Quenches in quantum field theory

Gábor Takács

Department of Theoretical Physics
Budapest University of Technology and Economics
MTA-BME “Momentum” Statistical Field Theory Research Group

Collaborators:
M. Collura, G. Mussardo, S. Sotiriadis
D.X. Horváth, M. Kormos, M. Mestyán and T. Rakovszky

Talk presented at workshop on
“Integrability in Low-Dimensional Quantum Systems”
MATRIX Mathematical Research Institute
Melbourne/Creswick, 26 June - 21 July 2017
Outline

1. Introduction
2. Integrable quenches and overlaps
3. Truncated Hamiltonian approach
4. Overlaps from TCSA and why it all works
5. Summary
Outline

1. Introduction
2. Integrable quenches and overlaps
3. Truncated Hamiltonian approach
4. Overlaps from TCSA and why it all works
5. Summary
What is a quantum quench?

\[H_0 \rightarrow H \]

\[t=0 \]

Start evolution from ground state \(|\Psi(0)\rangle \) of \(H_0 \)

\[|\Psi(0)\rangle = \sum_n C_n |n\rangle \]

\[H|n\rangle = E_n |n\rangle \]

\[\langle \Psi(t)|O|\Psi(t)\rangle = \sum_{n,m} C_n^* C_m e^{-i(E_m - E_n)t} \langle n|O|m\rangle \]

If it approaches a stationary state

\[\langle \Psi(t)|O|\Psi(t)\rangle \rightarrow \text{Tr} \rho_D O \]

\[\rho_D = \sum_n |C_n|^2 |n\rangle \langle n| \quad \text{diagonal ensemble} \]

Global quantum quench:

\(H_0 \) and \(H \) are local, translationally invariant Hamiltonians.
Introduction

Why study quantum quenches?

1. Do quantum systems equilibrate and under what conditions?
 \[\rho_D \sim \frac{1}{Z} \begin{cases} e^{-\beta H} & H \text{ non-integrable} \\ e^{-\sum_i \beta_i Q_i} & H \text{ integrable} \end{cases} \]

What is the nature of steady state (Gibbs/generalised Gibbs)?

2. How does relaxation happen?
 - Weak/strong thermalisation
 - Relaxation time-scales

3. Universal features of out-equilibrium time-evolution?
 - e.g. light-cone evolution of entanglement and correlations
 Lieb-Robinson bounds

4. Consequences of integrability breaking
 - quantum equivalent of KAM theorem
 - prethermalisation
 - nature of cross-over between integrable and non-integrable behaviour
QFT: universal description of long-distance behaviour
⇒ natural: quenches in statistical systems \(\rightarrow\) quenches in QFT
but they are also interesting in their own right.

1. Issue of scales
 - sudden quench: short time scale \(\tau\)
 - QFT: high energy cut-off \(\Lambda\)

 Validity: naively only for slow quenches (ramps) \(\tau \gg \Lambda^{-1}\)

2. Integrable quenches: what does it mean at all for a quench to be integrable?

3. Integrability breaking
 - prethermalisation?
 - perturbative/non-perturbative phenomena?
Experimental motivation

Ultracold gas of $^{87}_{37}$Rb atoms, confined to 2x1D: $\omega_\perp/\omega_\parallel \sim 10^3$

Relative phase $\varphi(x)$ and particle density difference $\delta \rho(x)$ described by sine-Gordon QFT:

$$H_{SG} = \int dx \left[g \delta \rho^2 + \frac{\hbar^2 n_{1D}}{4m} (\partial_x \varphi)^2 - 2\hbar J n_{1D} \cos \varphi \right]$$
Outline

1. Introduction
2. Integrable quenches and overlaps
3. Truncated Hamiltonian approach
4. Overlaps from TCSA and why it all works
5. Summary
What is an integrable quench in QFT?

Evolution after a quantum quench with post-quench Hamiltonian H

$$|\Psi(0)\rangle = \sum_n C_n |n\rangle$$

$$H|n\rangle = E_n |n\rangle$$

$$\langle \Psi(t)|O|\Psi(t)\rangle = \sum_{n,m} C_{n}^{*} C_{m} e^{-i(E_{m} - E_{n})t} \langle n|O|m\rangle$$

C_{n}: overlaps.

What is an integrable quench? [Delfino, 2014; Schuricht 2015]

- H is integrable
- But maybe something must also be true for the C_n?

