Numerical Tensor Calculus

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften

and

Christians-Albrechts-Universität zu Kiel

wh@mis.mpg.de

https://www.mis.mpg.de/scicomp/hackbusch.en.html

Creswick, February 8, 2018

Overview

Tensors

- Where do large-scale tensors appear?
- Tensor operations
- High-dimensional problems in practice

Tensor Representations

- r-Term Format (Canonical Format)
- Tensor Subspace Format (Tucker Format)
- Matricisation and Tucker Ranks
- HOSVD: Higher Order Singular-Value Decomposition

Hierarchical Format

- Dimension Partition Tree
- Algorithmic Realisation
- Operations

Solution of Linear Systems

Multivariate Cross Approximation

Tensorisation

1 Tensors

1.1 Where do large-scale tensors appear in Numerical Analysis?

1.1.1 Functions

Multivariate functions f defined on a Cartesian product

$$\Omega = \Omega_1 \times \Omega_2 \times \ldots \times \Omega_d$$

are tensors.

For instance,

$$L^2(\Omega) = L^2(\Omega_1) \otimes L^2(\Omega_2) \otimes \ldots \otimes L^2(\Omega_d).$$

Tensor product of univariate functions:

$$\left(\bigotimes_{j=1}^d f_j\right)(x_1,x_2,\ldots,x_d) := \prod_{j=1}^d f_j(x_j).$$

1.1.2 **Grid Functions**

Discretisation in product grids $\omega = \omega_1 \times \omega_2 \times \ldots \times \omega_d$, e.g., ω_j regular grid with n_j grid points.

Total number of grid points $N = \prod_{j=1}^d n_j$, e.g., n^d . Tensor space:

$$\mathbb{R}^N \simeq \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2} \otimes \ldots \otimes \mathbb{R}^{n_d}$$
.

Tensor product of vectors $v^{(j)} \in \mathbb{R}^{n_j}$:

$$\left(\bigotimes_{j=1}^{d} v^{(j)}\right) [i_1, i_2, \dots, i_d] := \prod_{j=1}^{d} v^{(j)} [i_j].$$

Challenge: How to treat tensors when $N = n^d$ is huge $(N \gg \text{memory space})$?

1.1.3 Matrices or Operators

Let
$$\mathbf{V}=V_1\otimes V_2\otimes\ldots\otimes V_d,\quad \mathbf{W}=W_1\otimes W_2\otimes\ldots\otimes W_d$$
 be tensor spaces, $A_j:V_j\to W_j$ linear mappings $(1\leq j\leq d).$

The tensor product (Kronecker product)

$$\mathbf{A} = A_1 \otimes A_2 \otimes \ldots \otimes A_d : \mathbf{V} \to \mathbf{W}$$

is the mapping

$$\mathbf{A}: v^{(1)} \otimes v^{(2)} \otimes \ldots \otimes v^{(d)} \mapsto A_1 v^{(1)} \otimes A_2 v^{(2)} \otimes \ldots \otimes A_d v^{(d)}.$$

If $A_j \in \mathbb{R}^{n \times n}$ then $\mathbf{A} \in \otimes^d \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n^d \times n^d}$.

Example: Poisson problem $-\Delta u = f$ in $[0,1]^d$, u = 0 on Γ .

The differential operator has the form

$$L = \frac{\partial^2}{\partial x_1^2} \otimes I \otimes \ldots \otimes I + \ldots + I \otimes \ldots \otimes I \otimes \frac{\partial^2}{\partial x_d^2}.$$

Discretise by difference scheme with n grid points per direction. The system matrix is

$$\mathbf{A} = T_1 \otimes I \otimes \ldots \otimes I + \ldots + I \otimes \ldots \otimes I \otimes T_d.$$

Challenge: Approximate the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$, where n=d=1000, so that

$$N = n^d = 1000^{1000} = 10^{3000}.$$

Later result: required storage: $O(dn \log^2 \frac{1}{\epsilon})$

1.2 Tensor Operations

addition: v + w,

scalar product: $\langle \mathbf{v}, \mathbf{w} \rangle$

matrix-vector multiplication:
$$\begin{pmatrix} \otimes \\ \otimes \\ j=1 \end{pmatrix} A^{(j)} \begin{pmatrix} \otimes \\ \otimes \\ j=1 \end{pmatrix} v^{(j)} = \bigotimes_{j=1}^d A^{(j)} v^{(j)},$$

