Quantum Curves as Singular Vectors

Masahide Manabe

Faculty of Physics, University of Warsaw, Poland

July 2017 @ Melbourne

Joint works with P. Ciosmak, L. Hadasz, P. Sułkowski
based on arXiv:1512.05785, 1608.02596, and work in progress
Contents

1 Introduction (3 pages)

2 CFT approach to hermitian matrix model (7 pages)

3 Quantum curves as singular vectors (5 pages)

4 Reconstructing quantum curves via TR (5 pages)

5 Conclusion (1 page)
1. Introduction

Main interest and object

Quantization of algebraic curve in \mathbb{C}^2:

\[A(x, y) = 0 \iff \hat{A}(\hat{x}, \hat{y})\psi(x) = 0 \]

where

\[\hat{x}\psi(x) = x\psi(x), \quad \hat{y}\psi(x) = g_s\partial_x\psi(x), \quad [\hat{y}, \hat{x}] = g_s \]

Goals

- Constructing a family of quantum curves as (Virasoro) singular vectors (in the context of 1-hermitian matrix models)
- Reconstructing quantum curves by topological recursion (TR)
1. Introduction

Main interest and object

- **Quantization** of algebraic curve in \mathbb{C}^2:

\[
A(x, y) = 0 \iff \hat{A}(\hat{x}, \hat{y})\psi(x) = 0 \\
g_s \to 0
\]

where

\[
\hat{x}\psi(x) = x\psi(x), \quad \hat{y}\psi(x) = g_s \partial_x \psi(x), \quad [\hat{y}, \hat{x}] = g_s
\]

Goals

- Constructing a family of quantum curves as (Virasoro) **singular vectors** (in the context of 1-hermitian matrix models)
- Reconstructing quantum curves by **topological recursion (TR)**
Examples with genus 0 and with matrix model (constructible by TR)

- **Gaussian**: $V(x) = \frac{1}{2} x^2$

 $$A(x, y) = -y^2 + x^2 - 4\mu$$
 $$\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 + \hat{x}^2 - 4\mu + (\pm g_s)$$

- **Penner**: $V(x) = -x - \log(1 - x)$

 $$A(x, y) = -y^2 + \frac{x^2 + 4\mu x - 4\mu}{(x - 1)^2}$$
 $$\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s}{\hat{x} - 1} \hat{y} + \frac{\hat{x}^2 + (4\mu + (\mp g_s)) \hat{x} - 4\mu + (\pm g_s)}{(\hat{x} - 1)^2}$$

- **2-Penner (Liouville 3-point at $x = 0, 1, \infty$)**: $V(x) = \alpha_0 \log x + \alpha_1 \log(x - 1)$

 $$A(x, y) = -y^2 + \frac{\alpha_0^2}{x^2} + \frac{\alpha_1^2}{(x - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2}{x(x - 1)}$$
 $$\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s(2\hat{x} - 1)}{\hat{x}(\hat{x} - 1)} \hat{y} + \frac{\alpha_0^2}{\hat{x}^2} + \frac{\alpha_1^2}{(\hat{x} - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2 + (-g_s^2/4)}{\hat{x}(\hat{x} - 1)}$$
Examples with genus 0 and with matrix model (constructible by TR)

- **Gaussian:**
 \[V(x) = \frac{1}{2} x^2 \]
 \[A(x, y) = -y^2 + x^2 - 4\mu \]
 \[\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 + \hat{x}^2 - 4\mu + (\pm g_s) \]

- **Penner:**
 \[V(x) = -x - \log(1 - x) \]
 \[A(x, y) = -y^2 + \frac{x^2 + 4\mu x - 4\mu}{(x - 1)^2} \]
 \[\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s}{\hat{x} - 1} \hat{y} + \frac{\hat{x}^2 + (4\mu + (\mp g_s)) \hat{x} - 4\mu + (\pm g_s)}{(\hat{x} - 1)^2} \]

- **2-Penner (Liouville 3-point at \(x = 0, 1, \infty \):**
 \[V(x) = \alpha_0 \log x + \alpha_1 \log(x - 1) \]
 \[A(x, y) = -y^2 + \frac{\alpha_0^2}{x^2} + \frac{\alpha_1^2}{(x - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2}{x(x - 1)} \]
 \[\hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s(2\hat{x} - 1)}{\hat{x}(\hat{x} - 1)} \hat{y} + \frac{\alpha_0^2}{\hat{x}^2} + \frac{\alpha_1^2}{(\hat{x} - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2}{\hat{x}(\hat{x} - 1)} + \frac{-g_s^2/4}{\hat{x}(\hat{x} - 1)} \]
Examples with genus 0 and with matrix model (constructible by TR)

- **Gaussian:** \(V(x) = \frac{1}{2} x^2 \)

 \[
 A(x, y) = -y^2 + x^2 - 4\mu \\
 \hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 + \hat{x}^2 - 4\mu + (\pm g_s)
 \]

- **Penner:** \(V(x) = -x - \log(1 - x) \)

 \[
 A(x, y) = -y^2 + \frac{x^2 + 4\mu x - 4\mu}{(x - 1)^2} \\
 \hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s}{\hat{x} - 1} \hat{y} + \frac{\hat{x}^2 + (4\mu + (\mp g_s)) \hat{x} - 4\mu + (\pm g_s)}{(\hat{x} - 1)^2}
 \]

- **2-Penner (Liouville 3-point at \(x = 0, 1, \infty \):** \(V(x) = \alpha_0 \log x + \alpha_1 \log(x - 1) \)

 \[
 A(x, y) = -y^2 + \frac{\alpha_0^2}{x^2} + \frac{\alpha_1^2}{(x - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2}{x(x - 1)} \\
 \hat{A}(\hat{x}, \hat{y}) = -\hat{y}^2 - \frac{g_s(2\hat{x} - 1)}{\hat{x}(\hat{x} - 1)} \hat{y} + \frac{\alpha_0^2}{\hat{x}^2} + \frac{\alpha_1^2}{(\hat{x} - 1)^2} + \frac{\alpha_\infty^2 - \alpha_0^2 - \alpha_1^2 + (-g_s^2/4)}{\hat{x}(\hat{x} - 1)}
 \]
Some related topics (with/without matrix model origin)

- Quantization of a **Seiberg-Witten curve** in 4d $\mathcal{N} = 2$ gauge theory
 “=” Braverman-Etingof’s equation for simple type half-BPS surface operator

- Quantization of a **character variety** (A-polynomial) for knot in S^3
 “=” AJ conjecture for colored Jones polynomials

- Quantization of a **mirror curve** in local topological B-model
 “=” Brane partition function which enumerates some open BPS invariants
Some related topics (with/without matrix model origin)

- Quantization of a **Seiberg-Witten curve** in 4d $\mathcal{N} = 2$ gauge theory
 “＝” Braverman-Etingof’s equation for simple type half-BPS surface operator

- Quantization of a **character variety (A-polynomial)** for knot in S^3
 “＝” AJ conjecture for colored Jones polynomials

- Quantization of a **mirror curve** in local topological B-model
 “＝” Brane partition function which enumerates some open BPS invariants
Some related topics (with/without matrix model origin)

- Quantization of a **Seiberg-Witten curve** in 4d $\mathcal{N} = 2$ gauge theory
 “⇐” Braverman-Etingof’s equation for simple type half-BPS surface operator

- Quantization of a **character variety** (A-polynomial) for knot in S^3
 “⇐” AJ conjecture for colored Jones polynomials

- Quantization of a **mirror curve** in local topological B-model
 “⇐” Brane partition function which enumerates some open BPS invariants
Contents

1. Introduction (3 pages)

2. CFT approach to hermitian matrix model (7 pages)

3. Quantum curves as singular vectors (5 pages)

4. Reconstructing quantum curves via TR (5 pages)

5. Conclusion (1 page)
2. CFT approach to hermitian matrix model

Rank N hermitian matrix model

$$Z = \int dM_{N \times N} e^{\frac{2}{g_s} \text{Tr} V(M)}, \quad V(M) = \sum_{n=0}^{\infty} t_n M^n$$

