adaptively choose necessary sparse grid points and corresponding (hierarchical) basis functions
- requires an error indicator function
- grid points inserted only where necessary
- acts as extra regularisation (like smoothing) for machine learning applications
- modified basis functions for boundary to remove the C^{d}
- implemented in SG++ software package by Dirk Pflüger (Universität Stuttgart), 2010

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4) Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Combining two regular grids

- solution on combined grid is approximated as a linear combination of the solution on the regular component grids
- the components include the maximal generators and all intersections

Weak solutions of boundary value problems

$$
\begin{aligned}
& \text { boundary value problem } \\
& \qquad \begin{array}{l}
-\Delta u(x)=f(x), \quad x \in \Omega \\
u(x)=0, \quad x \in \partial \Omega
\end{array}
\end{aligned}
$$

approximate solution $u_{h} \in V_{h}$

$$
a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle, \quad v_{h} \in V_{h}
$$

$$
a(u, v)=\langle f, v\rangle, \quad v \in H_{0}^{1}(\Omega)
$$

where

$$
\begin{aligned}
& a(u, v)=\int_{\Omega} \nabla u(x)^{T} \nabla v(x) d x \\
& \langle f, v\rangle=\int_{\Omega} f(x) v(x) d x
\end{aligned}
$$

Combination approximations

regular grid approximation

- regular grid G_{h}
- function space V_{h}
- Galerkin equations for u_{h}

$$
a\left(u_{\mathbf{h}}, v_{\mathbf{h}}\right)=\left\langle f, v_{\mathbf{h}}\right\rangle
$$

for all $v_{h} \in V_{h}$

sparse grid approximation

- sparse grid $G_{S G}=\bigcup_{h} G_{h}$
- function space $V_{S G}=\sum_{h} V_{h}$
- Galerkin equations for $u_{S G}$

$$
a\left(u_{\mathrm{SG}}, v_{\mathrm{SG}}\right)=\left\langle f, v_{\mathrm{SG}}\right\rangle
$$

for all $v_{\mathrm{SG}} \in V_{\mathrm{SG}}$
combination technique - where HPC comes in
compute all $u_{\mathbf{h}}$ in parallel and combine solutions using parallel reduction:

$$
u_{C}=\sum_{\mathbf{h}} c_{h} u_{\mathbf{h}}
$$

Big question: when is $u_{C} \approx u_{\mathrm{SG}}$?

Sparse grid combination technique

sparse grid points

combination formula

$$
u_{C}=u_{1,16}+u_{2,8}+u_{4,4}+u_{8,2}+u_{16,1}-u_{1,8}-u_{2,4}-u_{4,2}-u_{8,1}
$$

Inclusion / exclusion principle in combinatorics

for the cardinality of sets

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

more general for additive α :

$$
\alpha(A \cup B)=\alpha(A)+\alpha(B)-\alpha(A \cap B)
$$

Theorem (de Moivre)

If A_{1}, \ldots, A_{m} form intersection structure then

$$
\alpha\left(\bigcup_{i=1}^{m} A_{i}\right)=\sum_{i=1}^{m} c_{i} \alpha\left(A_{i}\right), \quad \text { for some } c_{i} \in \mathbb{Z}
$$

When the combination approximation is the sparse grid solution

Lemma

- if the grids G_{h} and the spaces V_{h} form an intersection structure
- if the Galerkin projections $P_{\mathbf{h}}$ commute, i.e.,

$$
P_{\mathbf{h}} P_{\mathbf{h}^{\prime}}=P_{\mathbf{h}^{\prime}} P_{\mathbf{h}}, \quad \text { for all } \mathbf{h}, \mathbf{h}^{\prime}
$$

then

$$
u_{C}=u_{S G}
$$

i.e., the combination technique provides the sparse grid solution

Proof.

This is a consequence of the inclusion-exclusion principle as it follows from the commutativity that $P_{\mathbf{h}}$ is additive

Tensor products - the classical sparse grid

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{m} \subset V
$$ hierarchy of functions of one variable

tensor product function space

$V_{i} \otimes V_{j}$ space of functions generated by products $u_{1} \otimes u_{2}\left(x_{1}, x_{2}\right)=u_{i}\left(x_{1}\right) u_{j}\left(x_{2}\right)$ where $u_{i} \in V_{i}$ and $u_{j} \in V_{j}$

classical sparse grid space

$$
V_{\mathrm{SG}}=\sum_{i+j=n} V_{i} \otimes V_{j}
$$

combination coefficients

$$
c_{i j}= \begin{cases}1 & i+j=n \\ -1 & i+j=n-1 \\ 0 & \text { else }\end{cases}
$$