Hadamard product: $(\mathbf{v} \odot \mathbf{w})[\mathbf{i}] = \mathbf{v}[\mathbf{i}]\mathbf{w}[\mathbf{i}]$, pointwise product of functions

$$\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \odot \left(\bigotimes_{j=1}^{d} w^{(j)}\right) = \bigotimes_{j=1}^{d} v^{(j)} \odot w^{(j)},$$

convolution: $\mathbf{v}, \mathbf{w} \in \bigotimes_{j=1}^d \mathbb{R}^n : \mathbf{u} = \mathbf{v} \star \mathbf{w} \text{ with } \mathbf{u_i} = \sum_{0 \leq \mathbf{k} \leq \mathbf{i}} \mathbf{v_{i-k}} \mathbf{w_k}$

$$\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \star \left(\bigotimes_{j=1}^{d} w^{(j)}\right) = \bigotimes_{j=1}^{d} v^{(j)} \star w^{(j)}.$$

1.3 High-Dimensional Problems in Practice

- 1) boundary value problems Lu=f in cubes or $\mathbb{R}^3\Rightarrow d=$ 3, n_j large
- 2) Hartree-Fock equations (as 1))
- 3) Schrödinger equation ($d = 3 \times$ number of electrons + antisymmetry)
- 4) byp L(p)u = f with parameters $p = (p_1, \ldots, p_m) \Rightarrow d = m + 1$
- 5) byp with stochastic coefficients \Rightarrow as 4) with $m=\infty$
- 6) coding of a d-variate function in Cartesian product $\Rightarrow d = d$
- 7) ...
- 8) Lyapunov equation $(A \otimes I + I \otimes A) \mathbf{x} = \mathbf{b}$

2 Tensor Representations

How to represent tensors with n^d entries by few data?

Classical formats:

• *r*-Term Format (Canonical Format)

• Tensor Subspace Format (Tucker Format)

More recent:

Hierarchical Tensor Format (including the TT format)

2.1 *r*-Term Format (Canonical Format)

By definition, each algebraic tensor $\mathbf{v} \in \mathbf{V} = V_1 \otimes V_2 \otimes \ldots \otimes V_d$ has a representation

$$\mathbf{v} = \sum_{\rho=1}^{r} v_{\rho}^{(1)} \otimes v_{\rho}^{(2)} \otimes \ldots \otimes v_{\rho}^{(d)}$$
 with $v_{\rho}^{(j)} \in V_{j}$

and suitable r. Set

$$\mathcal{R}_r := \left\{ \sum_{\rho=1}^r v_\rho^{(1)} \otimes v_\rho^{(2)} \otimes \ldots \otimes v_\rho^{(d)} : v_\rho^{(j)} \in V_j \right\}.$$

Storage: rdn (for $n = \max \dim V_i$).

If r is of moderate size, this format is advantageous.

Often, a tensor \mathbf{v} is replaced by an approximation $\mathbf{v}_{\varepsilon} \in \mathcal{R}_r$ with $r = r(\varepsilon)$.

$$\mathsf{rank}(\mathbf{v}) := \mathsf{min}\{r : \mathbf{v} \in \mathcal{R}_r\}, \qquad \mathcal{R}_r := \{\mathbf{v} \in \mathbf{V} : \mathsf{rank}(\mathbf{v}) \le r\}.$$

Recall the matrix A discretising the Laplace equation:

$$\mathbf{A} = T_1 \otimes I \otimes \ldots \otimes I + \ldots + I \otimes \ldots \otimes I \otimes T_d.$$

REMARK: $A \in \mathcal{R}_d$ and rank(A) = d (tensor rank, not matrix rank).

 T_i : tridiagonal matrices of size $n \times n$.

Size of A: $N \times N$ with $N = n^d$. E.g., $n = d = 1000 \implies N = n^d = 1000^{1000} = 10^{3000}$.

We aim at the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$.

Solution: $\mathbf{A}^{-1} \approx \mathbf{B}_r$ with \mathbf{B}_r of the form

$$\mathbf{B}_r = \sum_{i=1}^r a_i \bigotimes_{j=1}^d \exp(-b_i T_j) \in \mathcal{R}_r,$$

where $a_i, b_i > 0$ are explicitly known.