- has the eigenvalue expression

$$Z = \int_{\mathbb{R}^N} \prod_{a=1}^{N} dz_a \left(\prod_{a < b} (z_a - z_b)^2 \right) e^{-\frac{2}{g_s} \sum_{a=1}^{N} V(z_a)}$$

- has an associated chiral boson on S^2 ($\langle\langle \phi(x) \phi(y) \rangle\rangle = \frac{1}{2} \log(x - y)$)

$$\phi(x) = \frac{1}{g_s} \sum_{n=0}^{\infty} t_n x^n - N \log x - \frac{g_s}{2} \sum_{n=1}^{\infty} \frac{1}{n x^n} \partial_t_n$$

$$= \frac{1}{g_s} V(x) - \text{Tr} \log(x - M)$$
2. CFT approach to hermitian matrix model

Rank N hermitian matrix model

$$Z = \int dM_{N \times N} \, e^{\frac{2}{g_s} \text{Tr} V(M)}, \quad V(M) = \sum_{n=0}^{\infty} t_n M^n$$

- has the eigenvalue expression

$$Z = \int_{\mathbb{R}^N} \prod_{a=1}^{N} dz_a \left(\prod_{a<b} (z_a - z_b)^2 \right) e^{-\frac{2}{g_s} \sum_{a=1}^{N} V(z_a)}$$

- has an associated chiral boson on S^2 ($\langle\langle \phi(x)\phi(y) \rangle\rangle = \frac{1}{2} \log(x - y)$)

$$\phi(x) = \frac{1}{g_s} \sum_{n=0}^{\infty} t_n x^n - N \log x - \frac{g_s}{2} \sum_{n=1}^{\infty} \frac{1}{nx^n} \partial t_n$$

$$= \frac{1}{g_s} V(x) - \text{Tr} \log(x - M)$$
2. CFT approach to hermitian matrix model

Rank N hermitian matrix model

\[Z = \int dM_{N \times N} \ e^{\frac{2}{g_s} \text{Tr} V(M)}, \quad V(M) = \sum_{n=0}^{\infty} t_n M^n \]

- has the eigenvalue expression
 \[Z = \int_{\mathbb{R}^N} \prod_{a=1}^{N} dz_a \left(\prod_{a<b} (z_a - z_b)^2 \right) e^{-\frac{2}{g_s} \sum_{a=1}^{N} V(z_a)} \]

- has an **associated chiral boson** on \(S^2 \) (\(\langle \langle \phi(x) \phi(y) \rangle \rangle = \frac{1}{2} \log(x - y) \))

 \[\phi(x) = \frac{1}{g_s} \sum_{n=0}^{\infty} t_n x^n - N \log x - \frac{g_s}{2} \sum_{n=1}^{\infty} \frac{1}{nx^n} \partial_{t_n} \]

 \[= \frac{1}{g_s} V(x) - \text{Tr} \log(x - M) \]
Spectral curve $A(x, y) = 0$ as emergent geometry

- Consider the large N (classical) limit

 $$ N \to \infty, \quad g_s \to 0, \quad \text{with} \quad \mu = g_s N/2 = \text{finite} $$

- Define $y(x)$ by the large N limit of a vev in the matrix model

 $$ y(x) = \lim_{N \to \infty} g_s \langle \partial_x \phi(x) \rangle $$

- Saddle point equation under the large N limit ($\epsilon \ll 1$):

 $$ V'(z_a) - g_s \sum_{b \neq a} \frac{1}{z_a - z_b} = 0 \quad \Rightarrow \quad y(z + i \epsilon) = -y(z - i \epsilon) $$

 $z \in \mathbb{R}$ is on the support D of the density $\rho(z) = \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr}(z - M) \rangle$.

Masahide Manabe (Univ. of Warsaw) Quantum Curves as Singular Vectors July 2017 @ Melbourne 8 / 27
Spectral curve $A(x, y) = 0$ as emergent geometry

- Consider the large N (classical) limit

$$N \to \infty, \quad g_s \to 0, \quad \text{with} \quad \mu = g_s N/2 = \text{finite}$$

- Define $y(x)$ by the large N limit of a vev in the matrix model

$$y(x) = \lim_{N \to \infty} g_s \langle \partial_x \phi(x) \rangle$$

- Saddle point equation under the large N limit ($\epsilon \ll 1$):

$$V'(z_a) - g_s \sum_{b \neq a} \frac{1}{z_a - z_b} = 0 \quad \Rightarrow \quad y(z + i\epsilon) = -y(z - i\epsilon)$$

$z \in \mathbb{R}$ is on the support D of the density $\rho(z) = \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr}(z - M) \rangle$.
Spectral curve \(A(x, y) = 0 \) as emergent geometry

- Consider the large \(N \) (classical) limit
 \[
 N \to \infty, \quad g_s \to 0, \quad \text{with} \quad \mu = g_s N/2 = \text{finite}
 \]

- Define \(y(x) \) by the large \(N \) limit of a vev in the matrix model
 \[
 y(x) = \lim_{N \to \infty} g_s \langle \partial_x \phi(x) \rangle
 \]

- Saddle point equation under the large \(N \) limit (\(\epsilon \ll 1 \)):
 \[
 V'(z_a) - g_s \sum_{b \neq a} \frac{1}{z_a - z_b} = 0 \quad \Rightarrow \quad y(z + i\epsilon) = -y(z - i\epsilon)
 \]

\(z \in \mathbb{R} \) is on the support \(D \) of the density \(\rho(z) = \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr}(z - M) \rangle \).
Spectral curve $A(x, y) = 0$ as emergent geometry

- Consider the large N (classical) limit

$$N \to \infty, \quad g_s \to 0, \quad \text{with} \quad \mu = g_s N/2 = \text{finite}$$

- Define $y(x)$ by the large N limit of a vev in the matrix model

$$y(x) = \lim_{N \to \infty} g_s \langle \partial_x \phi(x) \rangle$$

- Saddle point equation under the large N limit ($\epsilon \ll 1$):

$$V'(z_a) - g_s \sum_{b \neq a} \frac{1}{z_a - z_b} = 0 \quad \to \quad y(z + i\epsilon) = -y(z - i\epsilon)$$

$z \in \mathbb{R}$ is on the support D of the density $\rho(z) = \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr}(z - M) \rangle$.
This implies that $y = y(x)$ has a \textbf{branch cut} on D, and from the saddle point equation we actually find an algebraic curve (spectral curve)

\[
A(x, y) := y^2 - V'(x)^2 + 4\mu \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr} \frac{V'(x) - V'(M)}{x - M} \rangle = 0
\]

\[
\rho(z) = \lim_{N \to \infty} \frac{1}{N} \langle \text{Tr}(z - M) \rangle = \frac{1}{2\pi i\mu} y(z), \quad z \in D
\]

For the Gaussian $V(x) = \frac{1}{2}x^2$, $A(x, y) = y^2 - x^2 + 4\mu$ and we find the Wigner’s semicircle law $\rho(z) = \frac{1}{2\pi \mu} \sqrt{4\mu - z^2}$.

The spectral curve encodes the eigenvalue distribution.
This implies that $y = y(x)$ has a **branch cut** on D, and from the saddle point equation we actually find an algebraic curve (spectral curve)

$$A(x, y) := y^2 - V'(x)^2 + 4\mu \lim_{N \to \infty} \frac{1}{N} \left\langle \text{Tr} \frac{V'(x) - V'(M)}{x - M} \right\rangle = 0$$

The spectral curve encodes the eigenvalue distribution

$$\rho(z) = \lim_{N \to \infty} \frac{1}{N} \left\langle \text{Tr}(z - M) \right\rangle = \frac{1}{2\pi i\mu} y(z), \quad z \in D$$

For the Gaussian $V(x) = \frac{1}{2}x^2$, $A(x, y) = y^2 - x^2 + 4\mu$ and we find the Wigner’s semicircle law $\rho(z) = \frac{1}{2\pi \mu} \sqrt{4\mu - z^2}$.

