Sparse grids and optimisation

Lecture 1: Challenges and structure of multidimensional problems

Markus Hegland¹, ANU

10.-16. July, MATRIX workshop on approximation and optimisation

 $^{^1}$ support by ARC DP and LP and by Technical University of Munich and 1 DFG 2

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- 2 Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Challenges of numerical analysis

- numerical techniques are major driver of innovation in industrial societies and indispensable for design of aeroplanes, weather forecast, environmental monitoring, medical diagnostics, robotics and image processing
- fundamental techniques and their foundations well established
- techniques include finite elements, finite differences and finite volumes, they are widely available but do not work for
 - ill-posed problems
 - high-dimensional problems
- in both cases one requires specially adapted techniques and theory and practice of these techniques are active area of research
- recent developments in High Performance Computing (HPC) and new algorithms allow solution of new multidimensional problems – but introduce new challenges

Computational challenges in HPC

Examples: PDEs, data, parameters

- PDEs $u = \operatorname{argmin}_{v \in V} J(v)$
 - elliptic PDEs $J(v) = \frac{1}{2}a(v, v) f(v)$
 - least squares solution $J(v) = \int (Lv(x) f(x))^2 dx$
 - eigenvalues $J(v) = \frac{a(v,v)}{b(v,v)}$ (Rayleigh quotient)
- fitting data $u = \operatorname{argmin}_{v \in V} L(v)$
 - penalised least squares $L(v) = \frac{1}{N} \sum_{i=1}^{N} (v(x_i) y_i)^2 + a(v, v)$
 - MAP for density $p(x) = \exp u(x)$

$$L(v) = \frac{1}{N} \sum_{i=1}^{N} v(x_i) + \log \int \exp(v(x)) \, dx + a(v, v)$$

parametric problems combine PDEs and data fitting

$$u = \operatorname{argmin}\{L(u(\mu); \mu) \mid v = u(\mu), \mu \in M\}$$

with PDE constraint $u(\mu) = \operatorname{argmin}_{v} J(v; \mu)$

• quantities of interest q=s(u) target of approximation, e.g. energy, moments, likelihood, cost, risk

Integrating multiplicities

HPC tackles a "multi-challenge"

- multi-disciplinary domains and education
- multi-physics models
- multi-scale models
- multi-dimensional numerics
- multi-level numerics
- multi-core systems

The prevailing paradigm in modern computational science and HPC combines multiple resources and approaches with a wide range of different properties to gain new insights into immensely complex systems in the natural, engineering and social sciences.

This reflects the multi-skilled and multi-cultural societies in which modern science is developed.

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Interpolation

- evaluation of function expensive
- compute some, interpolate
- logarithm tables by H. Briggs 1617

piecewise linear interpolant

- fast evaluation
- reasonable accuracy
- stable, positive

logarithm table

from: Wikipedia

A more accurate and flexible approach

$$f_I(x) = c_1 \, \phi(|x-x_1|) + \cdots + c_m \, \phi(|x-x_m|)$$
 interpolation function

interpolation equations

$$\begin{bmatrix} \phi(0) & \phi(|x_1 - x_2|) & \cdots & \phi(|x_1 - x_m|) \\ \phi(|x_2 - x_1|) & \phi(0) & \cdots & \phi(|x_2 - x_m|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(|x_m - x_1|) & \phi(|x_m - x_2|) & \cdots & \phi(0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_m) \end{bmatrix}$$

Multidimensional interpolation

use $\phi(||x-x_i||)$ where $||x-x_i||$ is Euclidean distance of x and x_i

- \bullet up to d=4 dimensions and smooth functions regular grid competitive
- for higher dimensions random interpolation points better
- theory for random points uses law of large numbers

The concentration of measure

- in high dimensions any pair of random points have same distance
- consequently interpolant is close to constant with high probability

interpolation matrix for d=100

$$[\phi(\|x_i - x_j\|)]_{i,j=1,\dots,n} = \begin{bmatrix} 1 & 0.79 & 0.77 & 0.74 & 0.78 & 0.79 \\ 0.79 & 1 & 0.80 & 0.77 & 0.77 & 0.80 \\ 0.77 & 0.80 & 1 & 0.77 & 0.76 & 0.77 \\ 0.74 & 0.77 & 0.77 & 1 & 0.78 & 0.78 \\ 0.78 & 0.77 & 0.76 & 0.78 & 1 & 0.77 \\ 0.79 & 0.80 & 0.77 & 0.78 & 0.77 & 1 \end{bmatrix}$$

other instances of concentration of measure

- most of volume of sphere (Earth) close to surface
- law of large numbers, statistical convergence theory

