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Aim

Many results in Optimization Theory are obtained using interiority
conditions.

However, in infinite dimensional spaces there are many convex sets
with empty interior (even empty algebraic interior).

Such sets are the natural (usual) cones in Lp spaces (p ∈ [1,∞)).

A substitute for the interior is the so called “quasi (relative)
interior”, which coincides with the (relative) interior in the case of
convex sets in finite dimensional spaces.
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The first sistematic use of the quasi relative interior in Convex
Optimization was accomplished in Borwein–Lewis (1992).

A turnaround happened in the last ten years when several papers
were published making use of the quasi relative interior.

Our aim is to point out some properties of the quasi relative
interior, and, using them, to present in a unified manner several
results, some of them under (even) weaker conditions.
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Framework and notation

X is a real separated locally convex space whose topological
dual is X ∗ endowed with its weak∗ topology (so (X ∗)∗ = X )
For x ∈ X and x∗ ∈ X ∗ we set 〈x , x∗〉 := x∗(x)
For ∅ 6= A ⊂ X , convA, coneA, linA, aff A are the convex,
conic, linear and affine hulls of A, respectively; lin0 A is the
linear space parallel with aff A.
The closure of the set convA is denoted by convA, and
similarly for the others.
For x ∈ A, the normal cone to A at x is defined by

NA(x) := {x∗ ∈ X ∗ | 〈x ′ − x , x∗〉 ≤ 0 ∀x ′ ∈ A}.

For ∅ 6= A ⊂ X we set

A+ := {x∗ ∈ X ∗ | 〈x , x∗〉 ≥ 0 ∀ x ∈ A}, A− := −A+

A# := {x∗ ∈ X ∗ | 〈x , x∗〉 > 0 ∀ x ∈ A \ {0}}
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The quasi-relative interior

All the sets in this section are assumed to be convex if not
mentioned explicitly otherwise.
Let C ⊂ X ; the quasi interior of C (cf. Borwein–Goebel 2003) is

qiC := {x ∈ C | cone(C − x) = X} ;

the quasi-relative interior of C (cf. Borwein–Lewis 1992) is

qriC := {x ∈ C | cone(C − x) is a linear space} .

We set qri ∅ := qi ∅ := ∅.
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These notions extend those of algebraic interior (or core) and
algebraic relative interior (or intrinsic core) as easily seen from

x ∈ icrC ⇐⇒ cone(C − x) is a linear space,

x ∈ coreC ⇐⇒ cone(C − x) = X .

Clearly
icrC ⊂ qriC , coreC ⊂ qiC .

The inclusions become equalities if dimX <∞. For dimX =∞
the inclusions could be strict even if icrC 6= ∅ or coreC 6= ∅.
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Example 1

(i) (Borwein-Lewis, 1992) Let

C1 := {x ∈ `2 | ‖x‖1 ≤ 1}.

C1 is closed (in `2), icrC1 = {x ∈ `2 | ‖x‖1 < 1}, and

qriC1 = qiC1 = C1 \ {x ∈ `2 | ‖x‖1 = 1, ∃n0, ∀n ≥ n0 : xn = 0}.

For example (2−n)n≥1 ∈ qriC1 \ icrC1.

(ii) Let ϕ : X → R be linear but not continuous and
C2 := [ϕ ≥ 0] := {x ∈ X | ϕ(x) ≥ 0}. Then

coreC2 = [ϕ > 0] 6= [ϕ ≥ 0] = C2 = qiC2.
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From the definition of qriC we get

qriC =
{
x ∈ C | cone(C − x) = lin0C

}
.

Because affC = X ⇐⇒ lin0C = X ,

qiC =

{
qriC if affC = X ,
∅ otherwise.

It follows that

qiC 6= ∅ =⇒0 ∈ qi(C − C ) ⇐⇒ affC = X

⇐⇒ lin0C = X =⇒ qiC = qriC .
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Observe that

[x ∈ X , cone(C − x) is a linear space]⇒ x ∈ clC ,

and so,

qiC = C ∩ qi(clC ), qriC = C ∩ qri(clC ).

