Many-body strategies for multi-qubit gates

Kareljan Schoutens

MATRIX workshop, July 13 2017
quantum circuits for quantum algorithms typically need **multi-qubit gates**: unitaries acting on more than 2 qubits

multi-qubit gates can be built from 1-qubit and 2-qubit gates, but such constructions can be cumbersome

we realize N-qubit gates via driven dynamics of N **coupled qubits**

main mechanism is resonant coupling of eigenstates of **Krawtchouk qubit chain**
outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain
outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain
quantum algorithms

For specific problems quantum algorithms can be made to outperform classical computers by cunningly combining quantum parallelism with interference.
Grover search algorithm:
finding tagged element in size-N database in $O(\sqrt{N})$ steps
quantum circuit

3-step implementation of quantum algorithm on N-qubit quantum register

- **initialization**
- **unitary evolution** via quantum gates
- read-out through **measurement**
quantum gates

• 1-qubit gates: X, Z, H, ...

 \[
 X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
 \]

• 2-qubit gates: CNOT, $XX(\theta)$, SWAP, ...

 CNOT: $|A\rangle \quad |A\rangle$
 $|B\rangle \quad |B \oplus A\rangle$
universal gate sets

- **strong universality**
 all N-qubit unitaries can be built from CNOTs plus sufficiently many 1-qubit gates

- **weak universality**
 all N-qubit unitaries can be approximated to arbitrary precision using CNOTs plus suitable (finite) set of 1-qubit gates
native gates and quantum compiling

• native gate libraries
 the 1-qubit and 2-qubit interactions that are natural for a given qubit platform lead to a `native gate library'.

• quantum compiling
 expressing universal gates in native gates

example: native gate library for trapped ions
 - all 1-qubit rotations $R_\alpha(\theta)$
 - 2-qubit gates $X_iX_j(\theta)$
state of the art

quantum hardware has progressed to the point that programmable qubit platforms with up to some 20 qubits are available → real-world testing of few-qubit quantum algorithms!
IBM Q
`Quantum Experience`

Quantum teleportation: transferring qubit Q1 to Q3 at distant location

Figure C.3: The results of 8192 runs of the quantum circuit teleporting the state $|0\rangle$ shown in figure C.1.

Bachelor thesis Jorran de Wit (2016)
Grover search: finding tagged element in size-N database in $O(\sqrt{N})$ steps
3-qubit Grover search on Quirk:
finds 1 out of 8 elements in two steps

Oracle tagging the element $|101\rangle$

Initializing the qubits to $|0\rangle$

read-out gives tagged element $|101\rangle$ with 94.5% chance
multi-qubit gates

- quantum algorithms such as Grover search use gates like

 CCNOT (Toffoli), CCZ, ..., C^{N-1}NOT, $C^{N-1}Z$, etc

- building these from 1-qubit and 2-qubit gates requires lengthy circuits
multi-qubit gates

Toffoli-3 using standard Clifford + T gate library
multi-qubit gates

Toffoli-3 using XX/R gate library
multi-qubit gates

Toffoli-4 using XX/R gate library
outline

- background and motivation

- many-body strategies for multi-qubit gates

- quantum control on the Krawtchouk chain
Many-body strategies for multi-qubit gates - quantum control through Krawtchouk chain dynamics

Koen Groenland1,2,3 and Kareljan Schoutens1,2

1QuSoft, Science Park 123, 1098 XG Amsterdam, the Netherlands
2Inst. of Physics, Univ. of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
3CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
(Dated: 17 July 2017)

We propose a strategy for engineering multi-qubit quantum gates. As a first step, it employs an \textit{eigengate} to map states in the computational basis to eigenstates of a suitable many-body Hamiltonian. The second step employs resonant driving to enforce a transition between a single pair of eigenstates, leaving all others unchanged. The procedure is completed by mapping back to the computational basis. We demonstrate the strategy for the case of a linear array with an even number N of qubits, with specific $XX + YY$ couplings between nearest neighbors. For this so-called Krawtchouk chain, a 2-body driving term leads to the iSWAP$_N$ gate, which can be reworked to an iSWAP$_2$ gate with $N - 2$ controls or, using a single auxiliary qubit, to an $(N - 1)$-Toffoli gate.

