
Numerics and Fractals
MATRIX workshop on approximation and optimisation

Markus Hegland1

Mathematical Sciences Institute, ANU

July 2016

1with Michael Barnsley, ANU and Peter Massopust, TUM
M.Hegland et al (MSI,ANU) Numerics and Fractals July 2016 1 / 23



Abstract

Many problems in numerical analysis can be reduced to approximation
in finite dimensional function spaces which include spaces of (piecewise)
polynomials and wavelets. Here we will consider the approximation in
spaces of local fractal functions which include these traditional function
spaces. Functions from these fractal spaces are represented by their
local iterated function systems rather than as a linear combination of
basis functions. Numerical algorithms will be given which compute the
iterated function systems. In particular we discuss a quasi-optimal
approximation method based on the collage theorem.
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introduction: optimisation problem and Ritz method
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unconstrained quadratic optimisation in Hilbert space H

û = argminu∈H Ψ(u)

where

Ψ(u) =
1

2
a(u, u)− b(u)

a symmetric H-elliptic

c1‖v‖ ≤ ‖v‖E ≤ c2‖v‖, v ∈ H

energy norm
‖v‖E :=

√
a(v , v)

b continuous
b(v) = (f , v)
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example

H = H1
0 [0, 1] Sobolev space, quadratic form

a(u, v) =

∫ 1

0
u(x)′v(x)′ dx

functional

b(v) =

∫ 1

0
f (x)v(x) dx

minimiser û of Ψ(u) is solution of boundary value problem

−u′′(x) = f (x), x ∈ (0, 1)

with u(0) = u(1) = 0
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another example

H = L2[0, 1] Sobolev space, quadratic form

a(u, v) =

∫ 1

0
u(x)v(x) dx +

∫
[0,1]2

k(x , y)u(x)v(y) dxdy

functional

b(v) =

∫ 1

0
f (x)v(x) dx

minimiser of Ψ(u) is solution of 2nd kind Fredholm integral equation

u(x) +

∫ 1

0
k(x , y)u(y) dy = f (x)
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representation and approximation of functions

approximate functions u ∈ H by elements of Vh

vh(x) = g(x ; γ)

I approximation set is finite-dimensional manifold Vh = {g(·, γ) | γ ∈ Γ}

example: polynomial Vh = P2

g(x ; γ) = γ0 + γ1x + γ2x2

example: piecewise linear function Vh = S1,h[0, 1]

g(x ; γ) =
n∑

k=0

γkB(x/h − k)

where B is a hat function and nh = 1

B(x) = (1− |x |)+
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Ritz method

ûh = argminv∈Vh
Ψ(v)

solve Galerkin equations

a(vh, uh) = b(vh), vh ∈ Vh

best approximation in energy norm

‖ûh − û‖E ≤ ‖vh − û‖E , vh ∈ Vh

quasi-optimal in H norm

‖ûh − û‖ ≤ C‖vh − û‖, vh ∈ Vh

M.Hegland et al (MSI,ANU) Numerics and Fractals July 2016 8 / 23



fractal functions
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implicit parametrisation

elements of Vh are fixpoints

vh = M(γ)vh + g(·, γ)

or
vh = (I −M(γ))−1g(·, γ)

M(γ) linear contractive operator for γ ∈ Γ
Vh is linear if M(γ) does not depend on γ
we will use the family of operators defined by

Φγv(x) = M(γ)v(x) + g(x ; γ)

and will assume that g(x ; γ) defines a linear space of functions
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fractal functions

function space H = L2[0, 1]
operator M(γ)

M(γ)v(x) :=

{
σ1v(2x), x ∈ [0, 1/2]

σ2v(2x − 1), x ∈ (1/2, 1]

rhs g(·, γ)

g(x , γ) =

{
τ1, x ∈ [0, 1/2]

τ2, x ∈ (1/2, 1]

parameters γ = (σ1, σ2, τ1, τ2) for contractive M(γ)

γ ∈ Γ = (−1, 1)2 × R2

continuity if σ1 + σ2 = 1
first degree polynomials if σ1 = σ2 = 0.5
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algorithmic remarks for fractal approximations

use fix point equations to derive algorithms

vh(x) =

{
σ1vh(2x) + τ1, x ∈ [0, 1/2]