Masahide Manabe (Univ. of Warsaw) Quantum Curves as Singular Vectors July 2017 @ Melbourne
This implies that $y = y(x)$ has a branch cut on D, and from the saddle point equation we actually find an algebraic curve (spectral curve)

$$A(x, y) := y^2 - V'(x)^2 + 4\mu \lim_{N \to \infty} \frac{1}{N} \left\langle \frac{\text{Tr} \frac{V'(x) - V'(M)}{x - M}}{N} \right\rangle = 0$$

The spectral curve encodes the eigenvalue distribution

$$\rho(z) = \lim_{N \to \infty} \frac{1}{N} \left\langle \text{Tr}(z - M) \right\rangle = \frac{1}{2\pi i \mu} y(z), \quad z \in D$$

For the Gaussian $V(x) = \frac{1}{2}x^2$, $A(x, y) = y^2 - x^2 + 4\mu$ and we find the Wigner’s semicircle law $\rho(z) = \frac{1}{2\pi \mu} \sqrt{4\mu - z^2}$.
Relation with $c = 1$ CFT (e.g. Aganagic-Cheng-Dijkgraaf-Krefl-Vafa [1105.0630])

- Remember an associated chiral boson

$$\phi(x) = \frac{1}{g_s} V(x) - \text{Tr} \log(x - M)$$

and consider an associated chiral fermion

$$\psi_-(x) = e^{-\phi(x)} = e^{-\frac{1}{g_s} V(x)} \det(x - M)$$

- Then the partition function can be expressed on "the Fock vacuum $|\ast\rangle\rangle$"

$$Z = \int_{\mathbb{R}^N} \prod_{a=1}^N dz_a \langle\langle \psi_-(z_1)^2 \psi_-(z_2)^2 \cdots \psi_-(z_N)^2 \rangle\rangle$$

$\psi_-(z)^2$ essentially gives the screening charge (conf. dimension $\Delta = 1$).

- This implies that 1) the eigenvalue is described by $\psi_-(z)$ (free fermion), and 2) from the view point of the spectral curve $\psi_-(z)$ on the first sheet and $\psi_-(z)$ on the second sheet is glued by $\int dz$.
Relation with $c = 1$ CFT (e.g. Aganagic-Cheng-Dijkgraaf-Krefl-Vafa [1105.0630])

- Remember an associated chiral boson

$$\phi(x) = \frac{1}{g_s} V(x) - \text{Tr} \log(x - M)$$

and consider an associated chiral fermion

$$\psi_-(x) = e^{-\phi(x)} = e^{-\frac{1}{g_s} V(x)} \det(x - M)$$

- Then the partition function can be expressed on “the Fock vacuum $|\star\rangle$”

$$Z = \int_{\mathbb{R}^N} \prod_{a=1}^N dz_a \langle\langle \psi_-(z_1)^2 \psi_-(z_2)^2 \cdots \psi_-(z_N)^2 \rangle\rangle$$

$\psi_-(z)^2$ essentially gives the screening charge (conf. dimension $\Delta = 1$).

- This implies that 1) the eigenvalue is described by $\psi_-(z)$ (free fermion), and 2) from the view point of the spectral curve $\psi_-(z)$ on the first sheet and $\psi_-(z)$ on the second sheet is glued by $\int dz$.
Relation with \(c = 1 \) CFT (e.g. Aganagic-Cheng-Dijkgraaf-Krefl-Vafa [1105.0630])

- Remember an associated chiral boson

 \[
 \phi(x) = \frac{1}{g_s} V(x) - \text{Tr} \log(x - M)
 \]

 and consider an associated chiral fermion

 \[
 \psi_-(x) = e^{-\phi(x)} = e^{-\frac{1}{g_s} V(x)} \det(x - M)
 \]

- Then the partition function can be expressed on “the Fock vacuum \(|\ast\rangle\rangle \)”

 \[
 Z = \int_{\mathbb{R}^N} \prod_{a=1}^{N} dz_a \left\langle \left\langle \psi_-(z_1)^2 \psi_-(z_2)^2 \cdots \psi_-(z_N)^2 \right\rangle \right\rangle
 \]

 \(\psi_-(z)^2 \) essentially gives the screening charge (conf. dimension \(\Delta = 1 \)).

- This implies that 1) the eigenvalue is described by \(\psi_-(z) \) (free fermion), and 2) from the view point of the spectral curve \(\psi_-(z) \) on the first sheet and \(\psi_-(z) \) on the second sheet is glued by \(\int dz \).
A key ingredient in CFT is the stress tensor

\[T(x) =: \partial_x \phi(x) \partial_x \phi(x) : \]

with the OPE

\[T(x_1) T(x_2) = \frac{1}{2(x_1 - x_2)^4} + \frac{2T(x_2)}{(x_1 - x_2)^2} + \frac{\partial x_2 T(x_2)}{x_1 - x_2} + \ldots \]

which is equivalent to the Virasoro algebra

\[[\ell_m, \ell_n] = (m - n)\ell_{m+n} + \frac{1}{12} (m^3 - m)\delta_{m+n,0} \]

by the mode expansion \(T(x) = \sum_{n \in \mathbb{Z}} \ell_n x^{-n-2}. \)

In the matrix model language we then obtain

\[T(x) = \left(\text{Tr} \frac{1}{x - M} \right)^2 + \frac{1}{g_s^2} V'(x)^2 - \frac{2}{g_s} \text{Tr} \frac{V'(x)}{x - M} \]
A key ingredient in CFT is the stress tensor

\[T(x) =: \partial_x \phi(x) \partial_x \phi(x) : \]

with the OPE

\[T(x_1) T(x_2) = \frac{1}{2(x_1 - x_2)^4} + \frac{2 T(x_2)}{(x_1 - x_2)^2} + \frac{\partial x_2 T(x_2)}{x_1 - x_2} + \ldots \]

which is equivalent to the Virasoro algebra

\[[\ell_m, \ell_n] = (m-n)\ell_{m+n} + \frac{1}{12} (m^3 - m) \delta_{m+n,0} \]

by the mode expansion \(T(x) = \sum_{n \in \mathbb{Z}} \ell_n x^{-n-2} \).

In the matrix model language we then obtain

\[T(x) = \left(\text{Tr} \frac{1}{x - M} \right)^2 + \frac{1}{g_s^2} V'(x)^2 - \frac{2}{g_s} \text{Tr} \frac{V'(x)}{x - M} \]
Proposition (Ambjorn-Jurkiewicz-Makeenko, David, Mironov-Morozov, Fukuma-Kawai-Nakayama, Itoyama-Matsuo, Dijkgraaf-Verlinde-Verlinde)

The loop equation (Ward identity) in the matrix model

\[
\int_{\mathbb{R}^N} \prod_{a=1}^N dz_a \sum_{a=1}^N \partial_{z_a} \frac{1}{x - z_a} \left\langle \psi_-(z_1)^2 \psi_-(z_2)^2 \cdots \psi_-(z_N)^2 \right\rangle = 0
\]

is written as

\[
\langle T_+(x) \rangle = 0
\]

where \(T_+(x) = \sum_{n=-1}^{\infty} \ell_n x^{-n-2} \) is the generating function for the mode \(\ell_{n \geq -1} \):

\[
T_+(x) = \left(\text{Tr} \frac{1}{x - M} \right)^2 - \frac{2}{g_2} \text{Tr} \frac{V'(M)}{x - M}.
\]

Then the Virasoro constraints for \(Z \) and the spectral curve are found as

\[
\langle T_+(x) \rangle = 0 \iff \ell_{n \geq -1} Z = 0
\]

\[
\lim_{N \to \infty} \langle T_+(x) \rangle = 0 \iff A(x, y) = 0
\]
Proposition (Ambjorn-Jurkiewicz-Makeenko, David, Mironov-Morozov, Fukuma-Kawai-Nakayama, Itoyama-Matsuo, Dijkgraaf-Verlinde-Verlinde)

The loop equation (Ward identity) in the matrix model

\[
\int_{\mathbb{R}^N} \prod_{a=1}^{N} dz_a \sum_{a=1}^{N} \frac{1}{x - z_a} \left\langle \psi_-(z_1)^2 \psi_-(z_2)^2 \cdots \psi_-(z_N)^2 \right\rangle = 0
\]

is written as

\[
\left\langle T_+(x) \right\rangle = 0
\]

where \(T_+(x) = \sum_{n=-1}^{\infty} \ell_n x^{-n-2} \) is the generating function for the mode \(\ell_{n \geq -1} \):

\[
T_+(x) = \left(\text{Tr} \frac{1}{x - M} \right)^2 - \frac{2}{g_2} \text{Tr} \frac{V'(M)}{x - M}.
\]

Then the Virasoro constraints for \(Z \) and the spectral curve are found as

\[
\left\langle T_+(x) \right\rangle = 0 \iff \ell_{n \geq -1} Z = 0
\]

\[
\lim_{N \to \infty} \left\langle T_+(x) \right\rangle = 0 \iff A(x, y) = 0
\]
By the β-deformation

$$Z_\beta = \int_{\mathbb{R}^N} \prod_{a=1}^N dz_a \left(\prod_{a<b} (z_a - z_b)^{2\beta} \right) e^{-\frac{2\sqrt{\beta}}{g_s} \sum_{a=1}^N V(z_a)}$$

we can move the central charge $c = 1 - 6(\beta^{-1/2} - \beta^{1/2})^2$ in CFT.