$V_{i} \otimes V_{j}$ form an intersection structure as

$$
\left(V_{i_{1}} \otimes V_{j_{1}}\right) \cap\left(V_{i_{2}} \otimes V_{j_{2}}\right)=V_{\min \left(i_{1}, i_{2}\right)} \otimes V_{\min \left(j_{1}, j_{2}\right)}
$$

and combination formula exact if $a\left(u_{1} \otimes u_{2}, v_{1} \otimes v_{2}\right)=a\left(u_{1}, v_{1}\right) a\left(u_{2}, v_{2}\right)$
[Griebel, Schneider, Zenger 1992]

Extrapolation

assumption: error model

error of approximation in $V_{i j}=V_{i} \otimes V_{j}$ is of form

$$
e_{i j}=e_{i}^{(1)}+e_{j}^{(2)}+r_{i j}
$$

is type of ANOVA decomposition for the error
consequence: error of combination technique

$$
e_{h}=\sum_{i+j \leq n} c_{i j} e_{i j}=e_{n}^{(1)}+e_{n}^{(2)}+\sum_{i+j \leq n} c_{i j} r_{i j}
$$

if last term very small then $e_{h} \approx e_{n, n}$ i.e., the combination technique approximation using only components in $V_{i} \otimes V_{j}$ with $i+j \leq n$ get a similar approximation order as the one in $V_{n n}$
[Bungartz et al 1994, Pflaum and Zhou 1999, Liem, Lu Shih 1995 (splitting extrapolation)]

Breakdown of the combination technique

regression problem
 minimise

$$
\frac{1}{M} \sum_{i=1}^{M}\left(u\left(x_{i}\right)-y_{i}\right)^{2}+\lambda\|\nabla u\|^{2}
$$

$$
\text { with } \lambda=10^{-4} \text { (left) and } \lambda=10^{-6}
$$

(right)

combination approximation is not necessarily better for finer grids

Opticom

"Optimal combination technique": choose the coefficients c_{i} such that J is optimised with

$$
\begin{aligned}
J\left(c_{1}, \ldots, c_{m}\right) & =\left\|u-\sum_{i=1}^{m} c_{i} u_{i}\right\|_{E}^{2} \\
& =\sum_{i, j=1}^{m} c_{i} c_{j} a\left(u_{i}, u_{j}\right)-2 \sum_{i=1}^{m} c_{i}\left\|u_{i}\right\|_{E}^{2}+\|u\|_{E}^{2}
\end{aligned}
$$

normal equations

$$
\left[\begin{array}{cccc}
\left\|u_{1}\right\|_{E}^{2} & a\left(u_{1}, u_{2}\right) & \cdots & a\left(u_{1}, u_{m}\right) \\
a\left(u_{2}, u_{1}\right) & \left\|u_{2}\right\|_{E}^{2} & \cdots & a\left(u_{2}, u_{m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
a\left(u_{m}, u_{1}\right) & a\left(u_{m}, u_{2}\right) & \cdots & \left\|u_{m}\right\|_{E}^{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=\left[\begin{array}{c}
\left\|u_{1}\right\|_{E}^{2} \\
\left\|u_{2}\right\|_{E}^{2} \\
\vdots \\
\left\|u_{m}\right\|_{E}^{2}
\end{array}\right]
$$

Solution of the system of order $O\left(\mathrm{~m}^{3}\right)$ at most but one needs to determine the $O\left(m^{2}\right)$ matrix elements each costing $O(n)$ in machine learning

Opticom is better than the sub-grid solutions

Let $V_{\mathrm{SG}}=\sum_{i=1}^{n} V_{i} \subset V, a(\cdot, \cdot)$ be V -elliptic and bounded symmetric bilinear form, $u_{i} \in V_{i}$ defined by

$$
a\left(u_{i}, v_{i}\right)=a\left(u, v_{i}\right), \quad \text { for all } v_{i} \in V_{i}
$$

and c_{i} be the Opticom coefficients. Then the error in the energy norm satisfies

$$
\left\|u-u_{\mathrm{SG}}\right\|_{E} \leq\left\|u-\sum_{i=1}^{n} c_{i} u_{i}\right\|_{E} \leq \min _{i=1, \ldots, n}\left\|u-u_{i}\right\|_{E}
$$