[Lévy, 20s, Milman 70s, Gromov, Talagrand 90s+]

When concentration is not a problem for interpolation

- when the points of interest are on low-dimensional sub-manifold
- when function which is to be interpolated has known simple structure, e.g., is linear or additive:

$$f(x_1,\ldots,x_d)=\sum_{i=1}^d f_i(x_i)$$

or is close to such a function

• when function only depends on few dimensions

$$f(x_1,...,x_d) = g(x_1,x_2,x_3)$$

dimension is not only a curse

in high dimensions any non-empty neighbourhood contains large numbers of points which can be used for error reduction by averaging [Anderssen, H. 1999]

Outline

- HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Density estimation

- large data sets, queries expensive
- data set = probability measure over feature space
- histogram = piecewise constant approximation of measure
- extract relevant information fast from histogram

application

- mean, variance, moments
- number and location of modes
- skewness and tail behaviour

All modern theories of statistical inference take as their starting point the idea of the probability density function of the observations.

A more accurate and flexible approach

$$p_K(x) = \frac{\phi(|x - x_1|/\sigma)}{m\sigma} + \cdots + \frac{\phi(|x - x_m|/\sigma)}{m\sigma}$$

kernel density estimator

- more accurate representation of smooth densities
- ullet control smoothness with width parameter σ , can depend on x
- no need to solve linear system of equations
- more flexible: also for multidimensional distributions

Challenges of multidimensional density estimation

low dimensional case

for any x only the $\phi(|x-x_i|/\sigma)$ for neighbouring x_i are nonzero, gives efficient estimator as every point has only few neighbours

$$p_K(x) = \sum_{x_i \in \mathcal{N}(x)} \phi(|x - x_i|/\sigma)/m\sigma$$

high dimensional case

all x_i are neighbours, need to consider all data points to evaluate density

$$p_K(x) = \sum_{i=1}^{m} \phi(|x - x_i|/\sigma)/m\sigma$$

very high dimensional case

if x, x_1, \ldots, x_m are i.i.d. then all components $\phi(|x - x_i|/\sigma)/m\sigma$ of the same size, density asymptotically uniform $p_K(x) \approx E(\phi(|X_i - X_i|/\sigma))/\sigma$

When concentration is not a problem for density estimation

- when the points of interest are on low-dimensional submanifold
- when unknown p has known simple structure, e.g.

$$p(x_1,\ldots,x_d)=\prod_{i=1}^d p_i(x_i)$$

• more generally, the density is described by *graphical model* which leads to a factorisation as in

$$p(x_1, x_2, x_3) = \frac{p(x_1, x_2) p(x_2, x_3)}{p(x_2)}$$

mixture model

$$p(x) = \sum_{i=1}^{K} p_i(x) \pi_i$$

where $p_i(x) = p(x|x \in \Omega_i)$ has some known form and $\pi_i = p(\Omega_i)$

Outline

- HPC Tackling the multi challenge
 - The new computational science
- 2 Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Partial differential equations

Partial differential equations are a very widely used tool in computational science

examples of equations

$$ih\frac{\partial \psi}{\partial t} = -\frac{h^2}{2m}\Delta\psi + V\psi$$
 Schrödinger equation, quantum chemistry
$$\frac{dp}{dt} = \sum_{z} (S_z - I)\Lambda_z p$$
 Chemical master equation, molecular biology

$$\frac{\partial f}{\partial t} + v^T \nabla_x f + q(E + v \times B) \nabla_p f = 0$$
 Vlasov equation, plasma physics