By considering the formal supereigenvalue models

$$Z_{\beta,\text{NS}} = \int \prod_{a=1}^N dz_a d\theta_a \left(\prod_{a<b} (z_a - z_b - \theta_a\theta_b)^\beta \right) e^{-\frac{\sqrt{\beta}}{g_s} \sum_{a=1}^N V_{\text{NS}}(z_a, \theta_a)}$$

$$Z_{\beta,\text{R}} = \int \prod_{a=1}^N dz_a d\theta_a \left(\prod_{a<b} \left(z_a - z_b - \frac{1}{2}(z_a + z_b) \frac{\theta_a\theta_b}{\sqrt{z_a z_b}} \right)^\beta \right) e^{-\frac{\sqrt{\beta}}{g_s} \sum_{a=1}^N V_{\text{R}}(z_a, \theta_a)}$$

$$V_{\text{NS}}(x, \theta) = \sum_{n=0}^\infty t_n x^n + \sum_{n=0}^\infty \xi_{n+1/2} x^n \theta, \quad V_{\text{R}}(x, \theta) = \sum_{n=0}^\infty t_n x^n + \sum_{n=0}^\infty \xi_n x^{n-1/2} \theta$$

we can see a similar relation with $\mathcal{N} = 1$ SCFT w/ $c = 3/2 - 3(\beta^{-1/2} - \beta^{1/2})^2$.
By the β-deformation

$$Z_\beta = \int_{\mathbb{R}^N} \prod_{a=1}^N dz_a \left(\prod_{a < b} (z_a - z_b)^{2\beta} \right) e^{-\frac{2\sqrt{\beta}}{g_s} \sum_{a=1}^N V(z_a)}$$

we can move the central charge $c = 1 - 6(\beta^{-1/2} - \beta^{1/2})^2$ in CFT.

By considering the formal supereigenvalue models

$$Z_{\beta, NS} = \int \prod_{a=1}^N dz_a d\theta_a \left(\prod_{a < b} (z_a - z_b - \theta_a \theta_b)^{\beta} \right) e^{-\frac{\sqrt{\beta}}{g_s} \sum_{a=1}^N V_{NS}(z_a, \theta_a)}$$

$$Z_{\beta, R} = \int \prod_{a=1}^N dz_a d\theta_a \left(\prod_{a < b} \left(z_a - z_b - \frac{1}{2}(z_a + z_b) \frac{\theta_a \theta_b}{\sqrt{z_a z_b}} \right)^{\beta} \right) e^{-\frac{\sqrt{\beta}}{g_s} \sum_{a=1}^N V_R(z_a, \theta_a)}$$

$$V_{NS}(x, \theta) = \sum_{n=0}^\infty t_n x^n + \sum_{n=0}^\infty \xi_{n+1/2} x^n \theta, \quad V_R(x, \theta) = \sum_{n=0}^\infty t_n x^n + \sum_{n=0}^\infty \xi_n x^{n-1/2} \theta$$

we can see a similar relation with $\mathcal{N} = 1$ SCFT w/ $c = 3/2 - 3(\beta^{-1/2} - \beta^{1/2})^2$.
Contents

1. Introduction (3 pages)

2. CFT approach to hermitian matrix model (7 pages)

3. Quantum curves as singular vectors (5 pages)

4. Reconstructing quantum curves via TR (5 pages)

5. Conclusion (1 page)
3. Quantum curves as singular vectors

A general philosophy

Quantum Curve = Riemann Surface + CFT

- In the hermitian matrix model, consider a “wave-function”

\[\Psi_\alpha(x) := \langle e^{\frac{2\alpha}{gs} \phi(x)} \rangle = e^{\frac{2\alpha}{gs} V(x)} \langle \det(x - M)^{-\frac{2\alpha}{gs}} \rangle \]

- Now we can ask when \(\Psi_\alpha(x) \) obeys differential equation.
3. Quantum curves as singular vectors

A general philosophy

Quantum Curve = Riemann Surface + CFT

- In the hermitian matrix model, consider a "wave-function"

\[\Psi_\alpha(x) := \langle e^{\frac{2\alpha}{g_s} \phi(x)} \rangle = e^{\frac{2\alpha}{g_s} V(x)} \langle \det(x - M)^{-\frac{2\alpha}{g_s}} \rangle \]

- Now we can ask when \(\Psi_\alpha(x) \) obeys differential equation.
3. Quantum curves as singular vectors

A general philosophy

Quantum Curve = Riemann Surface + CFT

- In the hermitian matrix model, consider a “wave-function”

\[\Psi_\alpha(x) := \left\langle e^{\frac{2\alpha}{g_s} \phi(x)} \right\rangle = e^{\frac{2\alpha}{g_s} V(x)} \left\langle \det(x - M)^{-\frac{2\alpha}{g_s}} \right\rangle \]

- Now we can ask when \(\Psi_\alpha(x) \) obeys differential equation.
Answer (for clarity we introduce β)

For a polynomial potential $V(x)$, only for

$$\alpha = \alpha_{r,s} = \frac{r - 1}{2} \beta^{1/2} g_s - \frac{s - 1}{2} \beta^{-1/2} g_s, \quad r, s \in \mathbb{N}$$

$q_{\alpha}(x)$ obeys a finite order partial differential equation that we call a quantum curve, and clearly

$$\Psi_{\alpha}(x)$$

Quantum Curves \leftrightarrow Virasoro Singular vectors

- From the matrix model view point we see that the Ward identity for $\Psi_{\alpha}(x)$

$$\left\langle T_+(X; x) e^{\frac{2\alpha}{g_s} \phi(x)} \right\rangle = 0$$

leads to the above infinite family of quantum curves ($T_+(X; x)$ is a “deformed” stress tensor: $T_+(X) \rightarrow T_+(X; x)$).

- From the CFT view point, $\Psi_{\alpha}(x)$ gives a primary field with conformal dimension $\Delta = \alpha^2/g_s^2$ and the above answer is obvious.
For a polynomial potential \(V(x) \), only for
\[
\alpha = \alpha_{r,s} = \frac{r - 1}{2} \beta^{1/2} g_s - \frac{s - 1}{2} \beta^{-1/2} g_s, \quad r, s \in \mathbb{N}
\]
\(\psi_\alpha(x) \) obeys a finite order partial differential equation that we call a quantum curve, and clearly

\[\begin{align*}
\text{Quantum Curves} & \quad \leftrightarrow \quad \text{Virasoro Singular vectors}
\end{align*}\]

- From the matrix model viewpoint we see that the Ward identity for \(\psi_\alpha(x) \)
\[
\left\langle T_+(X; x)e^{\frac{2\alpha}{g_s}\phi(x)} \right\rangle = 0
\]
leads to the above infinite family of quantum curves (\(T_+(X; x) \) is a “deformed” stress tensor: \(T_+(X) \rightarrow T_+(X; x) \)).