Proof. Approximate 1/x in $[1, \infty)$ by exponential sums $E_r(x) = \sum_{i=1}^r a_i \exp(-b_i x)$. The best approximation satisfies

$$\left\|\frac{1}{\bullet} - E_r(\cdot)\right\|_{\infty,[1,\infty)} \leq O(\exp(-cr^{1/2})).$$

For a positive definite matrix with $\sigma(\mathbf{A}) \subset [1, \infty), E_r(\mathbf{A})$ approximates \mathbf{A}^{-1} with

$$||E_r(\mathbf{A}) - \mathbf{A}^{-1}||_2 \le O(\exp(-cr^{1/2})).$$

In the case of $\mathbf{A} = T_1 \otimes I \otimes \ldots \otimes I + \ldots + I \otimes \ldots \otimes I \otimes T_d$ one obtains

$$\mathbf{B}_r := E_r(\mathbf{A}) = \sum_{i=1}^r a_i \bigotimes_{j=1}^d \exp(-b_i T_j).$$

Operations with Tensors and Truncations

$$\mathbf{A} = \sum_{\nu=1}^{r} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} \in \mathcal{R}_{r}, \qquad \mathbf{v} = \sum_{\nu=1}^{s} \bigotimes_{j=1}^{d} v_{\nu}^{(j)} \in \mathcal{R}_{s}$$

 \Rightarrow

$$\mathbf{w} := \mathbf{A}\mathbf{v} = \sum_{\nu=1}^{r} \sum_{\mu=1}^{s} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} v_{\mu}^{(j)} \in \mathcal{R}_{rs}$$

Because of the increased representation rank rs, one must apply a truncation $\mathbf{w} \mapsto \mathbf{w}' \in \mathcal{R}_{r'}$ with r' < rs.

Unfortunately, truncation to lower rank is not straightforward in the r-term format.

There are also other disadvantages of the r-term format (numerical instabilities, etc.)

2.2 Tensor Subspace Format (Tucker Format)

2.2.1 Definition of T_r

Implementational description: $T_{\mathbf{r}}$ with $\mathbf{r} = (r_1, \dots, r_d)$ contains all tensors of the form

$$\mathbf{v} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{a}[i_1, \dots, i_d] \bigotimes_{j=1}^d b_{i_j}^{(j)}$$

with some vectors $\{b_{i_j}^{(j)}:1\leq i_j\leq r_j\}\subset V_j$ possibly with $r_j\ll n_j$ and $\mathbf{a}[i_1,\ldots,i_d]\in\mathbb{R}.$

The core tensor $\mathbf{a} \in \bigotimes_{j=1}^d \mathbb{K}^{r_j}$ has $\prod_{j=1}^d r_j$ entries. Disadvantage for large d.

Algebraic description:

Tensor space $\mathbf{V} = V_1 \otimes V_2 \otimes \ldots \otimes V_d$. Choose subspaces $U_j \subset V_j$ and consider the tensor subspace $\mathbf{U} = \bigotimes_{j=1}^d U_j$. Then

$$\mathcal{T}_{\mathbf{r}} := igcup_{\mathsf{dim}(U_j) \leq r_j} igcup_{j=1}^d U_j.$$

2.2.2 Matricisation and Tucker Ranks

Let
$$\mathbf{V} = \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2} \otimes \ldots \otimes \mathbb{R}^{n_d}$$
, fix $j \in \{1, \ldots, d\}$, set $n_{[j]} := \prod_{k \neq j} n_k$.

The j-th matricisation maps a tensor $\mathbf{v} \in \mathbf{V}$ into a matrix

$$M_j \in \mathbb{R}^{n_j \times n_{[j]}}$$

defined by

$$M_j[i_j, \mathbf{i}_{[j]}] := \mathbf{v}[i_1, \dots, i_d]$$
 for $\mathbf{i}_{[j]} := (i_1, \dots, i_{j-1}, i_{j+1}, \dots, i_d)$.

The isomorphism $\mathcal{M}_j: \mathbf{V} \to \mathbb{R}^{n_j \times n_{[j]}}$ is called the *j*-th *matricisation*.

Tucker rank or j-th rank:

$$rank_j(\mathbf{v}) := rank(\mathcal{M}_j(\mathbf{v}))$$
 for $1 \le j \le d$.

Sometimes, $\mathbf{r} := (\mathsf{rank}_1(\mathbf{v}), \dots, \mathsf{rank}_d(\mathbf{v}))$ is called the *multilinear rank* of \mathbf{v} .