Examine $|\Psi(0)\rangle$ in massive QFT \rightarrow basis of asymptotic states:

$$H|\theta_1, \ldots, \theta_n\rangle = \left(\sum_{k=1}^{n} m \cosh \theta_k \right) |\theta_1, \ldots, \theta_n\rangle$$

$$|\Psi(0)\rangle = \sum_{N=0}^{\infty} \frac{1}{N!} \int \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_N}{2\pi} K_{N}(\theta_1, \ldots, \theta_N) |\theta_1, \ldots, \theta_n\rangle$$
What is an integrable quench in QFT?

\[H |\theta_1, \ldots, \theta_n\rangle = \left(\sum_{k=1}^{n} m \cosh \theta_k \right) |\theta_1, \ldots, \theta_n\rangle \]

\[|\psi(0)\rangle = \sum_{N=0}^{\infty} \frac{1}{N!} \int \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_N}{2\pi} K_N(\theta_1, \ldots, \theta_N) |\theta_1, \ldots, \theta_n\rangle \]

\[= \sum_{N=0}^{\infty} \frac{1}{N!} \int \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_N}{2\pi} K_N(\theta_1, \ldots, \theta_N) \hat{Z}^\dagger(\theta_1) \cdots \hat{Z}^\dagger(\theta_N) |0\rangle \]

- What should be true for this state for the quench to be "integrable"?
- Can we determine the \(K_N \)?

In analogy with integrable boundaries

[\text{Ghoshal & Zamolodchikov, 1993}]

: a quench is integrable whenever \(H \) is integrable and

\[|\psi(0)\rangle = \mathcal{N} \exp \left(\int_{0}^{\infty} d\theta K(\theta) \hat{Z}^\dagger(-\theta) \hat{Z}^\dagger(\theta) \right) |0\rangle \]
Boundary state approach to quenches

Quantum quenches in QFT [Calabrese & Cardy, 2006]
Case: post-quench Hamiltonian is CFT

$$|\psi(0)\rangle = e^{-H\tau_0} |B\rangle$$

$|B\rangle$: conformally invariant boundary condition in crossed channel

Boundary condition Crossed channel: boundary state

τ_0: extrapolation time – normalizability/finite energy density!

More general: involve all irrelevant operators $\tilde{\Phi}_k(x)$ [Cardy, 2015]

$$|\psi(0)\rangle = e^{-\sum_k \tau_k \int dx \tilde{\Phi}_k(x)} |B\rangle$$
Squeezed initial state

Integrable quench:

\[|\Psi(0)\rangle = \mathcal{N} \exp \left(\int_0^\infty d\theta K(\theta)Z^\dagger(-\theta)Z^\dagger(\theta) \right) |0\rangle \]

\[K(\theta) = S(2\theta)K(-\theta) \text{ but: } K(\theta) \neq R(i\pi/2 - \theta) \]

Extrapolation times: exponential suppression for high momenta

\[|\Psi(0)\rangle = \exp \left(-\sum_s \tau_s Q_s \right) |B\rangle \]

\[\downarrow \quad Q_s = \int d\theta 2\pi q_s(\theta)Z^\dagger(\theta)Z(\theta) \]

\[K(\theta) = e^{-2E(\theta)\tau(\theta)}K_B(\theta) \]

\(\tau(\theta) \): momentum-dependent extrapolation time
The importance of overlaps

Overlaps are inputs to many approaches to quenches

1. Thermodynamic Bethe Ansatz [Fioretto & Mussardo, 2009]

2. Quench action method [Caux & Essler, 2013]

3. Form factor methods [Bertini, Essler & Schuricht, 2014]

⇒ need to determine overlaps! But getting them is very difficult...

Lieb-Liniger, XXZ chain: for some initial states from Bethe Ansatz
[XXZ: Kozlowski and Pozsgay, 2012; Pozsgay, 2013;
 De Nardis, Wouters, Brockmann & Caux, 2014
 Piroli & Calabrese, 2014
LL: Nardis, Wouters, Brockmann & Caux, 2013]

What about field theory?
Mass quenches to sinh-Gordon theory

\[H = \int dx \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\partial_x \phi)^2 + \frac{\mu^2}{g^2} \cosh g \phi(x) \right] \]

[\phi(t, x), \pi(t, y)] = i\delta(x - y)

Spectrum: single particle of mass \(m \) with \(S \) matrix

\[S(\theta, B) = \frac{\tanh \frac{1}{2}(\theta - i\frac{\pi B}{2})}{\tanh \frac{1}{2}(\theta + i\frac{\pi B}{2})} \quad B(g) = \frac{2g^2}{8\pi + g^2} \]