- From the CFT viewpoint, \(\psi_\alpha(x) \) gives a primary field with conformal dimension \(\Delta = \alpha^2 / g_s^2 \) and the above answer is obvious.
Answer (for clarity we introduce β)

For a polynomial potential $V(x)$, only for

$$\alpha = \alpha_{r,s} = \frac{r - 1}{2} \beta^{1/2} g_s - \frac{s - 1}{2} \beta^{-1/2} g_s, \quad r, s \in \mathbb{N}$$

$\psi_{\alpha}(x)$ obeys a finite order partial differential equation that we call a quantum curve, and clearly

Quantum Curves \leftrightarrow Virasoro Singular vectors

- From the matrix model view point we see that the Ward identity for $\psi_{\alpha}(x)$

$$\left\langle T_+(X; x)e^{\frac{2\alpha}{g_s} \phi(x)} \right\rangle = 0$$

leads to the above infinite family of quantum curves ($T_+(X; x)$ is a “deformed” stress tensor: $T_+(X) \rightarrow T_+(X; x)$).

- From the CFT view point, $\psi_{\alpha}(x)$ gives a primary field with conformal dimension $\Delta = \alpha^2 / g_s^2$ and the above answer is obvious.
Examples

- **Level 2**

\[\hat{A}_2^\alpha \psi_\alpha(x) = 0, \quad \text{for } \alpha = \pm \frac{g_s}{2} \]

\[\hat{A}_2^\alpha := g_s^2 \partial_x^2 - \hat{L}_{-2} \]

- **Level 3**

\[\hat{A}_3^\alpha \psi_\alpha(x) = 0, \quad \text{for } \alpha = \pm \frac{g_s}{2}, \pm g_s \]

\[\hat{A}_3^\alpha := g_s \partial_x \hat{A}_2^\alpha + \frac{2\alpha^2}{g_s^4} (2\alpha - g_s)(2\alpha + g_s) \hat{L}_{-3} \]

\[\hat{L}_{-n} = \frac{g_s^{n-2}}{(n-2)!} \left(\partial_x^{n-2} (V'(x)^2) + \partial_x^{n-2} f(x) + \left[\partial_x^{n-2} f(x), \log Z \right] \right) \]

\[\hat{f}(x) := g_s^2 \sum_{n=0}^{\infty} x^n \sum_{k=n+2}^{\infty} k t_k \frac{\partial}{\partial t_{k-n-2}}, \quad \partial_x^n \hat{f}(x) := [\partial_x, \partial_x^{n-1} \hat{f}(x)] \]
Large N (classical) limit

Consider

$$g_s \partial_x \psi_\alpha(x) = 2\alpha \left\langle (\partial_x \phi(x)) e^{\frac{2\alpha}{g_s} \phi(x)} \right\rangle \xrightarrow{N \to \infty} \frac{2\alpha}{g_s} y(x) \psi_\alpha(x)$$

From the large N limit of the level 2 q-curves we find the spectral curve

$$\hat{A}_2^{\alpha = \pm \frac{g_s}{2}} \psi_{\alpha = \pm \frac{g_s}{2}}(x) = 0 \quad \xrightarrow{N \to \infty} \quad A(x, y) = y^2 - V'(x)^2 - \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] = 0$$

For the level r quantum curve with $\alpha = \alpha_{r,1}$ we find a multiple copy of the spectral curve: (Feigin-Fuchs ['88], Kent [9204098])

$$0 = \prod_{k=1}^{r/2} \left(y^2 - \frac{(2k - 1)^2}{(r - 1)^2} \left(V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] \right) \right), \quad \text{for } r \text{ even}$$

$$0 = y \prod_{k=1}^{(r-1)/2} \left(y^2 - \frac{4k^2}{(r - 1)^2} \left(V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] \right) \right), \quad \text{for } r \text{ odd}$$

by identifying y with the limit of $\frac{g_s}{r-1} \partial_x$.
Large \(N \) (classical) limit

Consider

\[
g_s \partial_x \psi_\alpha(x) = 2\alpha \left\langle (\partial_x \phi(x)) e^{\frac{2\alpha}{g_s} \phi(x)} \right\rangle \xrightarrow{N \to \infty} \frac{2\alpha}{g_s} y(x) \psi_\alpha(x)
\]

From the large \(N \) limit of the level 2 q-curves we find the spectral curve

\[
\hat{A}_2^{\alpha = \pm \frac{g_s}{2}} \psi_{\alpha = \pm \frac{g_s}{2}}(x) = 0 \quad \xrightarrow{N \to \infty} \quad A(x, y) = y^2 - V'(x)^2 - \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] = 0
\]

For the level \(r \) quantum curve with \(\alpha = \alpha_{r,1} \) we find a multiple copy of the spectral curve: (Feigin-Fuchs ['88], Kent [9204098])

\[
0 = \prod_{k=1}^{r/2} \left(y^2 - \frac{(2k - 1)^2}{(r - 1)^2} \left(V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] \right) \right), \quad \text{for } r \text{ even}
\]

\[
0 = y \prod_{k=1}^{(r-1)/2} \left(y^2 - \frac{4k^2}{(r - 1)^2} \left(V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] \right) \right), \quad \text{for } r \text{ odd}
\]

by identifying \(y \) with the limit of \(\frac{g_s}{r-1} \partial_x \).
Large N (classical) limit

Consider

$$g_s \partial_x \psi_{\alpha}(x) = 2\alpha \left((\partial_x \phi(x)) e^{\frac{2\alpha}{g_s} \phi(x)} \right) \xrightarrow{N \to \infty} \frac{2\alpha}{g_s} y(x) \psi_{\alpha}(x)$$

From the large N limit of the level 2 q-curves we find the spectral curve

$$\hat{A}^{\alpha=\pm \frac{g_s}{2}} \psi_{\alpha=\pm \frac{g_s}{2}}(x) = 0 \quad \xrightarrow{N \to \infty} \quad A(x, y) = y^2 - V'(x)^2 - \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right] = 0$$

For the level r quantum curve with $\alpha = \alpha_{r,1}$ we find a multiple copy of the spectral curve: (Feigin-Fuchs ['88], Kent [9204098])

$$0 = \prod_{k=1}^{r/2} \left(y^2 - \frac{(2k - 1)^2}{(r - 1)^2} (V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right]) \right), \quad \text{for } r \text{ even}$$

$$0 = y \prod_{k=1}^{(r-1)/2} \left(y^2 - \frac{4k^2}{(r - 1)^2} (V'(x)^2 + \lim_{N \to \infty} \left[\hat{f}(x), \log Z \right]) \right), \quad \text{for } r \text{ odd}$$

by identifying y with the limit of $\frac{g_s}{r-1} \partial_x$.
The construction of β-deformed ("refined") quantum curves is straightforward.

Super-quantum curves associated with the NS supereigenvalue model $Z_{\beta,NS}$ can be also constructed: (Ciosmak-Hadasz-M.M-Sułkowski [’16])

\[\text{NS Super-Quantum Curves} \quad \leftarrow \rightarrow \quad \text{NS Super-Virasoro Singular vectors} \]

E.g. Level 3/2 super-quantum curve for $\alpha = \pm g_s$ is found as

\[\hat{A}_{3/2}^{\alpha} \psi_{\alpha}(x, \theta) = 0, \quad \hat{A}_{3/2}^{\alpha} = g_s^2 \partial_x \partial_{\theta} + \alpha^2 \hat{G}_{-3/2} + \theta \left(g_s^2 \partial_x^2 - 2\alpha^2 \hat{L}_{-2} \right) \]

$\hat{G}_{-3/2}$ and \hat{L}_{-2} are differential operators acting on the bosonic and fermionic times t_n and $\xi_{n+1/2}$ in the potential.

Construction of super-quantum curves corresponding to “$\langle R \mid NS(x) \mid R \rangle$” in the Ramond supereigenvalue model $Z_{\beta,R}$ is also possible.

Construction of super-quantum curves corresponding to “$\langle R \mid R(x) \mid NS \rangle$” is a little bit subtle, and work in progress.
The construction of β-deformed ("refined") quantum curves is straightforward.

Super-quantum curves associated with the NS supereigenvalue model $Z_{\beta,NS}$ can be also constructed: (Ciosmak-Hadasz-M.M-Sułkowski ['16])

NS Super-Quantum Curves \leftrightarrow NS Super-Virasoro Singular vectors

E.g. Level 3/2 super-quantum curve for $\alpha = \pm g_s$ is found as

$$\hat{A}_{3/2}^\alpha \psi_\alpha(x, \theta) = 0, \quad \hat{A}_{3/2}^\alpha = g_s^2 \partial_x \partial_\theta + \alpha^2 \hat{G}_{-3/2} + \theta \left(g_s^2 \partial_x^2 - 2\alpha^2 \hat{L}_{-2} \right)$$

$\hat{G}_{-3/2}$ and \hat{L}_{-2} are differential operators acting on the bosonic and fermionic times t_n and $\xi_{n+1/2}$ in the potential.