dimensionality

 ψ and p can depend on hundreds of variables, f depends on five variables

Controlling the function values

Sobolev norms

important tool for PDE theory

$$||u||_k^2 = (-1)^k \int_{\Omega} u(x) \Delta^k u(x) dx$$

for $u \in C_0^{\infty}(\Omega)$ and completion

bounded solutions for $d \leq 3$

PDE regularity theory

$$||u||_2 < \infty$$

Sobolev embedding

$$|u(x)| \le C ||u||_2$$

case d > 3

• embedding for $k \ge \left\lfloor \frac{d}{2} \right\rfloor + 1$

$$|u(x)| \le C \|u\|_k$$

• k = 2 from regularity theory

mixed norms

$$\|u\|_{\text{mix}}^2 = \int \left| \frac{\partial^d u(x)}{\partial x_1 \cdots \partial x_d} \right|^2 dx$$

and so $|u(x)| \leq C^d ||u||_{\text{mix}}^2$

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

The grid

- approximate unknown function
 u(x, y)
- compute only values $u(x_i, y_j)$ on discrete grid points
- interpolate values u(x, y) for other points (x, y)
- regular isotropic grid: $x_i = ih$ and $y_j = jh$

the challenge: curse of dimension

In two dimensions $1/h^2$ grid points, in d dimensions $1/h^d$ grid points but accuracy proportional to h^2

Anisotropic grids

more general regular grids

- choose fine grid when u(x, y) has large gradients
- choose coarse grid when u(x, y) is smooth
- gradients may be different in different directions
- choose anisotropic grid when u(x, y) varies differently in different directions

with anisotropic grids one can approximate multi-dimensional $u(x_1, \ldots, x_d)$ if u very smooth in most x_k

Grids

Grids and sampling

- evaluation of u(x, y) on the grid corresponds to sampling u on the grid points
- sampling on a fine grid captures high frequencies
 small scale fluctuations (Nyqvist/Shannon)
- with anisotropic grids one can capture small scales in one dimension and different scales in another

Sparse grid = union of regular anisotropic grids

captures fine scales in both dimensions but not joint fine scales

Another sparse grid

the frequency diagram displays 1/4 of a hyperbolic cross

Sparse grids and the curse of dimension

- only asymptotic error rates given here
- constants and preasymptotics also depend on dimension
- practical experience: with sparse grids up to 10 dimensions
- Zenger 1991

	number of points	error
regular isotropic grids	h^{-d}	h ²
sparse grids	$h^{-1} \log_2 h ^{d-1}$	$h^2 \log_2 h ^{d-1}$

The big plan – dimension independence

- problem of sparse grids: exponential d-dependence of time and error through
 - factors $|\log_2(h)|^{d-1}$
 - factors of the form C^d
- aim: remove all exponential d-dependence so that
 - error $\sim h^2$
 - time $\sim 1/h$

as in the case d=1

- ideas:
 - parallel solution on subgrids (see next section) gives 1/h time
 - stronger (energy) sparse grids give h^2 error
 - ullet weighted mixed norms and special basis functions to deal with C^d dependence

Spatially adaptive (sparse) grids

choosing a sparse sub-grid of the sparse grid

- adaptively choose necessary sparse grid points and corresponding (hierarchical) basis functions
- requires an error indicator function
- grid points inserted only where necessary
- acts as extra regularisation (like smoothing) for machine learning applications
- modified basis functions for boundary to remove the C^d
- implemented in SG++ software package by Dirk Pflüger (Universität Stuttgart), 2010

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- 2 Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Combining two regular grids

- solution on combined grid is approximated as a linear combination of the solution on the regular component grids
- the components include the maximal generators and all intersections

Weak solutions of boundary value problems

boundary value problem

$$-\Delta u(x) = f(x), \quad x \in \Omega$$

$$u(x) = 0, \quad x \in \partial \Omega$$

weak solution

$$a(u, v) = \langle f, v \rangle, \quad v \in H_0^1(\Omega)$$

where

$$a(u, v) = \int_{\Omega} \nabla u(x)^{T} \nabla v(x) dx$$
$$\langle f, v \rangle = \int_{\Omega} f(x) v(x) dx$$