The standard combination technique does not have this property

The optimality of Opticom

Proposition

Let $V_{S G}=\sum_{i=1}^{n} V_{i} \subset V, a(\cdot, \cdot)$ be V-elliptic and bounded bilinear form, $u_{i} \in V_{i}$ defined by

$$
a\left(u_{i}, v_{i}\right)=a\left(u, v_{i}\right), \quad \text { for all } u_{i} \in V_{i}
$$

and c_{i} be the Opticom coefficients. Then for some $\kappa>0$ one has

$$
\left\|u-\sum_{i=1}^{n} c_{i} u_{i}\right\| v \leq \kappa\left\|u-\sum_{i=1}^{n} \tilde{c}_{i} u_{i}\right\|_{V} \quad \text { for any } \tilde{c}_{i} \in \mathbb{R}
$$

Proof.

This is a direct application of Céa's Lemma

Norm reduction with Opticom

Proposition

Let $V_{S G}=\sum_{i=1}^{n} V_{i} \subset V a(\cdot, \cdot)$ be V-elliptic and bounded symmetric bilinear form, $u_{i} \in V_{i}$ defined by

$$
a\left(u_{i}, v_{i}\right)=a\left(u, v_{i}\right), \quad \text { for all } v_{i} \in V_{i}
$$

and c_{i} be the Opticom coefficients. Then one has for the energy norm defined by $a(\cdot, \cdot)$ the bound

$$
\left\|u-\sum_{i=1}^{n} c_{i} u_{i}\right\|_{E} \leq\|u\|_{E}
$$

and either $\left\|f-\sum_{i=1}^{n} c_{i} u_{i}\right\|_{E}<\|u\|_{E}$ or $f \perp V_{h}$ thus $u_{i}=0, i, \ldots, n$.

Proof.

$$
\|u\|_{E}^{2}=\left\|u-\sum_{i=1}^{n} c_{i} u_{i}\right\|_{E}^{2}+\left\|\sum_{i=1}^{n} c_{i} u_{i}\right\|_{E}^{2}
$$

If the best approximation is zero then u has to be orthogonal to all u_{i}. As $u-u_{i}$ is orthogonal to V_{h} it follows that all the v which are orthogonal to u_{i} are also orthogonal to u and it follows that u is orthogonal to V_{i}

An iterative method

Opticom iterative refinement

$$
\begin{aligned}
& u^{(0)}=0 \\
& \quad a\left(u_{i}^{(k+1)}, v_{i}\right)=a\left(u-u^{(k)}, v_{i}\right), \quad v_{i} \in V_{i} \\
& c_{i}^{(k+1)} \text { such that }\left\|\sum_{i=1}^{n} c_{i}^{(k+1)} u_{i}^{(k+1)}-\left(u-u^{(k)}\right)\right\|_{E} \text { minimal } \\
& u^{(k+1)}=u^{(k)}+\sum_{i=1}^{n} c_{i} u_{i}^{(k+1)}
\end{aligned}
$$

- algorithm converges to the sparse grid solution
- variant of parallel subspace correction [Xu 1992]
- also combine with Newton [Griebel, H. 2010]

the machine learning problem

given data $x_{1}, \ldots x_{N}$ in \mathbb{R}^{d} find density $f(x)$ such that

$$
f \approx \frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}}
$$

[Tapia \& Thompson 1978, Silverman 1986, Scott 1992]

from data smoothing to sums of simpler approximations

- function approximation: RBF \Longrightarrow sums of products

$$
f(x)=\sum_{i=1}^{N} c_{i} \kappa\left(x-x_{i}\right) \Longrightarrow f(x)=\sum_{k=1}^{K} c_{k} \prod_{j=1}^{K} f_{j, k}\left(\xi_{j}\right)
$$

where $x=\left(\xi_{1}, \ldots, \xi_{d}\right)$ and x_{i} are data points

- density estimation: kernel density estimators \Longrightarrow mixture models

$$
f(x)=\frac{1}{N} \sum_{i=1}^{N} \kappa\left(x-x_{i}\right) \quad \Longrightarrow \quad f(x)=\sum_{k=1}^{K} \pi_{k} N\left(x \mid \mu_{k}, C_{k}\right)
$$

[McLachlan and Peel, 2000]

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4 Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