many-body strategy

idea
couple N qubits, leading to a many-body spectrum

proposed protocol
• apply quantum circuit for *eigengate* to produce eigenstates from states in computational basis
• use resonant driving to selectively couple and interchange 2 out of 2^N eigenstates
• apply eigengate to return to computational basis
many-body strategy ...

protocol requires

1. commensurate many-body spectrum
many-body strategy ...

protocol requires

2. eigengate producing many-body eigenstates

\[
U_K |011\rangle \\
\begin{array}{ccc}
\uparrow & \downarrow \\
|000\rangle & |010\rangle & |011\rangle \\
\end{array} \\
U_K |100\rangle \\
\begin{array}{ccc}
\uparrow & \downarrow \\
|100\rangle & |101\rangle & |111\rangle \\
\end{array} \\
U_K |111\rangle
many-body strategy...

protocol requires

3. driving operator H_D

\[
\begin{align*}
 &\uparrow\uparrow & &\downarrow & &\downarrow \\
 & & & & & \\
 |011\rangle & & & & |111\rangle \\
 \Rightarrow & & & & \\
 |100\rangle & & & & \\
\end{align*}
\]
... for multi-qubit gates

\[\text{iSWAP}_4 \text{ and } \text{iSWAP}_6 \text{ gates realized through many-body protocol} \]
outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk chain
2-qubit XX+YY coupling

\[H^{(2)} = -\frac{J}{2} (X_1 X_2 + Y_1 Y_2) \]

- \(t=\pi/J \) pulse of \(H^{(2)} \) gives gate \(\text{iSWAP}_2 \),
 \[|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow i|10\rangle, \quad |10\rangle \rightarrow i|01\rangle, \quad |11\rangle \rightarrow |11\rangle \]

- combining \(\text{iSWAP}_2 \) with 1-qubit gates gives gate CNS, which is CNOT followed by SWAP
Krawtchouk chain \((N=n+1)\)

\[
H^K = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[X_{x}X_{x+1} + Y_{x}Y_{x+1} \right]
\]

- 1-body spectrum

 \[
 \lambda_k = J(k - \frac{N-1}{2}), \quad k = 0, 1, \ldots, n
 \]

- eigenstates

\[
\ket{k}_H = \sum_{x=0}^{n} \phi^{(n)}_{k,x} \ket{x} \quad \phi^{(n)}_{k,x} = K^{(n)}_{k,x} \sqrt{\binom{n}{x}} \binom{n}{k}^{2n}
\]

with \(K^{(n)}\) the \textbf{Krawtchouk polynomials}

\[
K^{(n)}_{k,x} = \sum_{j=0}^{k} (-1)^j \binom{x}{j} \binom{n-x}{k-j}
\]
Krawtchouk chain dynamics for Krawtchouk couplings known to be special

time evolution over time $t = \pi/(2J)$ gives Perfect State Transfer (PST) for state with single `particle’ or `spin-flip’

animation: Van der Jeugt

Christandl-Datta-Ekert-Landahl 2004
Krawtchouk chain (\(N=n+1\))

\[
H^K = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[X_x X_{x+1} + Y_x Y_{x+1} \right]
\]

- **important clue:** mapping to free fermions through Jordan-Wigner transformation

\[
\frac{1}{2} \left(X_j + iY_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j \quad \frac{1}{2} \left(X_j - iY_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j^*
\]

- many-body eigenstates built from fermionic eigenmodes

\[
c_k^+ = \sum_{j=0}^{n} \phi_{k,j}^{(n)} f_j^*
\]
Krawtchouk chain \((N=4)\)
Krawtchouk eigengate

- exact *eigengate* for Krawtchouk chain eigenstates

\[U_K = \exp \left(-i \frac{\pi}{J} \frac{H^K + H^Z}{\sqrt{2}} \right) \]

with

\[H^Z = \frac{J}{2} \sum_{x=0}^{n} (x - \frac{n}{2})(I - Z)_x \]

- important clue: Krawtchouk operators \(L_X = H^K \) and \(L_Z = H^Z \) satisfy angular momentum commutation relations
- use this to prove that

\[U_K H^Z = H^K U_K \quad \Rightarrow \quad U_K \left| s \right\rangle = \left| s \right\rangle_{H^K} \]
Krawtchouk eigengate, II