This shows that we may concentrate on the case of closed convex
sets when determining the quasi-relative interior.
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Example 2 (empty quasi-relative interior)

Consider

c00 := {(xn)n≥1 ⊂ R | ∃n0, ∀n ≥ n0 : xn = 0}, C := c+
00;

clearly C ⊂ c00 ⊂ `2. We endow c00 with the norm ‖ · ‖2. Then
(i) qri`2

C = ∅;
(ii) C is closed in c00 and qric00

C = ∅.

(i) Indeed, because cl`2 C = `+
2 , we get

qri`2
C = C ∩ qri`2

`+
2 = C ∩ {(xn)n≥1 ∈ `2 | ∀n ≥ 1 : xn > 0} = ∅.

(ii) The closedness of C in c00 is rapid. For the conclusion one uses
the fact that aff C = C − C = c00 and some more calculus.
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Fact (Borwein–Lewis 1992)

If X is separable and Fréchet and C ⊂ X is closed and convex then
qriC 6= ∅.

The preceding example shows that completeness of X and
closedness of C are essential in the preceding result.

Fact (Borwein–Lewis 1992)

One has
(1− λ)C + λ qriC ⊂ qriC ∀λ ∈ (0, 1).

From here we get rapidly that

qriC 6= ∅ ⇒ [clC = cl(qriC ) ∧ lin0C = lin0(qriC )].
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Another important property is the following

Fact (Borwein–Lewis 1992)

Assume that T ∈ L(X ,Y ), where Y is another separated lcs, and
C ⊂ X is convex. Then

T (qriC ) ⊂ qriT (C )

with equality if qriC 6= ∅ and dimY <∞.

From the very definition we have that qri(x + C ) = x + qriC .
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Having the convex sets A,B ⊂ X , it is clear that qiA ⊂ qiB
provided A ⊂ B; moreover

A ⊂ B ⊂ clA⇒
{

qriA ⊂ qriB ⊂ qri(clA),
qriA = A ∩ qriB = A ∩ qri(clA).

From these we get rapidly

qri(qriC ) = qriC , qi(qiC ) = qiC .
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Proposition (Z. 2015)

Let C ,D ⊂ X be convex sets; then

C + qiD = qi(C + qiD) ⊂ qi(C + D),

qriC + qriD = qri(qriC + qriD) ⊂ qri(C + D)

Borwein and Goebel (2003) say “Can qriC + qriD be a proper
subset of qri(C + D)? (Almost certainly such sets do exist.)”,
while Grad and Pop (2014) say: “we conjecture that in general
when A,B ⊆ V are convex sets with qiB 6= ∅, it holds
A + qiB = qi(A + B)”. The next example answers to both
problems mentioned above in the sense that the answer to Borwein
and Goebel question is affirmative and that Grad and Pop’s
conjecture is false.
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Example 3 (Z. 2015)

Take X := `2 :=
{

(xn)n≥1 ⊂ R |
∑

n≥1 x
2
n <∞

}
endowed with its

usual norm, x := (n−1)n≥1 ∈ `2, C := [0, 1]x ⊂ `2 and
D := `+

1 :=
{

(xn)n≥1 ⊂ R+ |
∑

n≥1 xn <∞
}
⊂ `2. Clearly C and

D are convex sets, qriC = (0, 1)x ,
qriD = qiD =

{
(xn)n≥1 ⊂ `1 | xn > 0 ∀n ≥ 1

}
and

x ∈ qi(C + D) = qri(C + D), but x /∈ C + qiD ⊃ qriC + qriD.
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It is worth observing that for x0 ∈ C we have that

x0 /∈ qiC ⇐⇒ ∃x∗ ∈ X ∗ \ {0} : inf x∗(C ) = 〈x0, x
∗〉

(that is x0 is a support point of C ), or equivalently {x0} and C can
be separated; so (Borwein–Lewis, 1992)

x0 ∈ qiC ⇐⇒ NC (x0) := ∂ιC (x0) = {0}.