Bayesian inference

- given data and models
- data, e.g. $x=\left(x_{1}, \ldots, x_{N}\right)$ typically $x \in \mathbb{R}^{N d}$
- likelihood of data: $p(x \mid z)$
- prior of parameters $z: p(z)$ - models "reasonable assumptions" about z
- Bayes' rule - how to adapt $p(z)$ in light of the evidence

$$
p(z \mid x)=\frac{p(x \mid z) p(z)}{p(x)} \text { where } p(x)=\int p(x \mid z) p(z) d z
$$

$$
p(x) \text { is } p_{X}(X=x), p(z \mid x) \text { is } p_{X \mid Z}(X=x \mid Z=z) \text { etc }
$$

- what to do with the posterior
- expectations $E(Y)=\int y p(y \mid z) p(z \mid x) d x d y$
- probability distributions $p(y)=\int p(y \mid z) p(z \mid x) d y$
- maximum $z_{\text {max }}=\operatorname{argmax}_{z} p(z \mid x)=\operatorname{argmax}_{z} p(x \mid z) p(z)$
- tractability
the computation of $p(x), p(y)$ and $E(y)$ require in general highdimensional integrals \Rightarrow approximation

density estimation

- data: $x=\left(x_{1}, \ldots, x_{N}\right)$ drawn randomly from some unknown probability distribution
- probability density model: $f\left(x_{k}\right)=p\left(x_{k} \mid u\right)=\exp \left(u\left(x_{k}\right)-\gamma(u)\right)$ where $\gamma(u)$ is such that $\int p\left(x_{k} \mid u\right) d x_{k}=1$
- estimation problem: for given data x_{1}, \ldots, x_{N} find $\hat{u}(\hat{x})$ such that $p\left(x_{k} \mid \hat{u}\right)$ approximates underlying density
- likelihood:

$$
p(x \mid u)=\exp \left(\sum_{i=1}^{n} u\left(x_{i}\right)-n \gamma(u)\right)
$$

choose \hat{u} such that likelihood large

- parametric case: maximum likelihood method
- problem underdetermined in nonparametric case

MAP with Gaussian process priors

- prior for u : Gaussian probability measure ν over space of functions $=$ Gaussian process prior - we consider covariance $C=C_{1} \otimes \cdots \otimes C_{d}$
- posterior based on likelihood $\rho(u)=p(x \mid u)$:

$$
d \mu=\rho d \nu
$$

is a well defined measure if $\rho \in L_{1}(\nu)$

- maximum a-posteriori (MAP) method: estimate u as mode of posterior
- Laplace approximation of posterior: Gaussian process with expectation u

a variational problem

- characterisation of mode u of μ :

$$
\rho(u) \geq \frac{d \lambda_{v}}{d \lambda}(u) \rho(u+v), \quad \text { for all } v \in H
$$

where $\lambda_{v}(A)=\lambda(v+A)$

- this leads to minimisation of functional

$$
j(u)=\frac{1}{n}\|u\|_{C M}^{2}-\frac{1}{n} \sum_{i=1}^{n} u\left(x_{i}\right)+\log \int_{X} \exp (u(x)) d x
$$

where $\|\cdot\|_{C M}$ is Cameron-Martin norm defined by prior
[H. 2007, Griebel, H. 2010]

Newton-Galerkin Opticom method

- Newton Galerkin $u_{n+1}=u_{n}+\Delta u_{n}, \quad \Delta u_{n}$ minimises

$$
J(\Delta u)=\frac{1}{2} H_{u_{n}}(\Delta u, \Delta u)+\left(F\left(u_{n}\right), \Delta u\right)_{H}
$$

- Sparse grid space $V=\sum_{j} V^{(j)}$
- Sparse grid combination technique $\Delta u_{n}=\sum_{j=1}^{k} c_{j} \Delta u_{n}^{(i)}$ where components $\Delta u_{n}^{(j)}$ minimise $J(\Delta u)$ over $V^{(j)}$
- Opticom method: choose combination coefficients c_{j} to minimise $J\left(\sum_{j=1}^{k} c_{j} \Delta u_{n}^{(j)}\right) \Rightarrow$ descent method, converges to sparse grid solution, not some combination approximation
- inexact Newton method [Deuflhard, Weiser 1996, Deuflhard 2004] alternative: nonlinear additive Schwarz [Dryja, Hackbusch 1997]
[H., Griebel 2007]

errors of sparse grid approximation for 2D case

approximation of the normal distribution: maximum likelihood projection and our estimator