Example: $\mathbf{v} \in \mathbf{V} := \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \mathbb{R}^2$. Then $\mathcal{M}_2(\mathbf{v})$ belongs to $\mathbb{R}^{2 \times 8}$:

2.2.3 Important Properties

Alternative definition of $\mathcal{T}_{\mathbf{r}}$:

$$\mathcal{T}_{\mathbf{r}} = \left\{ \mathbf{v} \in \mathbf{V} : \mathsf{rank}_{j}(\mathbf{v}) \leq r_{j} \text{ for all } 1 \leq j \leq d \right\}.$$

Also for dim $V_j = \infty$, rank_j(v) can be defined.

Under rather general assumptions on the norms of V_j and ${f V}$ one proves that

$$\mathbf{v}_n \rightharpoonup \mathbf{v} \qquad \Rightarrow \qquad \operatorname{rank}_j(\mathbf{v}) \leq \underline{\lim}_{n \to \infty} \operatorname{rank}_j(\mathbf{v}_n).$$

Conclusion: 1) $\mathcal{T}_{\mathbf{r}}$ is weakly closed.

2) If V is a reflexive Banach space, $\inf_{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}} \|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v} - \mathbf{u}_{best}\|$ has a solution $\mathbf{u}_{best} \in \mathcal{T}_{\mathbf{r}}$.

2.2.4 HOSVD: Higher Order Singular-Value Decomposition

Diagonalisation:

$$\mathbb{R}^{n_j imes n_j}
i \mathcal{M}_j(\mathbf{v}) \mathcal{M}_j(\mathbf{v})^\mathsf{T} = \sum_{i=1}^{\mathsf{rank}_j(\mathbf{v})} (\sigma_i^{(j)})^2 b_i^{(j)} (b_i^{(j)})^\mathsf{T}.$$

 $\sigma_i^{(j)}$: j-th singular values; $\{b_i^{(j)}: 1 \leq i \leq \operatorname{rank}_j(\mathbf{v})\}$: HOSVD basis.

Truncation: Let $\mathbf{v} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} \mathbf{a}[i_1, \dots, i_d] \bigotimes_{j=1}^d b_{i_j}^{(j)} \in \mathcal{T}_{\mathbf{r}}$ with HOSVD basis vectors $b_i^{(j)}$. For $\mathbf{s} = (s_1, \dots, s_d) < \mathbf{r}$ set

$$\mathbf{u}_{\mathsf{HOSVD}} = \sum_{i_1=1}^{s_1} \cdots \sum_{i_d=1}^{s_d} \mathbf{a}[i_1, \dots, i_d] \bigotimes_{j=1}^d b_{i_j}^{(j)} \in \mathcal{T}_{\mathbf{s}}.$$

Quasi-optimality:

$$\|\mathbf{v} - \mathbf{u}_{\mathsf{HOSVD}}\| \le \left(\sum_{j=1}^d \sum_{i=s_j+1}^{r_j} \left(\sigma_i^{(j)}\right)^2\right)^{1/2} \le d^{1/2} \|\mathbf{v} - \mathbf{u}_{\mathsf{best}}\| \quad (\mathbf{u}_{\mathsf{best}} \in \mathcal{T}_{\mathbf{s}}).$$

Conclusions concerning the traditional formats:

- 1. r-term format \mathcal{R}_r
 - ullet advantage: low storage cost rdn
 - disadvantage: difficult truncation, numerical instability may occur
- 2. tensor subspace format T_r
 - advantage: stable and quasi-optimal truncation
 - disadvantage: exponentially expensive storage for core tensor a

The next format combines the advantages.

3 Hierarchical Format

3.1 Dimension Partition Tree

Example: $\mathbf{v} \in \mathbf{V} = V_1 \otimes V_2 \otimes V_3 \otimes V_4$. There are subspaces such that

$$\mathbf{v} \in \mathsf{span}\{\mathbf{v}\} \subset \mathbf{U}_{\{1,2\}} \otimes \mathbf{U}_{\{3,4\}} \subset \mathbf{V}$$

$$\mathbf{U}_{\{1,2\}} \subset U_1 \otimes U_2 \qquad \qquad \mathbf{U}_{\{3,4\}} \subset U_3 \otimes U_4$$

$$U_1 \subset V_1 \qquad U_2 \subset V_2 \qquad \qquad U_3 \subset V_3 \qquad U_4 \subset V_4$$

Optimal subspaces are $\mathbf{U}_{\alpha}:=\mathbf{U}_{\alpha}^{\mathsf{min}}(\mathbf{v})$.