Similarly, for x0 ∈ C ,

x0 /∈ qriC ⇐⇒ ∃x∗ ∈ X ∗ : sup x∗(C ) > inf x∗(C ) = 〈x0, x
∗〉 ,

or equivalently {x0} and C can be properly separated; so
(Borwein–Lewis, 1992)

x0 ∈ qriC ⇐⇒ NC (x0) is a linear space.
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Note that in the above implications we do not assume that
qiC 6= ∅ or qriC 6= ∅.

Fact (Borwein–Lewis, 1992)

Assume that C has nonempty interior. Then

qiC = qriC = intC .

We have seen in Example 1 that it is possible to have that
coreC 6= ∅ and qiC 6= coreC .

However, such a situation could not appear when X is a Fréchet
space and C is closed because in this case one has intC = coreC .
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Proposition (Z. 2015)

Let C ,D ⊂ X be nonempty convex sets.

(i) If C ∩ qriD 6= ∅ then qri(C ∩ D) ⊂ C ∩ qriD.

(ii) If qriC ∩ qriD 6= ∅ then qri(C ∩ D) ⊂ qriC ∩ qriD.

Borwein and Goebel (2003) also say
“Can qri(C ∩ D) ⊂ qriC ∩ qriD fail when qriC ∩ qriD 6= ∅?”
The assertion (ii) in the above proposition shows that the answer
to this question is negative.
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Remark that the notion of quasi interior for convex cones was
introduced by Schaefer in 1974. Moreover, in the literature, for a
convex cone C ⊂ X , C# is called (for a long time) the quasi
interior of C+. Related to this one has

Fact (Limber–Goodrich 1993)

Assume that C ⊂ X is a closed convex cone. Then

qiC = {x ∈ X | 〈x , x∗〉 > 0 ∀x∗ ∈ C+ \ {0}}
(

= (C+)#
)
.

Applying the above result for C+ as subset of X ∗ endowed with
the weak-star topology w∗, where C ⊂ X is a closed convex cone,
we get the following formula (see Bot–Grad–Wanka 2009)

qiC+ = C# := {x∗ ∈ X ∗ | 〈x , x∗〉 > 0 ∀x ∈ C \ {0}} .
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Joly and Laurent (1971) say that the nonempty convex sets
A,B ⊂ X are united if they cannot be properly separated, that is,
if x∗ ∈ X ∗ and sup x∗(A) ≤ inf x∗(B) then inf x∗(A) = sup x∗(B).

Fact (Z. 2002)

A,B are united ⇔ cone(A− B) is a linear space

⇔ (A− B)+ is a linear space.

Hence if C ⊂ X is convex and x ∈ C , then

x ∈ qriC ⇐⇒ {x} and C are united.
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Separation theorems

The very notion of united sets provides a separation theorem.
In fact one has the next result:

Proposition (Z. 2015)

Let S ,T ⊂ X be nonempty convex sets. If S and T are not united
(that is cone(A− B) is not a linear space), then there exists
x∗ ∈ X ∗ \ {0} such that sup x∗(S) ≤ inf x∗(T ).

Conversely, if aff(S − T ) = X and there exists x∗ ∈ X ∗ \ {0} such
that sup x∗(S) ≤ inf x∗(T ), then S and T are not united.
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The preceding result corresponds to the following separation
theorem of Cammaroto–Di Bella which was used in several papers.