I	$e_{1, I}^{(1)}$	$\frac{e_{1, I}^{(1)}}{e_{1, l+1}^{(1)}}$	$e_{2, I}^{(1)}$	$\frac{e_{2, I}^{(1)}}{e_{2, l+1}^{(1)}}$	$e_{1, I}^{(3)}$	$\frac{e_{1, l}^{(3)}}{e_{1, l+1}^{(3)}}$	$e_{2, I}^{(3)}$	$\frac{e_{2, I}^{(3)}}{e_{2, l+1}^{(3)}}$
1	$1.42 \mathrm{e}+00$	-	-	-	$8.05 \mathrm{e}-02$	-	$1.33 \mathrm{e}-01$	-
2	$3.12 \mathrm{e}-01$	$4.55 \mathrm{e}+00$	$1.16 \mathrm{e}+00$	-	$7.97 \mathrm{e}-02$	$1.01 \mathrm{e}+00$	$1.27 \mathrm{e}-01$	$1.04 \mathrm{e}+00$
3	$7.37 \mathrm{e}-02$	$4.23 \mathrm{e}+00$	$2.44 \mathrm{e}-01$	$4.75 \mathrm{e}+00$	$3.11 \mathrm{e}-02$	$2.56 \mathrm{e}+00$	$6.39 \mathrm{e}-02$	$1.99 \mathrm{e}+00$
4	$1.94 \mathrm{e}-02$	$3.81 \mathrm{e}+00$	$6.34 \mathrm{e}-02$	$3.85 \mathrm{e}+00$	$9.63 \mathrm{e}-03$	$3.23 \mathrm{e}+00$	$1.89 \mathrm{e}-02$	$3.38 \mathrm{e}+00$
5	$4.92 \mathrm{e}-03$	$3.93 \mathrm{e}+00$	$1.60 \mathrm{e}-02$	$3.96 \mathrm{e}+00$	$3.13 \mathrm{e}-03$	$3.08 \mathrm{e}+00$	$6.14 \mathrm{e}-03$	$3.08 \mathrm{e}+00$
6	$1.23 \mathrm{e}-03$	$4.00 \mathrm{e}+00$	$4.17 \mathrm{e}-03$	$3.83 \mathrm{e}+00$	$8.04 \mathrm{e}-04$	$3.89 \mathrm{e}+00$	$1.72 \mathrm{e}-03$	$3.56 \mathrm{e}+00$

3D density

[Griebel, H. 2010]

Outline

(1) HPC - Tackling the multi challenge

- The new computational science
(2) Examples of multidimensional problems
- Interpolation
- Density estimation
- Partial differential equations
(3) Sparse Grids
- Grids
- The combination technique

4 Data distributions

- Bayes and MAP
- Minimising KL divergence
(5) Conclusions

two variational problems

method	Ritz-Galerkin for u_{h}	variational Bayes for q			
error	energy norm	KL-divergence			
	$\left\\|u-u_{h}\right\\|_{E}=$	$K L(q \\| p(\cdot \mid x))=$			
	$\sqrt{a\left(u-u_{h}, u-u_{h}\right)}$	$\int q(z) \log \left(\frac{p(z \mid x)}{q(z)}\right) d z$			
optimisation problem	minimise	maximise			
	$J\left(u_{h}\right)=$	$\mathcal{L}(q)=$			
$\frac{1}{2} a\left(u_{h}, u_{h}\right)-\left\langle f, u_{h}\right\rangle$	$\int q(z) \log \left(\frac{p(x, z)}{q(z)}\right) d z$				
property	V-ellipticity	convexity			

right column: use

$$
K L(q \| p(\cdot \mid x))-\mathcal{L}(q)=\log p(x)
$$

data: f on left and $p(x, z)$ on right
[Beal 2003, MacKay 2003, Bishop 2006]

fix point characterisation of best product

Proposition (characterisation)

If $q=\prod_{i=1}^{m} q_{j}$ is best approximant then

$$
\begin{aligned}
& u_{j}\left(z_{j}\right)=\int \log (p(x, z)) \prod_{i \neq j} q_{i}\left(z_{i}\right) d z_{i} \\
& q_{j}\left(z_{j}\right)=\frac{\exp \left(u_{j}\left(z_{j}\right)\right)}{\int \exp \left(u_{j}\left(w_{j}\right)\right) d w_{j}}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\mathcal{L}(q) & =\int \prod_{i=1}^{m} q_{i}\left(z_{i}\right)\left(\log \left(p(x, z)-\sum_{i=1}^{m} \log q_{i}\left(z_{i}\right)\right) d z_{i}\right. \\
& =\int\left(u_{j}\left(z_{j}\right)-\log q_{j}\left(z_{j}\right)\right) q_{j}\left(z_{j}\right) d z_{j}+F\left(\left\{q_{i}\right\}_{i \neq j}\right)
\end{aligned}
$$