For $\alpha \subset D := \{1, \ldots, d\}$ and $\alpha^c := D \setminus \alpha$, the minimal subspaces $U_{\alpha}^{\min}(\mathbf{v})$ and $U_{\alpha^c}^{\min}(\mathbf{v})$ satisfy

$$\mathbf{v} \in U_{\alpha}^{\mathsf{min}}(\mathbf{v}) \otimes U_{\alpha^c}^{\mathsf{min}}(\mathbf{v})$$

with minimal dimension.

Dimension partition tree:

Any binary tree with root $D := \{1, ..., d\}$ and leaves $\{1\}, \{2\}, ..., \{d\}$.

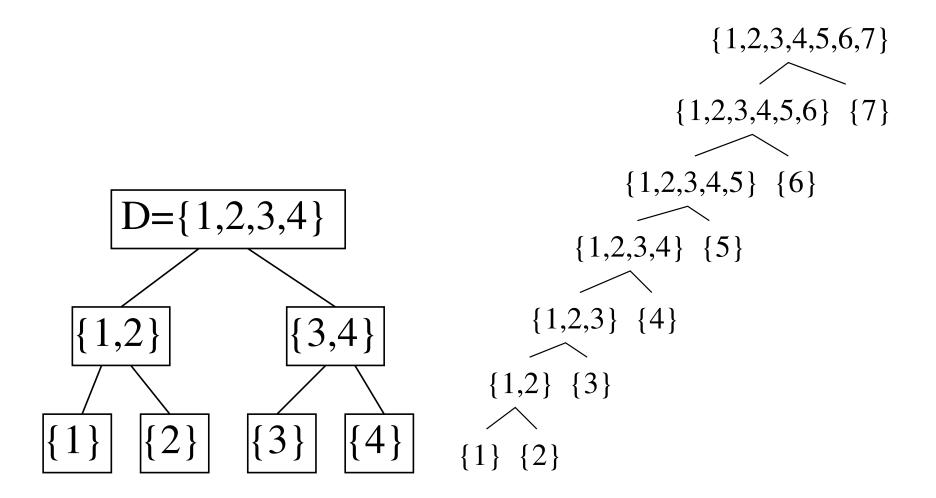


Figure 1: Balanced tree and linear tree

The hierarchical format based on the linear tree is also called the TT format.

3.2 Algorithmic Realisation

Typical situation: $\mathbf{U}_{\{1,2\}} \subset U_1 \otimes U_2$ (nestedness property).

Bases:
$$U_1 = \sup_{1 \le i \le r_1} \{b_i^{(1)}\}, \ U_2 = \sup_{1 \le j \le r_2} \{b_j^{(2)}\}, \ \mathbf{U}_{\{1,2\}} = \sup_{1 \le \ell \le r_{\{1,2\}}} \{\mathbf{b}_{\ell}^{(\{1,2\})}\}.$$

$$\mathbf{b}_{\ell}^{(\{1,2\})} = \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} c_{ij}^{(\{1,2\},\ell)} b_i^{(1)} \otimes b_j^{(2)}$$

Only the basis vectors $b_{\nu}^{(j)}$ of $U_j \subset V_j$ $(1 \leq j \leq d)$ are explicitly stored, for the other nodes store the coefficient matrices

$$C^{(\alpha,\ell)} = \left(c_{ij}^{(\alpha,\ell)}\right)_{ij} \in \mathbb{R}^{r_{\alpha_1} \times r_{\alpha_2}}.$$

The tensor is represented by $\mathbf{v} = c_1 \mathbf{b}_1^{(\{1,...,d\})}$.

Storage: $(d-1)r^3+drn$ for $\left[C^{(\alpha,\ell)},c_1,b^{(j)}_{\nu}\right]$ $(r:=\max_{\alpha}\dim U_{\alpha};n:=\max_{j}\dim(V_{j}))$

3.3 Truncation, Operations

Operations are typically recursive w.r.t. to the tree structure.

They involve only the data $\left[C^{(\alpha,\ell)},c_1,b_{\nu}^{(j)}\right]$.