Theorem (Cammaroto–Di Bella 2005)

Let S and T be nonempty convex subsets of X with qri S 6= ∅,
qriT 6= ∅ and such that cone(qriS − qriT ) is not a linear subspace
of X . Then, there exists x∗ ∈ X ∗ \ {0} such that 〈x , x∗〉 ≤ 〈y , x∗〉
for all x ∈ S , y ∈ T .
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Remark

Note that calculating the quasi (-relative) interior is not an easy
task; moreover, as seen in our talk, one doesn’t have a good
calculus. So, if usual interiority conditions can not be applied, it is
preferable to verify directly that cone(S − T ) is not a linear space
instead of calculating qriS , qriT , and then to verify that
cone(qri S − qriT ), which equals cone(S − T ), is not a linear
space.
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Cammaroto and Di Bella established also the next strict separation
result:

Theorem (Cammaroto–Di Bella 2007)

Let S and T be non-empty disjoint convex subsets of X such that
qriS 6= ∅ and qriT 6= ∅. Suppose that there exists a convex set
V ⊆ X such that V − V = X , 0 ∈ qriV , and
cone(qri(S −T )− qriV ) is not a linear subspace of X . Then there
exists x∗ ∈ X ∗ \ {0} such that sup x∗(S) < inf x∗(T ).

Of course, this theorem is a rapid consequence of Cammaroto–Di
Bella’s separation theorem from 2005.
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As for Cammaroto–Di Bella separation theorem from 2005, a much
stronger result can be formulated.

Proposition (Z. 2015)

Let S ,T ⊂ X be nonempty convex sets. Then there exists
x∗ ∈ X ∗ such that sup x∗(S) < inf x∗(T ) if and only if there exists
a convex set V ⊂ X such that 0 ∈ qiV and cone(S − T − V ) is
not a linear subspace of X . (The condition 0 ∈ qiV can be
replaced by 0 ∈ intV or 0 ∈ coreV .)

Remark

As for Cammaroto–Di Bella separation theorem from 2005, a
similar remark can be made for Cammaroto–Di Bella strict
separation theorem. Moreover, the condition cl(V − V ) = X is
very strong, and this together with 0 ∈ V implies 0 ∈ qiV .
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Theorem

Let A, B ⊂ X be nonempty convex sets with B polyhedral.
(a) (Ng–Song, 2003) If qriA 6= ∅, then B ∩ qriA = ∅ if and only if
there exists x∗ ∈ X ∗ such that

sup x∗(B) ≤ inf x∗(A) and sup x∗(B) < sup x∗(A). (1)

(b) If icrA 6= ∅, then B ∩ icrA = ∅ if and only if there exists
x∗ ∈ X ∗ such that (1) holds.
(c) Assume that icrA 6= ∅. Then B ∩ icrA = ∅ if and only if
B ∩ qriA = ∅.
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Lagrange duality for minimization problems with constraints
Duality results for (almost) convex minimization problems

Sets of epigraph type

Consider Y a l.c.s. and A ⊂ Y × R a nonempty set of epigraph
type: (y , t) ∈ A, t ′ ≥ t ⇒ (y , t ′) ∈ A).
To A we associate the function

ϕA : Y → R, ϕA(y) := inf{t | (y , t) ∈ A}.

It is known that ϕA is convex (resp. lower semicontinuous) if A is
convex (resp. closed). Moreover, A ⊂ epiϕA ⊂ clA = epiϕclA and
domϕA = PrY (A). It follows that ϕA = ϕclA and
convϕA = ϕconvA.
Many duality results in convex (and nonconvex) optimization are
based on the subdifferentiability of ϕA at some point y with
ϕA(y) ∈ R, that is the existence of some y∗ ∈ Y ∗ such that
〈y − y , y∗〉 ≤ ϕA(y)− ϕA(y) for all y ∈ Y ; the set of such y∗ is
denoted by ∂ϕA(y).
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This definition shows the well known fact that y∗ ∈ ∂ϕA(y) if and
only if (y∗,−1) ∈ NA(y , ϕA(y)).