σ2vh(2x − 1) + τ2, x ∈ (1/2, 1]

generalisations include classical functions like polynomials, pw
polynomials, higher-dimensional cases, wavelets

function space for g(·, γ) is simpler than Vh, work with this space

fractal approximations can be better at times
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for
√
x fractal approximation is better
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blue (fractal) and green (linear) curves satisfy same
fixpoint equations (with different γ)

fractal approximation visibly better for x ≈ 0

M.Hegland et al (MSI,ANU) Numerics and Fractals July 2016 13 / 23



generalisation

v → M(γ)v + g(·; γ)

define a family of Read-Bajactarevic (RB) operators of a local iterated
function system (IFS)
in particular this defines for (vector valued multidimensional) functions
u : X → Y :

Ω1, . . . ,ΩN a disjoint partition of X
li (x ; γ) : Xi → Ωi contractive invertible functions defined on Xi ⊂ X
(X and all subsets compact), li are typically affine
g(x , γ) = bi (l−1i (x ; γ)), x ∈ Ωi for some bi defined on some Zi

the self-referentiality operator is

M(γ)v(x) = Si (γ)v ◦ l−1i (x ; γ), x ∈ Ωi

Si (γ) are contractive matrices
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a simple but effective trick
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a simple and useful result for contractive operators

Lemma (M.Barnsley’s Collage Theorem)

if Φγ : H → H with

s = sup
u1,u2

‖Φγ u1 − Φγ u2‖
‖u1 − u2‖

= Lip Φγ < 1

and vγ = Φγvγ then

‖u − vγ‖ <
‖u − Φγ u‖

1− s

Proof.

triangle inequality

‖u − vγ‖ ≤ ‖u − Φγ u‖+ ‖Φγ u − vγ‖

as vγ = Φγ vγ :
‖Φγ u − vγ‖ ≤ s ‖u − vγ‖
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collage fit

idea: use ‖u − Φγu‖ as a substitute for ‖u − vγ‖ to compute
approximation in VN

collage fit Pγu

γ(u) := argminγ∈Rp‖u − Φγu‖

approximation Pγu = vγ(u)

Corollary (to collage theorem)

The collage fit is quasi-optimal as

‖u − vγ(u)‖ ≤
1 + s

1− s
‖u − v‖, v ∈ VN

proof like Collage Theorem
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iterative solution with the IFS
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quadratic optimisation problem

û = argminu∈H Ψ(u)

H Hilbert space

Ψ(u) = 1
2a(u, u)− b(u), a symmetric H-elliptic and b continuous
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main lemma

from now on we assume that Φγv = Mv + g(· ; γ) where M is linear and
does not depend on γ and where g is linear in γ ∈ Γ = Rp

Lemma

Ψ H-elliptic quadratic form with energy norm ‖ · ‖E and

c1‖v‖ ≤ ‖v‖E ≤ c2‖v‖

operator M contractive with Lipshitz constant c and c < c1/c2

G (u) = argminw∈W (u) Ψ(w) where W (u) = {Φγ(u) | γ ∈ Γ}

Then G is contractive and

‖G (u)− G (v)‖ ≤ γ‖u − v‖

where γ = cc2/c1
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the collage method

Corollary (Existence of fixpoint ũN of G )

There exists a unique ũN ∈ VN such that

ũN = G (ũN)

Proof.

As G is contractive there exists a unique ũN ∈ H such that ũN = G (ũN).
As ũN ∈W (ũN) there exists an γ ∈ Γ such that ũN = Φγ ũN

We call the method which approximates the minimum of Ψ with ũN the
collage method. Note that this is not the Ritz method in general.
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quasi-optimality of the collage method

Proposition (quasi-optimality of collage method)

Let ũN be obtained by the collage method. Under the conditions of the
main lemma there exists a C > 0 such that

‖ũN − û‖ ≤ C ‖uN − û‖, for all uN ∈ VN .

a simple algorithm to determine the approximation of the collage
method starts with some initial value u(0) and then iterates the
operator G :

u(k+1) = G (u(k))
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comments

algorithm converges as operator G contractive

use to determine best least-squares fit by fractal functions

in practice the results are almost identical to L2 fit

also for Fredholm first kind equations with Tikhonov regularisation

applications in solution of elliptic PDEs
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