approximate solution $u_h \in V_h$

$$a(u_h, v_h) = \langle f, v_h \rangle, \quad v_h \in V_h$$

Approximate solution can be viewed as a projection

$$u_h = P_h u$$

which is orthogonal with respect to the energy norm

Combination approximations

regular grid approximation

- regular grid G_h
- function space V_h
- Galerkin equations for u_h

$$a(u_{\mathbf{h}}, v_{\mathbf{h}}) = \langle f, v_{\mathbf{h}} \rangle$$

for all $v_h \in V_h$

sparse grid approximation

- sparse grid $G_{SG} = \bigcup_{\mathbf{h}} G_{\mathbf{h}}$
- function space $V_{\mathsf{SG}} = \sum_{\mathbf{h}} V_{\mathbf{h}}$
- Galerkin equations for u_{SG}

$$a(u_{SG}, v_{SG}) = \langle f, v_{SG} \rangle$$

for all $v_{\mathsf{SG}} \in V_{\mathsf{SG}}$

combination technique - where HPC comes in

compute all u_h in parallel and combine solutions using parallel reduction:

$$u_C = \sum_{\mathbf{h}} c_{\mathbf{h}} u_{\mathbf{h}}$$

Big question: when is $u_C \approx u_{SG}$?

Sparse grid combination technique

combination formula

$$u_C = u_{1,16} + u_{2,8} + u_{4,4} + u_{8,2} + u_{16,1} - u_{1,8} - u_{2,4} - u_{4,2} - u_{8,1}$$

Inclusion / exclusion principle in combinatorics

for the cardinality of sets

$$|A \cup B| = |A| + |B| - |A \cap B|$$

more general for additive α :

$$\alpha(A \cup B) = \alpha(A) + \alpha(B) - \alpha(A \cap B)$$

Theorem (de Moivre)

If A_1, \ldots, A_m form intersection structure then

$$\alpha\left(\bigcup_{i=1}^{m}A_{i}\right)=\sum_{i=1}^{m}c_{i}\,\alpha(A_{i}),\quad \textit{for some }c_{i}\in\mathbb{Z}$$

When the combination approximation is the sparse grid solution

Lemma

- \bullet if the grids G_h and the spaces V_h form an intersection structure
- if the Galerkin projections Ph commute, i.e.,

$$P_{\mathbf{h}}P_{\mathbf{h}'} = P_{\mathbf{h}'}P_{\mathbf{h}}, \quad \text{for all } \mathbf{h}, \mathbf{h}'$$

then

$$u_C = u_{SG}$$

i.e., the combination technique provides the sparse grid solution

Proof.

This is a consequence of the inclusion-exclusion principle as it follows from the commutativity that P_h is additive

Tensor products – the classical sparse grid

 $V_1 \subset V_2 \subset \cdots \subset V_m \subset V$ hierarchy of functions of one variable

classical sparse grid space

$$V_{\mathsf{SG}} = \sum_{i+j=n} V_i \otimes V_j$$

tensor product function space

 $V_i \otimes V_j$ space of functions generated by products $u_1 \otimes u_2(x_1, x_2) = u_i(x_1)u_j(x_2)$ where $u_i \in V_i$ and $u_i \in V_i$

combination coefficients

$$c_{ij} = egin{cases} 1 & i+j=n \ -1 & i+j=n-1 \ 0 & ext{else} \end{cases}$$

 $V_i \otimes V_i$ form an intersection structure as

$$(\mathit{V}_{i_1} \otimes \mathit{V}_{j_1}) \cap (\mathit{V}_{i_2} \otimes \mathit{V}_{j_2}) = \mathit{V}_{\mathsf{min}(i_1,i_2)} \otimes \mathit{V}_{\mathsf{min}(j_1,j_2)}$$

and combination formula exact if $a(u_1 \otimes u_2, v_1 \otimes v_2) = a(u_1, v_1)a(u_2, v_2)$

[Griebel, Schneider, Zenger 1992]

Extrapolation

assumption: error model

error of approximation in $V_{ij} = V_i \otimes V_j$ is of form

$$e_{ij} = e_i^{(1)} + e_i^{(2)} + r_{ij}$$

is type of ANOVA decomposition for the error

consequence: error of combination technique

$$e_h = \sum_{i+j \le n} c_{ij} e_{ij} = e_n^{(1)} + e_n^{(2)} + \sum_{i+j \le n} c_{ij} r_{ij}$$

if last term very small then $e_h \approx e_{n,n}$ i.e., the combination technique approximation using only components in $V_i \otimes V_j$ with $i+j \leq n$ get a similar approximation order as the one in V_{nn}