Proposition 5

Let A ⊂ Y × R be a nonempty set of epigraph type and let y ∈ Y
be such that ϕA(y) ∈ R. If ∂ϕA(y) 6= ∅ then there exists
(y∗, γ) ∈ Y ∗ × R such that

inf {γα + 〈y , y∗〉 | (y , α) ∈ A ∩ {y} × R}
< sup {γα + 〈y , y∗〉 | (y , α) ∈ A} = γα + 〈y , y∗〉 (2)

with α = ϕA(y). Conversely, if there exist α ≥ ϕA(y) and
(y∗, γ) ∈ Y ∗ × R such that (2) holds, then α = ϕA(y), γ < 0 and
−γ−1y∗ ∈ ∂ϕA(y).
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Subdifferentiability of ϕA

Proposition 8

Let A ⊂ Y × R be a nonempty set of epigraph type and let
y ∈ PrY (A) = domϕA such that α := ϕA(y) ∈ R.
(i) If clA is convex, y ∈ qri(cl(PrY (A))) and (y , α) /∈ qri(clA),
then ∂ϕA(y) 6= ∅.
(ii) If ∂ϕA(y) 6= ∅ then (y , α) /∈ qri(convA).

This result shows the strong connection between the
differentiability of ϕA at y and the quasi relative interior of
qri(convA).

So, the quasi relative interior of qri(convA) is hidden when
speaking about ∂ϕA(y).
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Taking A to be the epigraph of g : Y → R we get the next result.

Corollary 9

Let g : Y → R be a proper convex function and y0 ∈ dom g .

(i) If y0 ∈ qri(dom g) and (y0, g(y0)) /∈ qri(epi g) then ∂g(y0) 6= ∅.
(ii) If ∂g(y0) 6= ∅ then (y0, g(y0)) /∈ qri(epi g).

(iii) If y0 ∈ qri(dom g) and g(y0) < β then (y0, β) ∈ qri(epi g).
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Before stating the next result let us recall that for A ⊂ Y with Y a
normed vector space and y ∈ Y ,

TA(y) := {v ∈ Y | ∃(tn) ⊂ (0,∞), ∃(yn) ⊂ A : yn → y , tn(yn−y)→ v}

TA(y) = ∅ if y /∈ clA, and TA(y) = cone(A− y) if A is convex and
y ∈ clA.

C. Zălinescu Quasi-relative interior and optimization



Aim and framework
Separation theorems

Duality results in scalar optimization

Sets of epigraph type and their associated functions
Lagrange duality for minimization problems with constraints
Duality results for (almost) convex minimization problems

Proposition 10

Let Y be a normed vector space, let A ⊂ Y × R be a nonempty
set of epigraph type, and let y ∈ PrY (A) be such that
α := ϕA(y) ∈ R.

(i) Assume that clA is convex and

T
Ã

(y , α) ∩ ({0} × (−∞, 0)) = ∅,

where Ã := A \ ({y} × R). Then ∂ϕA(y) 6= ∅.

(ii) If ∂ϕA(y) 6= ∅ then T
Ã

(y , α) ∩ ({0} × (−∞, 0)) = ∅.
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An important source of sets of epigraph type is that of families of
minimization problems. More precisely, let S be a nonempty set
and F : S × Y → R be a proper function;
for every y ∈ Y consider the minimization problem
(Py ) minx∈S F (x , y);
generally, these problems are viewed as perturbations of
(P0) minx∈S F (x , 0).
Taking the marginal (or performance) function

h : Y → R, h(y) := inf
x∈S

F (x , y),

we observe that A := PrY×R(epiF ) is a set of epigraph type,
dom h = domϕA = PrY (epiF ) = PrY (domF ) and h = ϕA.
Problem (Py ) with finite value has optimal solutions if and only if
(y , h(y)) ∈ A; generally, if h(y) ∈ R then (y , h(y)) ∈ clA.
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Also note that

h∗(y∗) = sup {〈y , y∗〉 − h(y) | y ∈ Y }
= − inf {〈y ,−y∗〉+ F (x , y) | x ∈ S , y ∈ Y } ,

and so
h∗∗(0) = sup

y∗∈Y ∗
inf

x∈S ,y∈Y
[〈y , y∗〉+ F (x , y)] .

Usually, the dual problem of problem (P0) is

(D) maxy∗∈Y ∗ infx∈S,y∈Y [〈y , y∗〉+ F (x , y)] .