The typical operation cost is

$$O(dr^4 + dnr^2).$$

The HOSVD truncation is based on SVDs involving the coefficient matrices

$$C^{(\alpha,\ell)} \in \mathbb{R}^{r_{\alpha_1} \times r_{\alpha_2}}$$
.

 (α_1, α_2) : sons of α).

3.4 Operations - Example: scalar product

Let $\mathbf{v}, \mathbf{w} \in \mathbf{V}$ be given by $\left(C'^{(\alpha,\ell)}, c_1', b_{\nu}'^{(j)}\right)$ and $\left(C''^{(\alpha,\ell)}, c_1'', b_{\nu}''^{(j)}\right)$ resp. $\mathbf{v} = c_1' \mathbf{b}_1'^{(D)}, \ \mathbf{w} = c_1'' \mathbf{b}_1''^{(D)} \quad \Rightarrow \quad \langle \mathbf{v}, \mathbf{w} \rangle = c_1' c_1'' \left\langle \mathbf{b}_1'^{(D)}, \mathbf{b}_1''^{(D)} \right\rangle.$

Determine the scalar products $eta_{ij}^{(lpha)}:=\left\langle \mathbf{b}_i'^{(lpha)},\mathbf{b}_j''^{(lpha)}
ight
angle$ recursively by

$$\beta_{ij}^{(\alpha)} = \left\langle \mathbf{b}_{i}^{\prime(\alpha)}, \mathbf{b}_{j}^{\prime\prime(\alpha)} \right\rangle = \left\langle \sum_{k,\ell} c_{k,\ell}^{\prime(\alpha,i)} b_{k}^{\prime(\alpha_{1})} \otimes b_{\ell}^{\prime(\alpha_{2})}, \sum_{p,q} c_{p,q}^{\prime\prime(\alpha,j)} b_{p}^{\prime\prime(\alpha_{1})} \otimes b_{q}^{\prime\prime(\alpha_{2})} \right\rangle$$

$$= \sum_{k,\ell} \sum_{p,q} c_{k,\ell}^{\prime(\alpha,i)} c_{p,q}^{\prime\prime(\alpha,j)} \left\langle b_{k}^{\prime(\alpha_{1})}, b_{p}^{\prime\prime(\alpha_{1})} \right\rangle \left\langle b_{\ell}^{\prime(\alpha_{2})}, b_{q}^{\prime\prime(\alpha_{2})} \right\rangle$$

$$= \sum_{k,\ell} \sum_{p,q} c_{k,\ell}^{\prime(\alpha,i)} c_{p,q}^{\prime\prime(\alpha,j)} \beta_{kp}^{(\alpha_{1})} \beta_{\ell q}^{(\alpha_{2})}$$

 (α_1, α_2) : sons of α ; $\beta_{kp}^{(\alpha)}$ explicitly computable for leaves $\alpha = \{j\}$.

4 Solution of Linear Systems

Linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where $\mathbf{x}, \mathbf{b} \in \mathbf{V} = \bigotimes_{j=1}^{d} V_j$ and $\mathbf{A} \in \bigotimes_{j=1}^{d} \mathcal{L}(V_j, V_j) \subset \mathcal{L}(\mathbf{V}, \mathbf{V})$ are represented in one of the formats (e.g., \mathbf{A} : r-term format, \mathbf{x}, \mathbf{b} : hierarchical format):

Standard linear iteration:

$$\mathbf{x}^{m+1} = \mathbf{x}^m - \mathbf{B} (\mathbf{A} \mathbf{x}^m - \mathbf{b}).$$

 \Rightarrow representation ranks blow up.

Therefore truncations T are used ('truncated iteration'):

$$\mathbf{x}^{m+1} = T(\mathbf{x}^m - \mathbf{B}(T(\mathbf{A}\mathbf{x}^m - \mathbf{b}))).$$

Cost per step: $nd \times$ powers of the involved representation ranks.

$$\mathbf{x}^{m+1} = T(\mathbf{x}^m - \mathbf{B}(T(\mathbf{A}\mathbf{x} - \mathbf{b})))$$

Choice of B:

If A corresponds to an elliptic pde of order 2, the discretisation of Δ is spectrally equivalent $\Rightarrow B = B_r$ from above has a simple r-term format.