[Bungartz et al 1994, Pflaum and Zhou 1999, Liem, Lu Shih 1995 (splitting extrapolation)]

Breakdown of the combination technique

regression problem

minimise

$$\frac{1}{M} \sum_{i=1}^{M} (u(x_i) - y_i)^2 + \lambda \|\nabla u\|^2$$

with
$$\lambda=10^{-4}$$
 (left) and $\lambda=10^{-6}$ (right)

combination approximation is not necessarily better for finer grids

[Garcke 2004, H. 2003, H., Garcke, Challis 2007]

Opticom

"Optimal combination technique": choose the coefficients c_i such that J is optimised with

$$J(c_1, ..., c_m) = \|u - \sum_{i=1}^m c_i u_i\|_E^2$$

$$= \sum_{i,j=1}^m c_i c_j a(u_i, u_j) - 2 \sum_{i=1}^m c_i \|u_i\|_E^2 + \|u\|_E^2$$

normal equations

$$\begin{bmatrix} \|u_1\|_E^2 & a(u_1, u_2) & \cdots & a(u_1, u_m) \\ a(u_2, u_1) & \|u_2\|_E^2 & \cdots & a(u_2, u_m) \\ \vdots & \vdots & \ddots & \vdots \\ a(u_m, u_1) & a(u_m, u_2) & \cdots & \|u_m\|_E^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} \|u_1\|_E^2 \\ \|u_2\|_E^2 \\ \vdots \\ \|u_m\|_E^2 \end{bmatrix}$$

Solution of the system of order $O(m^3)$ at most but one needs to determine the $O(m^2)$ matrix elements each costing O(n) in machine learning

Opticom is better than the sub-grid solutions

Let $V_{SG} = \sum_{i=1}^{n} V_i \subset V$, $a(\cdot, \cdot)$ be V-elliptic and bounded symmetric bilinear form, $u_i \in V_i$ defined by

$$a(u_i, v_i) = a(u, v_i), \text{ for all } v_i \in V_i$$

and c; be the Opticom coefficients. Then the error in the energy norm satisfies

$$||u - u_{SG}||_{E} \le ||u - \sum_{i=1}^{n} c_{i} u_{i}||_{E} \le \min_{i=1,...,n} ||u - u_{i}||_{E}$$

The standard combination technique does not have this property

The optimality of Opticom

Proposition

Let $V_{SG} = \sum_{i=1}^n V_i \subset V$, $a(\cdot, \cdot)$ be V-elliptic and bounded bilinear form, $u_i \in V_i$ defined by

$$a(u_i, v_i) = a(u, v_i), \quad \text{for all } u_i \in V_i$$

and c_i be the Opticom coefficients. Then for some $\kappa > 0$ one has

$$\|u-\sum_{i=1}^n c_i u_i\|_V \leq \kappa \|u-\sum_{i=1}^n \tilde{c}_i u_i\|_V$$
 for any $\tilde{c}_i \in \mathbb{R}$

Proof.

This is a direct application of Céa's Lemma

Norm reduction with Opticom

Proposition

Let $V_{SG} = \sum_{i=1}^{n} V_i \subset V$ a (\cdot, \cdot) be V-elliptic and bounded symmetric bilinear form, $u_i \in V_i$ defined by

$$a(u_i, v_i) = a(u, v_i), \quad \text{for all } v_i \in V_i$$

and c_i be the Opticom coefficients. Then one has for the energy norm defined by $a(\cdot, \cdot)$ the bound

$$||u - \sum_{i=1}^{n} c_i u_i||_{E} \le ||u||_{E}$$

and either $||f - \sum_{i=1}^n c_i u_i||_E < ||u||_E$ or $f \perp V_h$ thus $u_i = 0, i, \ldots, n$.