Since always h ≥ h∗∗, we have that vP0 := h(0) ≥ h∗∗(0) =: vD
(that is, weak duality holds).
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The inequality vP0 ≥ vD shows that any y∗ ∈ Y ∗ is a solution of
(D) if vP0 = −∞. For this reason one usually assumes that the
value of the problem (P0) is finite. In this case (vP0 ∈ R) one has
that vP0 = vD and (D) has optimal solutions, that is strong duality
holds for problems (P) and (D), if and only if ∂h(0) 6= ∅ (in fact
the solution set of (D) is ∂h(0)).

This fact shows the importance of results about the
subdifferentiability of h (and, more generally, of ϕA).
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Lagrange duality for problems with constraints

Let us consider the classical minimization problem with constraints

(P) minx∈T f (x)

and its dual

(P∗) maxy∗∈C+ infx∈S (f (x) + 〈g(x), y∗〉) ,
where f : S → R and g : S → Y with S a nonempty set, Y is a
l.c.s., C ⊂ Y is a convex cone and T := {x ∈ S | g(x) ∈ −C}.
Taking

F : S × Y → R, F (x , y) :=

{
f (x) if x ∈ S , g(x) ∈ y − C ,
+∞ otherwise,

problem (P) is nothing else than (P0),

A := PrY×R(epiF ) = (g , f )(S) + C × R+, PrY (A) = g(S) + C .
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Moreover,

inf
x∈S,y∈Y

[〈y , y∗〉+ F (x , y)] =

{
infx∈S (f (x) + 〈g(x), y∗〉) if y∗ ∈ C+,
−∞ otherwise.

This shows the problem (D) above is equivalent to problem (P∗).

In the sequel we establish several sufficient (resp. necessary)
conditions for strong duality of problems (P) and (P∗), then we
compare these results with existing ones.

The statement of the next result is in the spirit of Theorem 4 in
Daniele–Giuffré–Idone–Maugeri (2007). It corresponds to
Proposition 10.
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Proposition 11 (continued on the next slide)

Let S be a non-empty set and let (Y , ‖·‖) be a normed vector
space partially ordered by a convex cone C . Let f : S → R and
g : S → Y be such that K := {x ∈ S | g(x) ∈ −C} 6= ∅.

(i) Assume that cl((g , f )(S) + R+ × C ) is convex. If problem (P)
has the solution x0 ∈ K and

T
Ã

(0, f (x0)) ∩ {0} × (−∞, 0) = ∅, (3)

where Ã := (g , f )(S \ K ) + C × R+, then vP = vP∗ , problem (P∗)
has a solution y∗ ∈ C+ such that 〈g(x0), y∗〉 = 0, and x0 is a
global minimum of f + y∗ ◦ g on S .
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Proposition 11 (continued)

(ii) Assume that x0 ∈ K is such that f (x0) = vP∗ and (P∗) has an
optimal solution y∗ ∈ C+. Then (3) holds, x0 is a solution of (P),
〈g(x0), y∗〉 = 0, and x0 is a global minimum of f + y∗ ◦ g on S .

(iii) Assume that x0 ∈ S and y∗ ∈ C+ are such that
〈g(x0), y∗〉 = 0 and x0 is a global minimum of f + y∗ ◦ g on S .
Then (3) holds; moreover, if x0 ∈ K then x0 is a solution of
problem (P).
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Remark 5

Condition (3) above was introduced in
Daniele–Giuffré–Idone–Maugeri (2007) under the name of
Assumption S. Proposition 11 (i), (ii) was obtained in
Bot–Csetnek–Moldovan (2008) for (g , f ) convexlike with respect
to C × R+, that is for A convex, while Proposition 11 (i) was
obtained in Maugeri–Raciti (2010).
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Besides the functions f and g mentioned above one can consider
also a function h : S → Z , where Z is a real normed vector space;
the corresponding optimization problems are
(P ′) minx∈K f (x)
and its dual problem
(P ′∗) maxy∗∈C+,z∗∈Z∗ infx∈S (f (x) + 〈g(x), y∗〉+ 〈h(x), z∗〉) ,
where K := {x ∈ S | g(x) ∈ −C , h(x) = 0}.

