
Hypergeometric motives and an unusual

application of the Guinand-Weil-Mestre

explicit formula

David P. Roberts
University of Minnesota, Morris

January 17, 2017



Sections of today’s talk

1. Hypergeometric motives, illustrated by

M14 = H
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A key feature is that there is a decomposition M14 = M8 ⊕M6.

2. A sketch of the Guinand-Weil-Mestre explicit formula and how it
gives lower bounds on conductors for general motives.

3. Applying the explicit formula to understand the factorization
L(M14, s) = L(M8, s)L(M6, s).

Note: After initializing the variable x through
R<x>:=PolynomialRing(Integers());, all brown commands can
by typed directly into Magma. To speed up (necessary for the free
online calculator), reduce precision from 10 to 5.



1. Hypergeometric motives. Why study them?

Many people here are studying aspects of hypergeometric motives

M = H(α1, . . . , αd ; β1, . . . , βd ; t).

An attractive feature is that for certain (α, β) these are classical
objects, coming from number fields, Artin representations, genus one
curves, genus two curves, K3 surfaces, etc.

For general (α, β), these motives come from more exotic algebraic
varieties. However source varieties can often be subjugated to a
background role, as many standard questions are answerable directly
and uniformly in terms of the parameters (α, β, t).

A goal of an ongoing joint project with Fernando Rodriguez Villegas
and Mark Watkins is to use hypergeometric motives to illustrate the
general theory of motives.



Hypergeometric L-functions

In particular, Magma currently goes far towards the goal of allowing
one to input a rational (α, β, t) and receive its complete L-function

Λ(H(α, β, t), s) = N s/2L∞(s)
∏
p

1

fp(p−s)
.

This L-function is computed factor-by-factor. Different techniques,
due to a wide range of people, are relevant for different factors.

Like all self-dual motivic L-functions, these hypergeometric motivic
L-functions conjecturally satisfy

Λ(H(α, β, t), s) = ±Λ(H(α, β, t),w + 1− s),

with w being the weight of H(α, β, t).



The Magma package illustrated by today’s example

Getting Magma’s guess at the L-function:
H:=HypergeometricData(
[1/2: i in [1..16]], [0: i in [1..16]]);

L := LSeries(H,1:Precision:=10);

Magma warns you that its guesses at 2 may be wrong, but that is not
a concern for us yet.

HodgeStructure(L:PHV); returns
[1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1]

This gives the list (h15,0, h14,1, . . . , h1,14, h0,15). In particular this
motive can only appear in the cohomology of varieties of dimension
≥ 15. In this particular case, the Hodge vector can easily be
calculated mentally!



A decomposition, f3(x), and Hodge numbers

In general, if d is even and the αi ’s and the βj ’s are obtained from
one another by adding 1/2, then H(α, β, 1) decomposes as a sum of
two motives. In our case, we know a priori that M14 = M8 ⊕M6.

Factorization(EulerFactor(L,3));
then tells us (in two seconds!) that f3(x) =

(1− 268 · 3x + 204193 · 34x2 − 1001800 · 39x3 + 204193 · 319x4

−268 · 331x5 + 345x6)

(1 + 2992 · x + 39116 · 34x2 − 7596496 · 36x3 − 203836426 · 312x4

−7596496 · 321x5 + 39116 · 334x6 + 2992 · 345x7 + 360x8)

Thus, M6 and M8 are both irreducible. Moreover Newton-over-Hodge
forces the Hodge vector of M14 to decompose nicely:

M6 : (0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0) =: h6

M8 : (1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1) =: h8.



f5(x) and motivic Galois groups

Factorization(EulerFactor(L,5)); takes 30 seconds and tells
us that f5(x) =

(1 + 1614 · 53x + 28284579 · 54x2 + 1394686516 · 59x3 + 28284579 · 519x4

+1614 · 533x5 + 545x6)

(1− 41208 · x − 44999364 · 53x2 − 22376708712 · 56x3 + 3926679014806 · 512x4

−22376708712 · 521x5 − 44999364 · 533x6 − 41208 · 545x7 + 560x8)

The two factors define completely different number fields from those
of f3(x) as

Gal(f3a(x)f5a(x)) = W3 ×W3,

Gal(f3b(x)f5b(x)) = W4 ×W4.

This fact implies that the Mk each have motivic Galois group as large
as possible, namely GSp2k .



Behavior at 2

EulerFactor(L,2); returns 1, telling us that Magma is guessing a
trivial Euler factor at 2.

Conductor(L); returns 16384, which we recognize as 214.

Are these right? CFENew(L); takes four minutes and returns
0.05909621133, so no!

What are the right factors? After some experimentation we redefine

L := LSeries(H,1:Precision:=10, BadPrimes:=[<2,15,1>]);

Then CFENew(L) takes eight minutes and returns 0.0000000000, so
we proceed under the assumption yes! We will likewise trust similar
analytic computations in the sequel.



Analytic computations

Sign(L); instantaneously returns 1, so L has even analytic rank.

Evaluate(L,8); takes four seconds and returns 0.000000000, so L
has analytic rank > 0.

Evaluate(L,8:Derivative:=2); takes fourteen seconds and
returns 7.851654518, so L has analytic rank 2.

The Hardy Z -function is a rescaled version of L(M , 8 + ti). On [0, 7]
it graphs out to
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The double zero at t = 0 is visible. The next three roots are

γ1 ≈ 1.93195000805, γ2 ≈ 3.00559765, γ3 ≈ 3.61679.