Quench: free boson of mass \(m_0 \) to sinh-Gordon with coupling \(g \) and mass \(m \)

\((m_0, g = 0) \xrightarrow{t=0} (m, g)\)

Time evolution:

\[\frac{d\mathcal{O}}{dt} = i[H, \mathcal{O}] \]

Quench: jump in \(H \Rightarrow \) continuity in time-dependence of operators

\(\phi(x, t \to 0^-) = \phi(x, t \to 0^+) \) and \(\pi(x, t \to 0^-) = \pi(x, t \to 0^+) \)
Infinite number of infinite integral equations

Infinitely many equations: by taking all possible matrix elements

\[\langle \theta_1, \ldots, \theta_N | \left\{ \hat{\phi}(p) + \frac{1}{E_0(p)} [\hat{\phi}(p), H] \right\} |\psi(0)\rangle = 0 \]

and infinitely long integral equations by writing

\[|\psi(0)\rangle = \sum_{r=0}^{\infty} \frac{1}{r!} \int \prod_{j=1}^{r} \frac{d\theta_j}{2\pi} K_r(\theta_1, \ldots, \theta_r) |\theta_1, \ldots, \theta_r\rangle \]

\[K_r(\ldots, \theta_i, \theta_{i+1}, \ldots) = K_r(\ldots, \theta_{i+1}, \theta_i, \ldots) S(\theta_{i+1} - \theta_i) \]

Translational invariance:

\[K_r(\theta_1, \ldots, \theta_r) \propto \delta \left(\sum_{j=1}^{r} m \sinh \theta_j \right) \]

\[\Rightarrow \text{equations are only nontrivial for} \]

\[p = - \sum_{j=1}^{N} m \sinh \theta_j \]
Extensivity for local charges

Cumulant form:

\[|\psi\rangle = \exp \left(\sum_{r=1}^{\infty} \int K_r(\theta_1, \theta_2, \ldots, \theta_r) \prod_{i=1}^{r} Z^\dagger(\theta_i) d\theta_i \right) |0\rangle \]

Expectation value of local charges must be extensive:

\[\langle Q_s \rangle = \frac{\langle \Psi | Q_s | \Psi \rangle}{\langle \Psi | \Psi \rangle} \propto \text{volume} \quad Q_s = \int d\theta q_s(\theta) Z^\dagger(\theta) Z(\theta) \]

Theorem: extensivity \(\Rightarrow \) \(\tilde{K}_r \) can only contain a single \(\delta \)-function!

Corollary: assuming pair structure

\[K^{\psi}_{2r}(\theta_1, \theta_2, \ldots, \theta_r) \propto \left(\prod_{i=1}^{r} \delta(\theta_{2i+1} + \theta_{2i}) \ldots \right) \text{sym} \]

extensivity implies

\[K_{2r} = 0 \quad r > 1 \]

\(\Rightarrow \) we have an “integrable quench”

\[|\psi(0)\rangle = \exp \left(\int_{0}^{\infty} K(\theta) Z^\dagger(-\theta) Z^\dagger(\theta) \right) |0\rangle \]
The Ansatz

Ansatz [Sotiriadis, GT and Mussardo, 2014]:

\[
K(\theta) = K^\text{free}(k)K_D(\theta) = \frac{E_0(\theta) - E(\theta)}{E_0(\theta) + E(\theta)}K_D(\theta)
\]

\[
E(\theta) = m \cosh \theta, \quad E_0(\theta) = \sqrt{m^2 \sinh^2 \theta + m_0^2}
\]

\[
K_D(\theta) = i \tanh(\theta/2) \frac{\cosh(\theta/2 - i\pi B/8) \sinh(\theta/2 + i\pi(B + 2)/8)}{\sinh(\theta/2 + i\pi B/8) \cosh(\theta/2 - i\pi(B + 2)/8)}
\]

Ghoshal-Zamolodchikov solution for Dirichlet BC \(\varphi = 0 \)

Evidence:
numerically solves the first two members of the infinite hierarchy
[GT, Horváth and Sotiriadis, 2016]

Limitation: no good theoretical argument for pair structure yet

- Expected to be good approximation for small quenches
- GZ solution: valid for infinitely large quench \(m_0/m \gg 1 \)
- Heuristic arguments by analogy to integrable boundary states
- Numerical evidence from second member of hierarchy
Outline