Obvious variants: cg-like methods

Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM), Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011, Ballani-Grasedyck 2013, Savas-Eldén 2013

Remark: For d = 2, these linear systems may be written as matrix equations:

$$(A \otimes I + I \otimes A) \mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad AX + XA = B \quad \text{(Lyapunov)}$$

(cf. Benner-Breiten 2013). Used in Control Theory and Model Reduction.

Variational Approach

Define

$$\Phi(\mathbf{x}) := \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle - 2 \langle \mathbf{b}, \mathbf{x} \rangle$$

if A is positive definite or

$$\Phi(\mathbf{x}) := \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

or

$$\Phi(\mathbf{x}) := \|\mathbf{B} (\mathbf{A}\mathbf{x} - \mathbf{b})\|^2$$

and try to minimise $\Phi(x)$ over all parameters of x is a fixed format.

Literature:

Espig-Hackbusch-Rohwedder-Schneider, Falcó-Nouy,

Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets, Uschmajew,...

5 Multivariate Cross Approximation

Matrix Case

Choose suitable r rows and columns:

They define a rank-r matrix M_r interpolating M at these rows and columns.

If rank(M) = r, then $M_r = M$.

Order $d \geq 3$: In principle similar when using the hierarchical format. Required number of evaluations of the tensor is $O\left(\sum_{j} n_{j}\right)$.

6 Tensorisation

$$V_j = \mathbb{R}^n \Rightarrow \text{storage: } rdn + (d-1)r^3$$
. Now: $n \to O(\log n)$

Let the vector $y \in \mathbb{R}^n$ represent the grid values of a function in (0,1]:

$$y_{\mu} = f\left(\frac{\mu+1}{n}\right)$$
 $(0 \le \mu \le n-1)$.

Choose, e.g., $n=2^d$, and note that $\mathbb{R}^n \cong \mathbf{V} := \bigotimes_{j=1}^d \mathbb{R}^2$. Isomorphism by binary integer representation:

$$\mu = \sum_{j=1}^d \mu_j 2^{j-1}$$
 with $\mu_j \in \{0,1\},$ i.e.,

$$y_{\mu} = \mathbf{v}[\mu_1, \mu_2, \dots, \mu_{d-1}, \mu_d].$$

Application of tensor tools (SVD: black-box procedure)

- 1) Tensorisation: $y \in \mathbb{R}^n \longmapsto \mathbf{v} \in \mathbf{V}$ (storage size: $n = 2^d$)
- 2) Apply the *tensor truncation*: $\mathbf{v} \longmapsto \mathbf{v}_{\varepsilon}$
- 3) Observation: often the data size decreases from $n = 2^d$ to $O(d) = O(\log n)$.

EXAMPLE

 $y \in \mathbb{C}^n$ with $y_{\mu} = \zeta^{\mu}$ leads to an *elementary tensor* $\mathbf{v} \in \mathbf{V}$, i.e.,

$$\mathbf{v} = igotimes_{j=1}^d v^{(j)} \qquad ext{with } v^{(j)} = \left[egin{array}{c} 1 \ \zeta^{2^{j-1}} \end{array}
ight] \in \mathbb{C}^2.$$

Storage size $= 2d = 2 \log_2 n$.

Example:

 $f(x) = 1/(x + \delta) \in C((0,1])$, $\delta \ge 0$, can be well-approximated by exponential sums (cf. Braess-H.):

$$f(x) pprox \sum_{\nu=1}^{r} a_{\nu} \exp(-b_{\nu}x) \qquad (a_{\nu}, b_{\nu} > 0)$$
 error: $O(n \exp(-2^{1/2}\pi r^{1/2}))$ for $\delta = 0$, $O(\exp(-cr))$ for $\delta = O(1)$.

Storage size:

$$2dr = 2r\log_2 n = O(\log^2(\varepsilon)\log(n))$$

p-Methods

$$f(x) \approx \tilde{f}(x) = \sum_{k=1}^{r} a_k e^{2\pi i(k-1)}$$
 trigonometric approximation \Rightarrow tensorisation, storage $2dr = 2r \log_2 n$, error $\leq \left\| f - \tilde{f} \right\|$

Similar for
$$\tilde{f}(x) = \sum_{k=1}^{r} a_k \sin(2\pi i k)$$
 etc.

Polynomials:

$$f(x) \approx P(x)$$
, P polynomial of degree $\leq p$

An r-term representation $\sum\limits_{i=1}^r \bigotimes\limits_{j=1}^d v_i^{(j)}$ does not work well. Instead, the hierarchical format (in particular, the TT format) is used.