Construction of super-quantum curves corresponding to "$\langle R | NS(x) | R \rangle$" in the Ramond supereigenvalue model $Z_{\beta,R}$ is also possible.

Construction of super-quantum curves corresponding to "$\langle R | R(x) | NS \rangle$" is a little bit subtle, and work in progress.
The construction of β-deformed (“refined”) quantum curves is straightforward.

Super-quantum curves associated with the NS supereigenvalue model $Z_{\beta,\text{NS}}$ can be also constructed: (Ciosmak-Hadasz-M.M-Sułkowski ['16])

NS Super-Quantum Curves \leftrightarrow NS Super-Virasoro Singular vectors

E.g. Level 3/2 super-quantum curve for $\alpha = \pm g_s$ is found as

$$\hat{A}_{3/2}^\alpha \psi_\alpha(x, \theta) = 0, \quad \hat{A}_{3/2}^\alpha = g_s^2 \partial_x \partial_\theta + \alpha^2 \hat{G}_{-3/2} + \theta \left(g_s^2 \partial_x^2 - 2\alpha^2 \hat{L}_{-2} \right)$$

$\hat{G}_{-3/2}$ and \hat{L}_{-2} are differential operators acting on the bosonic and fermionic times t_n and $\xi_{n+1/2}$ in the potential.

Construction of super-quantum curves corresponding to “$\langle R|\text{NS}(x)|R \rangle$” in the Ramond supereigenvalue model $Z_{\beta,\text{R}}$ is also possible.

Construction of super-quantum curves corresponding to “$\langle R|R(x)|\text{NS} \rangle$” is a little bit subtle, and work in progress.
The construction of β-deformed ("refined") quantum curves is straightforward.

Super-quantum curves associated with the NS supereigenvalue model $Z_{\beta,NS}$ can be also constructed: (Ciosmak-Hadasz-M.M-Sułkowski ['16])

NS Super-Quantum Curves \leftrightarrow NS Super-Virasoro Singular vectors

E.g. Level 3/2 super-quantum curve for $\alpha = \pm g_s$ is found as

$$\tilde{A}_{3/2}^\alpha \psi_\alpha(x, \theta) = 0, \quad \tilde{A}_{3/2}^\alpha = g_s^2 \partial_x \partial_\theta + \alpha^2 \tilde{G}_{-3/2} + \theta \left(g_s^2 \partial_x^2 - 2\alpha^2 \tilde{L}_{-2} \right)$$

$\tilde{G}_{-3/2}$ and \tilde{L}_{-2} are differential operators acting on the bosonic and fermionic times t_n and $\xi_{n+1/2}$ in the potential.

Construction of super-quantum curves corresponding to "$\langle R|NS(x)|R \rangle$" in the Ramond supereigenvalue model $Z_{\beta,R}$ is also possible.

Construction of super-quantum curves corresponding to "$\langle R|R(x)|NS \rangle$" is a little bit subtle, and work in progress.
The construction of β-deformed ("refined") quantum curves is straightforward.

Super-quantum curves associated with the NS supereigenvalue model $Z_{\beta,\text{NS}}$ can be also constructed: (Ciosmak-Hadasz-M.M-Sułkowski ['16])

\[
\text{NS Super-Quantum Curves} \quad \leftrightarrow \quad \text{NS Super-Virasoro Singular vectors}
\]

E.g. Level 3/2 super-quantum curve for $\alpha = \pm g_s$ is found as

\[
\hat{A}_{3/2}^\alpha \psi_\alpha(x, \theta) = 0, \quad \hat{A}_{3/2}^\alpha = g_s^2 \partial_x \partial_\theta + \alpha^2 \hat{G}_{-3/2} + \theta \left(g_s^2 \partial_x^2 - 2\alpha^2 \hat{L}_{-2} \right)
\]

$\hat{G}_{-3/2}$ and \hat{L}_{-2} are differential operators acting on the bosonic and fermionic times t_n and $\xi_{n+1/2}$ in the potential.

Construction of super-quantum curves corresponding to $\langle R | \text{NS}(x) | R \rangle$ in the Ramond supereigenvalue model $Z_{\beta,\text{R}}$ is also possible.

Construction of super-quantum curves corresponding to $\langle R | R(x) | \text{NS} \rangle$ is a little bit subtle, and work in progress.
Contents

1. Introduction (3 pages)

2. CFT approach to hermitian matrix model (7 pages)

3. Quantum curves as singular vectors (5 pages)

4. Reconstructing quantum curves via TR (5 pages)

5. Conclusion (1 page)
4. Reconstructing quantum curves via TR

A key philosophy

Topological Recursion (TR) knows 2d Quantum Kodaira-Spencer (BCOV) theory

- Let
 \[\Sigma = \{ (x, y) \in \mathbb{C}^2 \mid A(x, y) = 0 \} \]
 be an algebraic curve (with/without matrix model origin!) whose all branch points (zeros of \(dx = 0 \)) on the \(x \)-plane are simple.

- Near each branch point one can then take a local coordinate \(z \in \Sigma \) and a conjugate point \(\bar{z} \neq z \) such that \(x(z) = x(\bar{z}) \).

- The following TR recursively gives the perturbative expansion
 \[\langle \partial_{z_1} \phi(z_1) \cdots \partial_{z_h} \phi(z_h) \rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_h^g(z_1, \ldots, z_h) \]
 in the 2d Kodaira-Spencer field theory on \(\Sigma \) with the coupling \(g_s \).
 (Dijkgraaf-Vafa [0711.1932])
4. Reconstructing quantum curves via TR

A key philosophy

Topological Recursion (TR) knows 2d Quantum Kodaira-Spencer (BCOV) theory

Let

$$\Sigma = \{ (x, y) \in \mathbb{C}^2 \mid A(x, y) = 0 \}$$

be an algebraic curve (with/without matrix model origin!) whose all branch points (zeros of $dx = 0$) on the x-plane are simple.

Near each branch point one can then take a local coordinate $z \in \Sigma$ and a conjugate point $\bar{z} \neq z$ such that $x(z) = x(\bar{z})$.

The following TR recursively gives the perturbative expansion

$$\langle \partial_{z_1} \phi(z_1) \cdots \partial_{z_h} \phi(z_h) \rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_h^g(z_1, \ldots, z_h)$$

in the 2d Kodaira-Spencer field theory on Σ with the coupling g_s.

(Dijkgraaf-Vafa [0711.1932])
4. Reconstructing quantum curves via TR

A key philosophy

Topological Recursion (TR) knows 2d Quantum Kodaira-Spencer (BCOV) theory

Let

$$\Sigma = \{ (x, y) \in \mathbb{C}^2 \mid A(x, y) = 0 \}$$

be an algebraic curve (with/without matrix model origin!) whose all branch points (zeros of $dx = 0$) on the x-plane are simple.

Near each branch point one can then take a local coordinate $z \in \Sigma$ and a conjugate point $\bar{z} \neq z$ such that $x(z) = x(\bar{z})$.

The following TR recursively gives the perturbative expansion

$$\langle \partial_{z_1} \phi(z_1) \cdots \partial_{z_h} \phi(z_h) \rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_h^g(z_1, \ldots, z_h)$$

in the 2d Kodaira-Spencer field theory on Σ with the coupling g_s. (Dijkgraaf-Vafa [0711.1932])
4. Reconstructing quantum curves via TR

A key philosophy

Topological Recursion (TR) knows 2d Quantum Kodaira-Spencer (BCOV) theory

Let
\[\Sigma = \{ (x, y) \in \mathbb{C}^2 \mid A(x, y) = 0 \} \]
be an algebraic curve (with/without matrix model origin!) whose all branch points (zeros of \(dx = 0 \)) on the \(x \)-plane are simple.