1. Introduction
2. Integrable quenches and overlaps
3. Truncated Hamiltonian approach
4. Overlaps from TCSA and why it all works
5. Summary
Scaling Ising field theory

\[H_{ISC} = \sum_{i=1}^{N} \left(\sigma_{i}^{x} \sigma_{i+1}^{x} + h_{z} \sigma_{i}^{z} + h_{x} \sigma_{i}^{x} \right) \]

\[\downarrow \text{continuum limit} \]

\[H_{IFT} = \frac{1}{2\pi} \int d\mathbf{x} \left[\frac{i}{2} \psi(\mathbf{x}) \partial_{x} \psi(\mathbf{x}) - \frac{i}{2} \bar{\psi}(\mathbf{x}) \partial_{x} \bar{\psi}(\mathbf{x}) - iM \bar{\psi}(\mathbf{x}) \psi(\mathbf{x}) \right] \]

\[+ h \int d\mathbf{x} \sigma(\mathbf{x}) \]

Idea: use Hilbert space of free massive fermion in volume \(L \)

Truncated Free Fermionic Space Approach (TFFSA)

[Fonseca and Zamolodchikov, 2001]

FM/PM phase distinguished by FF Hilbert space content
Does this work at all?

Energy cutoff on fermionic space: Λ vs sudden quench $\tau^{-1} = \infty!$

Integrable case: $M_0 \to M \ (h = 0)$

[Mestyán, Rakovszky, Collura, Kormos and GT, 2016]

Form factor methods
[Schuricht and Essler, 2012]

$\langle \sigma(t) \rangle = \bar{\sigma} e^{-t/\tau}$ for large t

$\tau^{-1} = \frac{2M}{\pi} \int_0^\infty d\theta |K(\theta)|^2 \sinh \theta + O(K^6)$

$K(\theta) = \tan \left[\frac{1}{2} \arctan (\sinh \theta) \right.$

$\left. - \frac{1}{2} \arctan \left(\frac{M}{M_0} \sinh \theta \right) \right]$}

$\bar{\sigma} = \langle 0 | \sigma(x) | 0 \rangle = \bar{s} M^{1/8}$

$\bar{s} = 2^{1/12} e^{-1/8} A^{3/2}$

Ferromagnetic quench $M_0 = 1.5M$
Comparison to iTEBD

Non-integrable quenches: no analytic results, but one can use

$iTEBD = \text{infinite volume Time Evolving Block Decimation}$

$$M = 2J |1 - h_z| \quad a = 2/J$$

$$\sigma(na) = \bar{s} J^{1/8} \sigma_n^x \quad \bar{h} = hM^{-15/8} = \frac{2^{-7/8}}{\bar{s}} (1 - h_z)^{-15/8} h_x$$

Ferromagnetic quench
$$(1.5M, 0) \rightarrow (M, \bar{h} = 0.1)$$

Paramagnetic quench
$$(1.5M, 0) \rightarrow (M, \bar{h} = 0.05)$$
Quenches with broken integrability

Ferromagnetic phase: confinement (no prethermalisation)

Paramagnetic phase: oscillations, again no sign of prethermalisation

\[\langle \sigma(t) \rangle = A e^{-t/\tau} (1 - \cos \omega t) \]

Amplitude prediction
[Delfino, 2014; Delfino & Viti, 2017]

\[A = \frac{2h}{M^2} |F_{1,0}|^2 \]
\[F_{1,0} = \langle A(0)|\sigma|0 \rangle \]

2nd order FFPT [GT, 2009]

\[\omega = M (1 + \delta \bar{h}^2) \]
\[\delta = 10.1593 \ldots \]

Paramagnetic quench
\((M_0, 0) \rightarrow (M, \bar{h} = -0.01)\)

Numerics: \(\delta = 10.07 \ldots\)
Quenches with broken integrability

Damping in paramagnetic phase: for small h given by integrable result

Form factor methods

[Schuricht and Essler, 2012]

\[
\tau^{-1} = \frac{2M}{\pi} \int_0^\infty d\theta |K(\theta)|^2 \sinh \theta + O(K^6)
\]

\[
K(\theta) = \tan \left[\frac{1}{2} \arctan (\sinh \theta) - \frac{1}{2} \arctan \left(\frac{M}{M_0} \sinh \theta \right) \right]
\]

Exponent of decay $1/\tau$

\(h = -0.08 \)
\(h = -0.05 \)
\(h = -0.01 \)