iterative solver

$$
\begin{aligned}
& \text { start with } q_{1}^{(0)}, \ldots, q_{m}^{(0)} \\
& \qquad \begin{array}{l}
n=1,2, \ldots \\
\qquad j=1, \ldots, m \\
u_{j}^{(n)}\left(z_{j}\right)=\int \log p(x, z) \prod_{i=1}^{j-1} q_{i}^{(n)}\left(z_{i}\right) d z_{i} \prod_{i=j+1}^{m} q_{i}^{(n-1)}\left(z_{i}\right) d z_{i} \\
\qquad q_{j}^{(n)}\left(z_{j}\right)=\frac{\exp u_{j}^{(n)}\left(z_{j}\right)}{\int \exp u_{j}^{(n)}\left(w_{j}\right) d w_{i}}
\end{array}
\end{aligned}
$$

convergence as KL-divergence convex in u_{j}

mixture models

- probability distribution for n-th observation

$$
p\left(x_{n} \mid u\right)=\sum_{k=1}^{K} \pi_{k} p_{k}\left(x_{n} \mid u_{k}\right)
$$

components p_{k} are separable \Rightarrow sums of separable functions

- problem: estimation of p given data $x=\left(x_{1}, \ldots, x_{N}\right)$
- difficulty: while each p_{k} has product structure which is adapted to KL minimisation the sum is a problem
- idea: introduce latent (or hidden) variables z_{1}, \ldots, z_{N} which are binary vectors indicating the class k of observation n thus

$$
p\left(x_{n} \mid u\right)=\sum_{k=1}^{K} p\left(x_{n} \mid u_{k}, z_{n}=e_{k}\right) p\left(z_{n}=e_{k}\right)=\sum_{z_{n}} p\left(x_{n}, z_{n} \mid u\right)
$$

is interpreted as a marginal distribution and $u=\left(u_{1}, \ldots, u_{K}\right)$

likelihood, priors and posterior

- likelihood of $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
p(x \mid z, u)=\prod_{n=1}^{N} \prod_{k=1}^{K} p\left(x_{n} \mid u_{k}\right)^{z_{n k}} \quad-\text { sum disappeared }
$$

- prior for latent variables z_{n}

$$
p(z \mid \pi)=\prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{n k}}
$$

- priors for π and $u: p(\pi)$ and $p(u)$
- posterior distribution $p(z, \pi, u \mid x)=p(x, z, \pi, u) / p(x)$ where

$$
p(x, z, \pi, u)=p(x \mid z, u) p(z \mid \pi) p(\pi) p(u)
$$

variational Bayes for mixture models

- aim: $q(z, \pi, u)$ approximation of posterior $p(z, \pi, u \mid x)$
- product Ansatz: $q(z, \pi, u)=q(z) q(\pi, u)$
- fix point formulation from minimal KL divergence

$$
\begin{aligned}
q(z) & =\prod_{n=1}^{N} \prod_{k=1}^{K} r_{n k}^{z_{n k}} \\
q(\pi, u) & =C p(\pi) \prod_{k=1}^{K} p\left(u_{k}\right) \prod_{n=1}^{N} \prod_{k=1}^{K}\left(\pi_{k} p\left(x_{n} \mid u_{k}\right)\right)^{r_{n k}}
\end{aligned}
$$

where $r_{n k}=\rho_{n k} /\left(\sum_{k} \rho_{n k}\right)$ and $\rho_{n k}=E_{\pi}\left[\log \pi_{k}\right]+E_{u}\left[\log p\left(x_{n} \mid u\right)\right]$ and

- approximate $p\left(x_{n} \mid u_{k}\right)$ as product to get tractability

Conclusions

- with the wide availability of new computational resources high performance computing ideas now enter mainstream computational science
- HPC is getting increasingly complex with a shift towards new problems and approaches characterised by the "multi-challenge"
- an increasingly important challenge originates from the multi and high dimensionality of many models in physics, chemistry, biology, statistics and engineering
- new theory and algorithms are needed
- sparse grid combination technique deals with dimensionality and is ideally suited for HPC
- the Opticom method is able to overcome a stability issue of the original combination technique
- next: high-dimensional inverse problems?