Near each branch point one can then take a local coordinate \(z \in \Sigma \) and a conjugate point \(\bar{z} \neq z \) such that \(x(z) = x(\bar{z}) \).

The following TR recursively gives the perturbative expansion
\[
\langle \partial_{z_1} \phi(z_1) \cdots \partial_{z_h} \phi(z_h) \rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_h^g(z_1, \ldots, z_h)
\]
in the 2d Kodaira-Spencer field theory on \(\Sigma \) with the coupling \(g_s \).

(Dijkgraaf-Vafa [0711.1932])
Definition (Topological Recursion) Eynard-Orantin [0702045]

For the above algebraic curve Σ, the differentials $W^g_h(z_H) = \omega^g_h(z_H)dx_1 \cdots dx_h$ for $(g, h) \neq (0, 1), (0, 2)$ are recursively defined by

$$W^g_{h+1}(z, z_H) = \sum_{q_i(\text{branch points})} \text{Res}_{q=q_i} \frac{1}{2} \int_{\bar{q}}^q B(\cdot, z) \left[W^g_{h+2}(q, \bar{q}, z_H) \right]$$

$$+ \sum_{\ell=0}^g \sum_{\emptyset = J \subseteq H} W^g_{|J|+1}(q, z_J) W^\ell_{|H|-|J|+1}(\bar{q}, z_H \setminus J)$$

with initial inputs

$W^0_1(z) = 0$, \quad $W^0_2(z_1, z_2) = B(z_1, z_2)$

Here $H = \{1, 2, \ldots, h\} \supset J = \{i_1, i_2, \ldots, i_j\}$, $H \setminus J = \{i_{j+1}, i_{j+2}, \ldots, i_h\}$, and $B(z_1, z_2)$ is the Bergman kernel on Σ, which is holomorphic except $z_1 = z_2$, defined by

- $B(z_1, z_2) \sim \frac{dx_1 dx_2}{(x_1 - x_2)^2} + \text{reg.}$
- $\int_{A_i} B(z_1, z_2) = 0$, \quad $i = 1, \ldots, \# \text{ genus of } \Sigma$
Graphical representation of the topological recursion

Proposition for the hermitian matrix model

1. The TR gives the perturbative expansion of a correlator of resolvents (by loop equation) Eynard ['04], Chekhov-Eynard ['05]

\[
\left\langle \prod_{i=1}^{h} \text{Tr} \frac{(-1)^{i}}{x_{i} - M} \right\rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_{s}^{2g-2+h} \omega_{h}^{g}(z_{1}, \ldots, z_{h})
\]

Here we need to take care as \(\omega_{1}^{0}(z) = y(x) - V'(x)\) and \(\omega_{2}^{0}(z_{1}, z_{2}) = \frac{B(z_{1}, z_{2})}{dz_{1} dz_{2}} - \frac{1}{(x_{1} - x_{2})^{2}}\).

2. The “wave-function” \(\psi_{\alpha}(x)\) has the WKB expansion (by definition)

\[
\log \psi_{\alpha}(x) \simeq \sum_{g=0, h=1}^{\infty} \frac{g_{s}^{2g-2}(2\alpha)^{h}}{h!} \int_{\infty}^{x} dx_{1}' \cdots \int_{\infty}^{x} dx_{h}' \omega_{h}^{g}(z_{1}', \ldots, z_{h}')
\]

Here we need to take care as \(\omega_{1}^{0}(z) = y(x)\) and \(\omega_{2}^{0}(z_{1}, z_{2}) = \frac{B(z_{1}, z_{2})}{dz_{1} dz_{2}} - \frac{1}{(x_{1} - x_{2})^{2}}\).
Graphical representation of the topological recursion

![Graphical representation](image)

Proposition for the hermitian matrix model

1. The TR gives the perturbative expansion of a correlator of resolvents (by loop equation) Eynard [’04], Chekhov-Eynard [’05]

\[
\left\langle \prod_{i=1}^{h} \operatorname{Tr} \frac{(-1)}{x_i - M} \right\rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_h^g(z_1, \ldots, z_h)
\]

Here we need to take care as \(\omega_1^0(z) = y(x) - V'(x) \) and \(\omega_2^0(z_1, z_2) = \frac{B(z_1, z_2)}{dz_1 dz_2} - \frac{1}{(x_1-x_2)^2} \).

2. The “wave-function” \(\psi_\alpha(x) \) has the WKB expansion (by definition)

\[
\log \psi_\alpha(x) \sim \sum_{g=0, h=1}^{\infty} \frac{g_s^{2g-2} (2\alpha)^h}{h!} \int_{\infty}^{x} dx_1' \cdots \int_{\infty}^{x} dx_h' \omega_h^g(z_1', \ldots, z_h')
\]

Here we need to take care as \(\omega_1^0(z) = y(x) \) and \(\omega_2^0(z_1, z_2) = \frac{B(z_1, z_2)}{dz_1 dz_2} - \frac{1}{(x_1-x_2)^2} \).
Graphical representation of the topological recursion

Proposition for the hermitian matrix model

1. The TR gives the perturbative expansion of a correlator of resolvents (by loop equation) Eynard [’04], Chekhov-Eynard [’05]

\[
\left\langle \prod_{i=1}^{h} \text{Tr} \frac{(-1)}{x_i - M} \right\rangle_{\text{conn}} = \sum_{g=0}^{\infty} g_s^{2g-2+h} \omega_{h}^g(z_1, \ldots, z_h)
\]

Here we need to take care as \(\omega_1^0(z) = y(x) - V’(x) \) and \(\omega_2^0(z_1, z_2) = \frac{B(z_1, z_2)}{dz_1 dz_2} - \frac{1}{(x_1 - x_2)^2} \).

2. The “wave-function” \(\psi_\alpha(x) \) has the WKB expansion (by definition)

\[
\log \psi_\alpha(x) \approx \sum_{g=0, h=1}^{\infty} \frac{g_s^{2g-2}(2\alpha)^h}{h!} \int_{\infty}^{x} dx'_1 \cdots \int_{\infty}^{x} dx'_h \omega_{h}^g(z'_1, \ldots, z'_h)
\]

Here we need to take care as \(\omega_1^0(z) = y(x) \) and \(\omega_2^0(z_1, z_2) = \frac{B(z_1, z_2)}{dz_1 dz_2} - \frac{1}{(x_1 - x_2)^2} \).
Definition

Beyond the matrix model, for a given curve Σ using the TR we define a wave-function $\psi_\alpha(x)$ by

$$\log \psi_\alpha(x) = \sum_{g=0, h=1}^{\infty} \frac{g_s^{2g-2}(2\alpha)^h}{h!} \int_{a^*}^{x} dx'_1 \cdots \int_{a^*}^{x} dx'_h \omega_h^g(z'_1, \ldots, z'_h)$$

where a^* is a reference point.

Conjecture

For an appropriately chosen a^* the wave-function $\psi_\alpha(x)$ associated with a curve Σ satisfies a quantum curve equation

$$\hat{A}^\alpha(\hat{x}, \hat{y})\psi_\alpha(x) = 0$$

for the discrete value of α corresponding to the Virasoro singular vectors, and by the classical limit $g_s \to 0$ $\hat{A}^\alpha(\hat{x}, \hat{y})$ yields a multiple copy of Σ.
Definition

Beyond the matrix model, for a given curve Σ using the TR we define a wave-function $\psi_\alpha(x)$ by

$$
\log \psi_\alpha(x) = \sum_{g=0, h=1}^{\infty} \frac{g_s^{2g-2}(2\alpha)^h}{h!} \int_{a^*}^{x} dx'_1 \cdots \int_{a^*}^{x} dx'_h \omega^g_h(z'_1, \ldots, z'_h)
$$

where a^* is a reference point.

Conjecture

For an appropriately chosen a^* the wave-function $\psi_\alpha(x)$ associated with a curve Σ satisfies a quantum curve equation

$$
\hat{A}^\alpha(\hat{x}, \hat{y}) \psi_\alpha(x) = 0
$$

for the discrete value of α corresponding to the Virasoro singular vectors, and by the classical limit $g_s \to 0 \hat{A}^\alpha(\hat{x}, \hat{y})$ yields a multiple copy of Σ.
For the level 2 (the most non-trivial lowest level) with \(\alpha = \pm g_s/2 \) we can find many works to construct quantum curves using TR.