Hierarchical Format, Matricisation

Consider the tensorisation $\mathbf{v} \in \bigotimes_{j=1}^d \mathbb{R}^2$ of the vector $y = (y_0, \dots, y_{n-1}) \in \mathbb{R}^n$. The matricisation for $\alpha = \{1, \dots, j\}$ $(1 \le j \le d-1)$ yields

$$\mathcal{M}_{lpha}(\mathbf{v}) = \left[egin{array}{cccc} y_0 & y_m & \cdots & y_{n-m} \ y_1 & y_{m+1} & \cdots & y_{n-m+1} \ dots & dots & dots \ y_{m-1} & y_{2m-1} & \cdots & y_{n-1} \end{array}
ight] ext{ with } m := 2^j.$$

Recall: $\operatorname{rank}_{\alpha}(\mathbf{v}) = \dim \mathcal{M}_{\alpha}(\mathbf{v})$.

Polynomials

f polynomial of degree $p \Rightarrow \operatorname{rank}_{\alpha}(\mathbf{v}) = \dim \mathcal{M}_{\alpha}(\mathbf{v}) \leq p + 1$.

hp method, i.e., piecewise polynomial

Singularity at x = 0, partition:

$$[0,\frac{1}{n}], [\frac{1}{n},\frac{2}{n}], [\frac{2}{n},\frac{4}{n}], \ldots, [\frac{1}{4},\frac{1}{2}], [\frac{1}{2},1].$$

Local polynomials of degree $p \Rightarrow \operatorname{rank}_{\alpha}(\mathbf{v}) = \dim \mathcal{M}_{\alpha}(\mathbf{v}) \leq p + 2$.

Conclusion: If any hp approximation with a piecewise polynomial P of degree $\leq p$ exists, then the tensorised grid function f can be approximated by a tensor \tilde{f} such that the ranks are bounded by p+2 and

$$\left\|\mathbf{f} - \tilde{\mathbf{f}}\right\|_2 \le \left\|\mathbf{f} - \mathbf{P}\right\|_2$$

The data size is bounded by

$$\leq 2d(p+2)^2$$
.

The computation of f is completely black-box (e.g., no information about the location of the singularity required).

Error analysis for asymptotically smooth functions

Functions f satisfying

 $|f^{(k)}(x)| \le C \, k! \, x^{-k-a}$ for all $k \in \mathbb{N}, \ 0 < x \le 1$ and some a > 0. are called *asymptotically smooth* in (0,1].

For any $\xi \in (0,1]$ there is a polynomial p of degree N such that

$$\|f-p\|_{[\xi/2,\xi],\infty} = \max_{\xi/2 \le x \le \xi} |f(x)-p(x)| \le \varepsilon_{N,\xi} := rac{C}{2} \left(rac{\xi}{4}
ight)^{-a} 3^{-a-N}.$$

Proof. Choose p as Taylor approximation of degree N.

Convolution of tensorised vectors is possible.

With the suitable interpretation,

$$\begin{pmatrix} \bigotimes_{j=1}^{d} v^{(j)} \end{pmatrix} \star \begin{pmatrix} \bigotimes_{j=1}^{d} w^{(j)} \end{pmatrix} = \bigotimes_{j=1}^{d} \left(v^{(j)} \star w^{(j)} \right)$$
$$v^{(j)}, w^{(j)} \in \mathbb{K}^{2},$$

is correct.

Literature:

W. Hackbusch: Tensor spaces and numerical tensor calculus. Springer 2012

Program for tomorrow's lecture:

I. ALS Method for Optimisation Problems

- Formulation of the Problem
- Study of Examples
- Global Convergence for Rank-1 Approximation

II. (Non-)Closedness Questions

- r-Term Format, Rank of a Tensor
- Properties of \mathcal{R}_r , Numerical Instability
- Strassen's Matrix Multiplication
- Matrix-Product (TT) Format, Tensor Networks
- Nonclosedness of the Cyclic Matrix-Product Format

Minimal Subspaces

- Definition
- Tensor Spaces of Linear Mappings, Functionals
- Characterisation of Minimal Subspaces in Infinite Dimensions

Topological Tensor Spaces

- Banach spaces, Crossnorms, Projective and Injective Norm
- Final Proof