Paramagnetic quench

\((M_0, 0) \rightarrow (M, \bar{h}) \)
1. Introduction
2. Integrable quenches and overlaps
3. Truncated Hamiltonian approach
4. Overlaps from TCSA and why it all works
5. Summary
Sine-Gordon numerics: truncated conformal space approach

\[H = \int dx \left[\frac{1}{2} : (\partial_t \Phi)^2 + (\partial_x \Phi)^2 : \right] - \frac{\lambda}{2} \int dx (V_1 + V_{-1}) \]

\[V_a =: e^{ia\beta \Phi} : , \quad \Delta_a = \frac{a^2 \beta^2}{8\pi} \]

\[\lambda = \frac{2\Gamma(\Delta_1)}{\pi\Gamma(1 - \Delta_1)} \left(\frac{\sqrt{\pi} \Gamma \left(\frac{1}{2 - 2\Delta_1} \right) M}{2\Gamma \left(\frac{\Delta_1}{2 - 2\Delta_1} \right)} \right)^{2 - 2\Delta_1} \]

Breather overlap prediction: analytic continuation from sinhG

\[K_{B_1B_1}(\vartheta) = \frac{E_0(\vartheta) - E(\vartheta)}{E_0(\vartheta) + E(\vartheta)} K_D(\vartheta) \quad \xi = \frac{\beta^2}{8\pi - \beta^2} \]

\[K_D(\vartheta) = i \tanh \left(\frac{\vartheta}{2} \right) \frac{\cosh \left(\frac{\vartheta}{2} + \frac{i\pi \xi}{4} \right)}{\sinh \left(\frac{\vartheta}{2} - \frac{i\pi \xi}{4} \right)} \frac{\sinh \left(\frac{\vartheta}{2} + \frac{i\pi (1-\xi)}{4} \right)}{\cosh \left(\frac{\vartheta}{2} - \frac{i\pi (1-\xi)}{4} \right)} \]
Overlaps from finite volume

\[|B\rangle = |0\rangle + \sum_{n=1}^{\infty} \int \prod_{i=1}^{n} \frac{d\vartheta_i}{2\pi} K_n(\vartheta_1, \ldots, \vartheta_n) \delta \left(\sum_{i=1}^{n} m \sinh \vartheta_i \right) |\vartheta_1, \ldots, \vartheta_n\rangle \]

\[\downarrow N_n : \text{state density factor} \]

\[|B\rangle_L = |0\rangle_L + \sum_{n=1}^{\infty} \sum_{l_1, \ldots, l_n} N_n K_n(\vartheta_1^*, \ldots, \vartheta_n^*) |l_1, \ldots, l_n\rangle_L \]

Instead of free to sG: sG-sG mass quench \(M_0 \rightarrow M \)

[D.X. Horváth and GT, 2017]
Why does TCSA work?

Recall cutoff-sudden quench problem!
Assume for simplicity a squeezed state form

$$|\psi(0)\rangle = \mathcal{N} \exp \left(\int_0^\infty d\theta K(\theta) Z^\dagger (-\theta) Z^\dagger (\theta) \right) |0\rangle$$

Vacuum overlap

$$\log \mathcal{N} = -\frac{1}{2} L \int_0^\infty \frac{dq}{\pi} \log \left(1 + |K(q)|^2 \right)$$

TCSA works until low-energy states dominate:

$$-\log \mathcal{N} \lesssim 1 : \quad L < L_{\text{crit}}$$

But: QFT in volume L gives back $L = \infty$ well if $ML \gg 1$!

Remark: e.g. in our Ising calculations $ML_{\text{crit}} > 300$

Conclusion: TCSA works well for quenches producing low post-quench energy density.
Why does QFT work for sudden quenches?

Warning: the following is an intuitive argument!

Initial state normalizable \Rightarrow integral

$$\int_{0}^{\infty} dq \ |K(q)|^2$$

must converge at upper limit!

In fact, typically

$$|K(q)|^2 \propto \frac{1}{q^4} \quad \text{for large } q$$

(free boson behaviour).

So high energy states are suppressed even for a sudden quench

\Rightarrow field theory works if cut-off is sufficiently high.

However: power-like suppression!

\Rightarrow as a consequence e.g. TCSA needs RG improvement!
1. Field theory can be used to model even sudden quenches of many-body systems.

2. Sudden quenches in QFT: a variety of available methods
 - Form factor expansions
 - Truncated Hamiltonian approaches (RG improved)
 - Semiclassical approach
 - Exact results for “integrable” quenches (squeezed initial states)

3. A few interesting problems
 - What is the physical condition for a quench to be integrable?
 - Can we get more exact information for them?
 - How to compute K for a given integrable quench?
 - Applications to experiments, integrability breaking etc.