Recently by Bouchard-Eynard [1606.04498], for a class of genus 0 curves which also allow multi-ramifications, it was proved that the level 2 quantum curves (ordinary differential equations!) are explicitly constructible via (a generalized) TR.

It is known that for higher genus curves the definition of \(\psi_{\alpha = \pm g_s/2}(x) \) by TR should be modified by some “non-perturbative corrections”. (e.g. Bouchard-Chidambaram-Dauphinee [1610.00225])

In the context of isomonodromic integrable system, \(\psi_{\alpha = \pm g_s/2}(x) \) is considered as a Baker-Akhiezer function which obeys a differential equation. (e.g. Eynard-Orantin [0702045])

In the matrix model perspective we can also find the “refined version” of TR, and it leads to a double-quantization of algebraic curves.
For the level 2 (the most non-trivial lowest level) with \(\alpha = \pm g_s/2 \) we can find many works to construct quantum curves using TR.

Recently by Bouchard-Eynard [1606.04498], for a class of genus 0 curves which also allow multi-ramifications, it was proved that the level 2 quantum curves (ordinary differential equations!) are explicitly constructible via (a generalized) TR.

It is known that for higher genus curves the definition of \(\Psi_{\alpha = \pm g_s/2}(x) \) by TR should be modified by some “non-perturbative corrections”. (e.g. Bouchard-Chidambaram-Dauphinee [1610.00225])

In the context of isomonodromic integrable system, \(\Psi_{\alpha = \pm g_s/2}(x) \) is considered as a Baker-Akhiezer function which obeys a differential equation. (e.g. Eynard-Orantin [0702045])

In the matrix model perspective we can also find the “refined version” of TR, and it leads to a double-quantization of algebraic curves.
For the level 2 (the most non-trivial lowest level) with $\alpha = \pm g_s/2$ we can find many works to construct quantum curves using TR.

Recently by Bouchard-Eynard [1606.04498], for a class of genus 0 curves which also allow multi-ramifications, it was proved that the level 2 quantum curves (ordinary differential equations!) are explicitly constructible via (a generalized) TR.

It is known that for higher genus curves the definition of $\Psi_{\alpha=\pm g_s/2}(x)$ by TR should be modified by some “non-perturbative corrections”. (e.g. Bouchard-Chidambaram-Dauphinee [1610.00225])

In the context of isomonodromic integrable system, $\Psi_{\alpha=\pm g_s/2}(x)$ is considered as a Baker-Akhiezer function which obeys a differential equation. (e.g. Eynard-Orantin [0702045])

In the matrix model perspective we can also find the “refined version” of TR, and it leads to a double-quantization of algebraic curves.
For the level 2 (the most non-trivial lowest level) with $\alpha = \pm g_s/2$ we can find many works to construct quantum curves using TR.

Recently by Bouchard-Eynard [1606.04498], for a class of genus 0 curves which also allow multi-ramifications, it was proved that the level 2 quantum curves (ordinary differential equations!) are explicitly constructible via (a generalized) TR.

It is known that for higher genus curves the definition of $\Psi_{\alpha=\pm g_s/2}(x)$ by TR should be modified by some “non-perturbative corrections”. (e.g. Bouchard-Chidambaram-Dauphinee [1610.00225])

In the context of isomonodromic integrable system, $\Psi_{\alpha=\pm g_s/2}(x)$ is considered as a Baker-Akhiezer function which obeys a differential equation. (e.g. Eynard-Orantin [0702045])

In the matrix model perspective we can also find the “refined version” of TR, and it leads to a double-quantization of algebraic curves.
For the level 2 (the most non-trivial lowest level) with $\alpha = \pm g_s/2$ we can find many works to construct quantum curves using TR.

Recently by Bouchard-Eynard [1606.04498], for a class of genus 0 curves which also allow multi-ramifications, it was proved that the level 2 quantum curves (ordinary differential equations!) are explicitly constructible via (a generalized) TR.

It is known that for higher genus curves the definition of $\Psi_{\alpha=\pm g_s/2}(x)$ by TR should be modified by some “non-perturbative corrections”. (e.g. Bouchard-Chidambaram-Dauphinee [1610.00225])

In the context of isomonodromic integrable system, $\Psi_{\alpha=\pm g_s/2}(x)$ is considered as a Baker-Akhiezer function which obeys a differential equation. (e.g. Eynard-Orantin [0702045])

In the matrix model perspective we can also find the “refined version” of TR, and it leads to a double-quantization of algebraic curves.
Contents

1. Introduction (3 pages)

2. CFT approach to hermitian matrix model (7 pages)

3. Quantum curves as singular vectors (5 pages)

4. Reconstructing quantum curves via TR (5 pages)

5. Conclusion (1 page)
5. Conclusion

Construction of

Quantum Curves $\leftrightarrow^{1:1}$ Virasoro Singular vectors

Reconstruction of quantum curves by topological recursion (TR)

Construction of (similarly possible)

NS Super Quantum Curves $\leftrightarrow^{1:1}$ NS Super Virasoro Singular vectors

Outlook

Formulation of “refined version” of TR beyond matrix models?

Formulation of “supersymmetric version” of TR?

Quantum curves with W-algebraic symmetry? (← ADE type matrix models).....
5. Conclusion

Conclusion

- Construction of

 Quantum Curves $\leftrightarrow_{1:1}$ Virasoro Singular vectors

- Reconstruction of quantum curves by topological recursion (TR)

 Construction of (similarly possible)

 NS Super Quantum Curves $\leftrightarrow_{1:1}$ NS Super Virasoro Singular vectors

Outlook

- Formulation of “refined version” of TR beyond matrix models?

- Formulation of “supersymmetric version” of TR?

- Quantum curves with W-algebraic symmetry? (\leftarrow ADE type matrix models).....
5. Conclusion

Conclusion

- Construction of

 Quantum Curves $\leftrightarrow^{1:1}$ Virasoro Singular vectors

- Reconstruction of quantum curves by topological recursion (TR)

- Construction of (similarly possible)

 NS Super Quantum Curves $\leftrightarrow^{1:1}$ NS Super Virasoro Singular vectors

Outlook

- Formulation of “refined version” of TR beyond matrix models?

- Formulation of “supersymmetric version” of TR?

- Quantum curves with W-algebraic symmetry? (\leftarrow ADE type matrix models).....
5. Conclusion

Conclusion

• Construction of

Quantum Curves $\leftrightarrow_{1:1}$ Virasoro Singular vectors

• Reconstruction of quantum curves by topological recursion (TR)

• Construction of (similarly possible)

NS Super Quantum Curves $\leftrightarrow_{1:1}$ NS Super Virasoro Singular vectors

Outlook

• Formulation of “refined version” of TR beyond matrix models?

• Formulation of “supersymmetric version” of TR?

• Quantum curves with W-algebraic symmetry? (\leftarrow ADE type matrix models).....
5. Conclusion

Conclusion

- Construction of quantum curves
 \[\text{Quantum Curves} \overset{1:1}{\longleftrightarrow} \text{Virasoro Singular vectors} \]

- Reconstruction of quantum curves by topological recursion (TR)

- Construction of (similarly possible)
 \[\text{NS Super Quantum Curves} \overset{1:1}{\longleftrightarrow} \text{NS Super Virasoro Singular vectors} \]

Outlook

- Formulation of “refined version” of TR beyond matrix models?

- Formulation of “supersymmetric version” of TR?

- Quantum curves with W-algebraic symmetry? (\[\leftarrow\] ADE type matrix models)....
5. Conclusion

Conclusion

- Construction of

 Quantum Curves $\leftrightarrow^{1:1}$ Virasoro Singular vectors

- Reconstruction of quantum curves by topological recursion (TR)

- Construction of (similarly possible)

 NS Super Quantum Curves $\leftrightarrow^{1:1}$ NS Super Virasoro Singular vectors

Outlook

- Formulation of “refined version” of TR beyond matrix models?

- Formulation of “supersymmetric version” of TR?

- Quantum curves with W-algebraic symmetry? (← ADE type matrix models).....