This case can be obtained practically from the preceding situation
replacing g by (g , h) and C by C × {0} ⊂ Y × Z .
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Duality results for (almost) convex minimization problems

Throughout this section X and Y are l.c.s. Using the framework
sketched before, we provide a new sufficient condition for the
fundamental duality formula.

Proposition 15

Let F : X × Y → R be a proper function such that
α := infx∈X F (x , 0) ∈ R. Set A := PrY×R(epiF ).

(i) If clA is convex, 0 ∈ qri(cl(PrY (A))) and (0, α) /∈ qri(clA), then

inf
x∈X

F (x , 0) = max
y∗∈Y ∗

(−F ∗(0, y∗)) . (4)

(ii) If (4) holds then (0, α) /∈ qri(convA).
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Remark 10

(a) Proposition 15 (i) is obtained in Theorem 10 of Bot–Csetnek
(2012) for PrY×R(epiF ) convex [in which case
0 ∈ qri(cl(PrY (domF ))) ⇐⇒ 0 ∈ qri(PrY (domF ))] and
0 ∈ qi(PrY (domF )); note that in this case
qri(PrY×R(epiF )) = qi(PrY×R(epiF )).

(b) The conclusion of Proposition 11 in Bot–Csetnek (2012) is
weaker than that of Proposition 15 (ii); more precisely, the
conclusion of Proposition 11 in Bot–Csetnek (2012) is equivalent
to (0, α) /∈ qi(conv(PrY×R(epiF ))).

C. Zălinescu Quasi-relative interior and optimization



Aim and framework
Separation theorems

Duality results in scalar optimization

Sets of epigraph type and their associated functions
Lagrange duality for minimization problems with constraints
Duality results for (almost) convex minimization problems

In a standard way we obtain duality formulae for several convex
minimization problems.

Corollary 16

Let X , Y be l.c.s., let Φ : X × Y → R be a proper function, and
let T : X → Y be a continuous linear operator such that
α := infx∈X Φ(x ,Tx) ∈ R. Set
A := {(Tx − y , t) | (x , y , t) ∈ epi Φ} .

(i) If clA is convex, 0 ∈ qri(cl {Tx − y | (x , y) ∈ dom Φ}) and
(0, α) /∈ qri (clA) , then

inf
x∈X

Φ(x ,Tx) = − min
y∗∈Y ∗

Φ∗(T ∗y∗,−y∗). (5)

(ii) If (5) holds then (0, α) /∈ qri (convA) .
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We consider two particular cases of Corollary 16. In the next
results we use the notation êpi g := {(y ,−t) | (y , t) ∈ epi g}.

Corollary 17

Let X , Y be l.c.s., let f : X → R and g : Y → R be proper
functions, and let T : X → Y be a continuous linear operator such
that α := infx∈X [f (x) + g(Tx)] ∈ R. Set

A := (T , Id R)(epi f )− êpi g .

(i) If clA is convex, 0 ∈ qri(cl (T (dom f )− dom g)) and
(0, α) /∈ qri(clA), then

inf
x∈X

[f (x) + g(Tx)] = − min
y∗∈Y ∗

[f ∗(T ∗y∗) + g∗(−y∗)] . (6)

(ii) If (6) holds then (0, α) /∈ qri(convA).
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Corollary 18

Let X be a l.c.s. and f , g : X → R be proper functions such that
α := inf(f + g) ∈ R.

(i) If cl(epi f − êpi g) is convex, 0 ∈ qri(cl(dom f − dom g)) and

(0, α) /∈ qri(cl(epi f − êpi g)), then

inf {f (x) + g(x) | x ∈ X} = −min {f ∗(x∗) + g∗(−x∗) | x∗ ∈ X ∗} .
(7)

(ii) If (7) holds then (0, α) /∈ qri(conv(epi f − êpi g)).
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Thank you for your attention!
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