Proof.

$$||u||_E^2 = ||u - \sum_{i=1}^n c_i u_i||_E^2 + ||\sum_{i=1}^n c_i u_i||_E^2$$

If the best approximation is zero then u has to be orthogonal to all u_i . As $u-u_i$ is orthogonal to V_h it follows that all the v which are orthogonal to u_i are also orthogonal to u and it follows that u is orthogonal to V_i

An iterative method

Opticom iterative refinement

$$\begin{split} u^{(0)} &= 0 \\ a(u_i^{(k+1)}, v_i) &= a(u - u^{(k)}, v_i), \quad v_i \in V_i \\ c_i^{(k+1)} \quad \text{such that} \quad \left\| \sum_{i=1}^n c_i^{(k+1)} u_i^{(k+1)} - (u - u^{(k)}) \right\|_E \quad \text{minimal} \\ u^{(k+1)} &= u^{(k)} + \sum_{i=1}^n c_i u_i^{(k+1)} \end{split}$$

- algorithm converges to the sparse grid solution
- variant of parallel subspace correction [Xu 1992]
- also combine with Newton [Griebel, H. 2010]

the machine learning problem

given data $x_1, \ldots x_N$ in \mathbb{R}^d find density f(x) such that

$$f pprox rac{1}{N} \sum_{k=1}^{N} \delta_{x_k}$$

[Tapia & Thompson 1978, Silverman 1986, Scott 1992]

from data smoothing to sums of simpler approximations

• function approximation: RBF ⇒ sums of products

$$f(x) = \sum_{i=1}^{N} c_i \kappa(x - x_i) \implies f(x) = \sum_{k=1}^{K} c_k \prod_{j=1}^{K} f_{j,k}(\xi_j)$$

where $x = (\xi_1, \dots, \xi_d)$ and x_i are data points

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \kappa(x - x_i) \implies f(x) = \sum_{k=1}^{K} \pi_k N(x \mid \mu_k, C_k)$$

[McLachlan and Peel, 2000]

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

Bayesian inference

- given data and models
 - data, e.g. $x = (x_1, \dots, x_N)$ typically $x \in \mathbb{R}^{Nd}$
 - likelihood of data: $p(x \mid z)$
 - prior of parameters z: p(z) models "reasonable assumptions" about z
- Bayes' rule how to adapt p(z) in light of the evidence

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)}$$
 where $p(x) = \int p(x \mid z)p(z) dz$

$$p(x)$$
 is $p_X(X = x)$, $p(z \mid x)$ is $p_{X\mid Z}(X = x \mid Z = z)$ etc

- what to do with the posterior
 - expectations $E(Y) = \int yp(y \mid z)p(z \mid x) dx dy$
 - probability distributions $p(y) = \int p(y \mid z)p(z \mid x) dy$
 - maximum $z_{\text{max}} = \operatorname{argmax}_z p(z \mid x) = \operatorname{argmax}_z p(x \mid z) p(z)$
- tractability the computation of p(x), p(y) and E(y) require in general highdimensional integrals \Rightarrow approximation

density estimation

- data: $x = (x_1, ..., x_N)$ drawn randomly from some unknown probability distribution
- probability density model: $f(x_k) = p(x_k \mid u) = \exp(u(x_k) \gamma(u))$ where $\gamma(u)$ is such that $\int p(x_k \mid u) dx_k = 1$
- estimation problem: for given data x_1, \ldots, x_N find $\hat{u}(\hat{x})$ such that $p(x_k \mid \hat{u})$ approximates underlying density
- likelihood:

$$p(x \mid u) = \exp\left(\sum_{i=1}^{n} u(x_i) - n\gamma(u)\right)$$

choose \hat{u} such that likelihood large

- parametric case: maximum likelihood method
- problem underdetermined in nonparametric case

MAP with Gaussian process priors

- prior for u: Gaussian probability measure ν over space of functions = Gaussian process prior we consider covariance $C = C_1 \otimes \cdots \otimes C_d$
- posterior based on likelihood $\rho(u) = p(x \mid u)$:

$$\mathrm{d}\mu = \rho\,\mathrm{d}\nu$$

is a well defined measure if $\rho \in L_1(\nu)$

- maximum a-posteriori (MAP) method: estimate u as mode of posterior
- Laplace approximation of posterior: Gaussian process with expectation u

a variational problem

• characterisation of mode u of μ :

$$\rho(u) \ge \frac{d\lambda_v}{d\lambda}(u)\,\rho(u+v), \quad \text{for all } v \in H$$

where
$$\lambda_{\nu}(A) = \lambda(\nu + A)$$

this leads to minimisation of functional

$$j(u) = \frac{1}{n} ||u||_{CM}^2 - \frac{1}{n} \sum_{i=1}^n u(x_i) + \log \int_X \exp(u(x)) dx$$

where $\|\cdot\|_{\mathit{CM}}$ is Cameron-Martin norm defined by prior

[H. 2007, Griebel, H. 2010]