Questions about the factorization

L(M , s) = L(M6, s)L(M8, s)

Our main focus:

Q1. Since f2(x) = 1, there are only two possibilities for
(cond(M6), cond(M8)), namely (26, 29) or (27, 28). Which is it?

Q2. There are only three possibilities for (rank(M6), rank(M8)),
namely (2, 0), (1, 1), or (0, 2). Which one is correct?

Closely related questions:

• Are the factorizations of f7(x), f11(x), . . . obtainable?

• In the factorization Z (t) = Z6(t)Z8(t), which γj are roots of Z6(t)
and which are roots of Z8(t)?



2. Quick sketch of the GWM explicit formula

In this section, we sketch the Guinand-Weil-Mestre explicit formula as
it appears in Mestre’s 1988 Compositio paper Formules explicites et
minorations de conducteurs de variétés algébriques.

Throughout, we assume the Riemann hypothesis for all L-functions.
Without this assumption, the final lower bounds obtained are
considerably weaker.

Mestre emphasizes the Hodge vectors (g , g) for abelian varieties and
(1, 0, . . . , 0, 1) for modular forms. We emphasize here its applicability
to general Hodge vectors h, although restrict to odd weight motives
for simplicity.

We use the analytic normalization where the functional equation has
the form s 7→ 1− s. In this kill-Tate-twists spirit, we write hp−q

instead of hp,q.



The formula

For any odd weight motive M , and any allowed test function F , the
Hodge vector h, the conductor N , the analytic rank r , the Frobenius
traces cpe = Tr(frep|M), and the critical 1/2 + γk i in the upper half
plane are related by

logN = 2πr F̂ (0) + 4π
∑
k

F̂ (γk) + 2

∫ ∞
0

F̂ (t)
∑
j

hjEj(t)dt

+2
∑
p

∑
e

cpe
log p

pe/2
F (

log p

2π
).

Today we are thinking of this explicit formula as an infinite family of
exact formulas for logN which can be used to get lower bounds on
logN . The Ej(t) are built in a simple way from the digamma
function Γ′(t)/Γ(t).



The Fourier transform and test functions

We require F (x) to be even, compactly supported with F (0) = 1,
and have two continuous derivatives. Its Fourier transform is then

F̂ (t) =

∫ ∞
−∞

F (x)e−2πitxdx .

Among many standard properties is the scaling property: the Fourier
transform of F (x/z) is zF̂ (zt).

In this talk, we used only scaled versions of the Odlyzko function:

FOd(x) = χ[−1,1]

(
(1− |x |) cos(πx) +

sin |πx |
π

)
, (in C 2 but not C 3).

Its Fourier transform is

F̂Od(t) =
8 cos2(πt)

π2(1− 4t2)2
(quartic decay at ∞).

For brevity, we write Fz(x) = FOd(2πx/ log z).



Plots of typical test functions

One would like both F and F̂ to very localized, but this is impossible
because of the uncertainty principle. F2 and F13:
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The pair (F2, F̂2) can be used to give lower bounds for conductors of
arbitrary motives with given Hodge vectors. For example for h6 and
h8 these lower bounds are 1.96 and 2.91.



3. Understanding L(M14, s) = L(M6, s)L(M8, s)

well enough to answer Q1 and Q2

We have tons of cpe for our motive M14. However, to get the
decomposition cpe = c6pe + c8pe , even for just e = 1, we need to factor
all of fp(x). The next two (8 minutes and 2.5 hours):

F7(x) =
(
1 + 248232 · 7x + 36864645 · 74x2 − 12114440144 · 79x3 + 36864645 · 719x4+

248232 · 731x5 + 745x6
)
·(

1 + 667104x + 92084011804 · 72x2 + 107704347009888 · 76x3 + 216772203079210 · 713x4

+107704347009888 · 721x5 + 92084011804 · 732x6 + 667104 · 745x7 + 760x8
)

F11(x) =
(
1 − 883812 · 11x + 86399921193 · 114x2 − 113266524342552 · 119x3 + 86399921193 · 1119x4

−883812 · 1131x5 + 1145x6
)

=
(
1 + 34438544x + 7563161639884 · 112x2 − 5931371880123984 · 117x3 + 1164681420132811670 · 1112x4

−5931371880123984 · 1122x5 + 7563161639884 · 1132x6 + 34438544 · 1145x7 + 1160x8
)



Applying the explicit formula to M6 and M8

Plugging into the explicit formula using (F13, F̂13), dividing all terms
by log 2 for greater clarity, and keeping track of partial sums:

(Tends to (Tends to

6 or 7) 8 or 9)

term6 total6 term8 total8 Comments

h 3.11324 3.11324 4.86171 4.86171

3 0.17011 3.28335 −0.63306 4.22866

5 −0.35472 2.92864 0.07245 4.30111 from the successively

7 −0.07386 2.85477 −0.02836 4.27275 harder factorizations

9 −0.02269 2.83209 0.00183 4.27458 of Frobenius

11 0.00028 2.83237 −0.00101 4.27357 polynomials fp(x)

r 2.99946 5.83183 2.99946 7.27303 Forced! A2 = (1, 1)

γ1 5.83183 1.68061 8.95364 Forced! A1 = (26, 29)

γ2 0.13610 5.96793 8.95364 Forced!
...

...
...

...
...

Total 6.00000 9.00000