- equivalent expression

\[U_k = \exp \left(-i \frac{\pi}{2J} H^Z \right) \exp \left(-i \frac{\pi}{2J} H^K \right) \exp \left(-i \frac{\pi}{2J} H^Z \right) \]

- action on 1-particle states implies

\[\sum_{k=0}^{n} (-i)^k K_{x,k}^{(n)} K_{k,y}^{(n)} = i^{x+y-n/2} 2^{n/2} K_{x,y}^{(n)} \]

(agrees with Meixner’s expansion formula)
Multi-qubit gate: iSWAP_N

- idea: for N even, driving term $H_D(t)$ that resonantly couples the
 highest energy state $U_K|00...01...11>$
 to the
 lowest energy state $U_K|11...10...00>$

- need to annihilate the $N/2$ fermionic modes with $\lambda_k>0$ and
 create the $N/2$ modes with $\lambda_k<0$

- can be done by the following 2-qubit operator

\[
\sigma_j^- \sigma_{j+N/2}^+ = f_j^+ [1 - 2 f_{j+1} f_{j+1}] ... [1 - 2 f_{j+N/2-1} f_{j+N/2-1}] f_{j+N/2}
\]
Multi-qubit gate: iSWAP_N

- for $N=6$: matrix element

$$\langle 111000 | U_K (\sigma_1^+ \sigma_4^- - \sigma_4^+ \sigma_1^-) U_K | 000111 \rangle = \frac{5}{32}$$

- resonant driving term

$$H_D^{(1,-)}(t) = i J_D \cos[9Jt] [\sigma_1^+ \sigma_4^- - \sigma_4^+ \sigma_1^-]$$

- conditions on driving time τ_D

$$\tau_D (5J_D / 64) = \pi / 2 \quad \tau_D = M (2\pi / J)$$

so that (in leading order) $|000111\rangle$ and $|111000\rangle$ are interchanged and all dynamical phases return to 1
many-body protocol for iSWAP_6

$|000111\rangle \rightarrow i|111000\rangle$, $|111000\rangle \rightarrow i|000111\rangle$
resonant driving – fidelity

\[H_D(t) = \begin{pmatrix} E_1 & d e^{i\omega t} \\ d e^{-i\omega t} & E_2 \end{pmatrix} \]

\[\Delta = \omega - (E_2 - E_1) \]

on resonance: \[\Delta = 0 \]

\[v_1(t) = e^{-iE_1 t} \cos(d t), \quad v_2(t) = -i e^{-iE_2 t} \sin(d t) \]
resonant driving – fidelity

\[H_D(t) = \begin{pmatrix} E_1 & d e^{i\omega t} \\ d e^{-i\omega t} & E_2 \end{pmatrix} \quad \Delta = \omega - (E_2 - E_1) \]

off resonance: \(\Delta \neq 0 \quad d \ll \Delta \)

\[dt = \frac{\pi}{2} \quad t = 2\pi M \quad \Delta, (E_2 - E_1) \text{ integer} \]

\[U_D(t) = \begin{pmatrix} \exp(-\frac{\pi i}{2} \frac{d}{\Delta}) & -\pi i \frac{d}{\Delta}^2 \\ -\pi i \frac{d}{\Delta}^2 & \exp(\frac{\pi i}{2} \frac{d}{\Delta}) \end{pmatrix} \quad \text{Er} = 1 - \frac{1}{2} |Tr[U_D]| \]

\[\approx \frac{1}{2} \left(\frac{\pi}{2} \right)^2 \left(\frac{d}{\Delta} \right)^2 \propto \frac{1}{t^2} \]
gate fidelities for $iSWAP_4$ and $iSWAP_6$

gate fidelity enhanced by slowing down the resonant driving
multi-qubit gates ...

Toffoli-5 using double strength $i\text{SWAP}_6$ gate called PHASE_6
multi-qubit gates...

\[
iSWAP_2 \quad \text{with 4 controls using } iSWAP_6 \text{ gate}
\]
done & to be done

✓ • exact eigengates giving fast quantum
circuits for Krawtchouk eigenstates
✓ • resonant driving targeting 2 out of 2^N states
✓ • $i\text{SWAP}_N$ reworked into multi-qubit gate with
 $N-1$ or $N-2$ controls.

• improve the resonant driving part
 (pulse shaping, correct for Lamb shifts)
• sensitivity to noise?
• window in N where protocol can be realistic?

• other incarnations of the strategy