Newton-Galerkin Opticom method

• Newton Galerkin $u_{n+1} = u_n + \Delta u_n$, Δu_n minimises

$$J(\Delta u) = \frac{1}{2}H_{u_n}(\Delta u, \Delta u) + (F(u_n), \Delta u)_H$$

- Sparse grid space $V = \sum_{i} V^{(j)}$
- Sparse grid combination technique $\Delta u_n = \sum_{j=1}^k c_j \Delta u_n^{(j)}$ where components $\Delta u_n^{(j)}$ minimise $J(\Delta u)$ over $V^{(j)}$
- Opticom method: choose combination coefficients c_j to minimise $J(\sum_{j=1}^k c_j \Delta u_n^{(j)}) \Rightarrow$ descent method, converges to sparse grid solution, not some combination approximation
- inexact Newton method [Deuflhard, Weiser 1996, Deuflhard 2004] alternative: nonlinear additive Schwarz [Dryja, Hackbusch 1997]

[H., Griebel 2007]

errors of sparse grid approximation for 2D case

approximation of the normal distribution: maximum likelihood projection and our estimator

I	$e_{1,I}^{(1)}$	$\frac{\frac{e_{1,l}^{(1)}}{e_{1,l+1}^{(1)}}$	$e_{2,I}^{(1)}$	$\frac{\frac{e_{2,l}^{(1)}}{e_{2,l+1}^{(1)}}$	e _{1,I} ⁽³⁾	$\frac{\frac{e_{1,l}^{(3)}}{e_{1,l+1}^{(3)}}$	e _{2,1} ⁽³⁾	$\frac{\frac{e_{2,l}^{(3)}}{e_{2,l+1}^{(3)}}$
1	1.42e+00	_	-	-	8.05e-02	_	1.33e-01	_
2	3.12e-01	4.55e + 00	1.16e + 00	_	7.97e-02	1.01e+00	1.27e-01	1.04e+00
3	7.37e-02	4.23e+00	2.44e-01	4.75e + 00	3.11e-02	2.56e+00	6.39e-02	1.99e+00
4	1.94e-02	3.81e + 00	6.34e-02	3.85e + 00	9.63e-03	3.23e+00	1.89e-02	3.38e+00
5	4.92e-03	3.93e+00	1.60e-02	3.96e + 00	3.13e-03	3.08e + 00	6.14e-03	3.08e+00
6	1.23e-03	4.00e+00	4.17e-03	3.83e + 00	8.04e-04	3.89e + 00	1.72e-03	3.56e+00

3D density

[Griebel, H. 2010]

Outline

- 1 HPC Tackling the multi challenge
 - The new computational science
- Examples of multidimensional problems
 - Interpolation
 - Density estimation
 - Partial differential equations
- Sparse Grids
 - Grids
 - The combination technique
- 4 Data distributions
 - Bayes and MAP
 - Minimising KL divergence
- Conclusions

two variational problems

method	Ritz-Galerkin for u_h	variational Bayes for q		
error	energy norm	KL-divergence		
	$ u-u_h _E=$	$KL(q \mid\mid p(\cdot \mid x)) =$		
	$\sqrt{a(u-u_h,u-u_h)}$	$\int q(z) \log \left(\frac{p(z x)}{q(z)}\right) dz$		
optimisation	minimise	maximise		
problem	$J(u_h) =$	$\mathcal{L}(q) =$		
	$\frac{1}{2}a(u_h,u_h)-\langle f,u_h\rangle$	$\int q(z) \log \left(\frac{p(x,z)}{q(z)} \right) dz$		
property	V-ellipticity	convexity		

right column: use

$$KL(q \mid\mid p(\cdot \mid x)) - \mathcal{L}(q) = \log p(x)$$

data: f on left and p(x, z) on right [Beal 2003, MacKay 2003, Bishop 2006]

fix point characterisation of best product

Proposition (characterisation)

If $q = \prod_{i=1}^m q_i$ is best approximant then

$$u_j(z_j) = \int \log(p(x, z)) \prod_{i \neq j} q_i(z_i) dz_i$$
$$q_j(z_j) = \frac{\exp(u_j(z_j))}{\int \exp(u_j(w_i)) dw_j}$$

Proof.

$$\mathcal{L}(q) = \int \prod_{i=1}^{m} q_i(z_i) \left(\log(p(x, z) - \sum_{i=1}^{m} \log q_i(z_i)) dz_i \right)$$

$$= \int (u_j(z_j) - \log q_j(z_j)) q_j(z_j) dz_j + F(\{q_i\}_{i \neq j})$$

iterative solver

start with
$$q_1^{(0)}, \dots, q_m^{(0)}$$

 $n = 1, 2, \dots$
 $j = 1, \dots, m$

$$u_j^{(n)}(z_j) = \int \log p(x, z) \prod_{i=1}^{j-1} q_i^{(n)}(z_i) dz_i \prod_{i=j+1}^m q_i^{(n-1)}(z_i) dz_i$$

$$q_j^{(n)}(z_j) = \frac{\exp u_j^{(n)}(z_j)}{\int \exp u_j^{(n)}(w_j) dw_i}$$

convergence as KL-divergence convex in u_j

mixture models

probability distribution for n-th observation

$$p(x_n \mid u) = \sum_{k=1}^K \pi_k \, p_k(x_n \mid u_k)$$

components p_k are separable \Rightarrow sums of separable functions

- problem: estimation of p given data $x = (x_1, \dots, x_N)$
- difficulty: while each p_k has product structure which is adapted to KL minimisation the sum is a problem
- idea: introduce latent (or hidden) variables z_1, \ldots, z_N which are binary vectors indicating the class k of observation n thus

$$p(x_n \mid u) = \sum_{k=1}^K p(x_n \mid u_k, z_n = e_k) p(z_n = e_k) = \sum_{z_n} p(x_n, z_n \mid u)$$

is interpreted as a marginal distribution and $u=(u_1,\ldots,u_K)$

likelihood, priors and posterior

• likelihood of $x = (x_1, \dots, x_n)$

$$p(x \mid z, u) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(x_n \mid u_k)^{z_{nk}} - \text{sum disappeared}$$

• prior for latent variables z_n

$$p(z \mid \pi) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}}$$

- priors for π and u: $p(\pi)$ and p(u)
- posterior distribution $p(z, \pi, u \mid x) = p(x, z, \pi, u)/p(x)$ where

$$p(x, z, \pi, u) = p(x \mid z, u) p(z \mid \pi) p(\pi) p(u)$$

variational Bayes for mixture models

- aim: $q(z, \pi, u)$ approximation of posterior $p(z, \pi, u \mid x)$
- product Ansatz: $q(z, \pi, u) = q(z)q(\pi, u)$
- fix point formulation from minimal KL divergence

$$q(z) = \prod_{n=1}^{K} \prod_{k=1}^{K} r_{nk}^{z_{nk}}$$

$$q(\pi, u) = C p(\pi) \prod_{k=1}^{K} p(u_k) \prod_{n=1}^{K} \prod_{k=1}^{K} (\pi_k p(x_n \mid u_k))^{r_{nk}}$$

where $r_{nk} = \rho_{nk}/(\sum_k \rho_{nk})$ and $\rho_{nk} = E_{\pi}[\log \pi_k] + E_{u}[\log p(x_n \mid u)]$ and

• approximate $p(x_n \mid u_k)$ as product to get tractability

Conclusions

- with the wide availability of new computational resources high performance computing ideas now enter mainstream computational science
- HPC is getting increasingly complex with a shift towards new problems and approaches characterised by the "multi-challenge"
- an increasingly important challenge originates from the multi and high dimensionality of many models in physics, chemistry, biology, statistics and engineering
- new theory and algorithms are needed
- sparse grid combination technique deals with dimensionality and is ideally suited for HPC
- the Opticom method is able to overcome a stability issue of the original combination technique
- next: high-dimensional inverse problems?