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1 Tensors

1.1 Where do large-scale tensors appear in Numerical Analysis?
1.1.1 Functions

Multivariate functions f defined on a Cartesian product
Q=01 xQ x...xQy

are tensors.

For instance,

L2(Q) = L?(921) @ L?() @ ... @ L*(Qy).

Tensor product of univariate functions:

d d
(® fj) (o122 wa) = 1 i)
j=1 et



1.1.2 Grid Functions

Discretisation in product grids w = w1 X wy X ... X wy,
e.g., w; regular grid with n; grid points.

d

Total number of grid points N = ngl n;, e.g. n®. Tensor space:

RVN~ARMT@QR™®...® R,

Tensor product of vectors v(7) € R™:

d . d .
(@ v(ﬂ)) [i1, 40, .- -,iq] := [ vY[5].
j=1 j=1

Challenge: How to treat tensors when N = n® is huge (N > memory space)?



1.1.3 Matrices or Operators

Let V=V W®...0V;, W=W1Wo®...0 W,; be tensor spaces,

A Vi — W, linear mappings (1 < j < d).

The tensor product (Kronecker product)

A=A10A4®..A;: V- W

is the mapping

A fv(l) R v(2) R...RQ v(d) — Alv(l) 0% sz(z) R... R0 Adv(d).

If Aj € R™" then A € @IR™MX1 ~ R1X1



Example: Poisson problem —Au = f in [0,1]¢, w =0 on T.

The differential operator has the form
0° 0?
L = 2®I® ®I—|—...—|—I®...®I®—2.
Oxg oxs
Discretise by difference scheme with n grid points per direction.

The system matrix is

A=T®IQ..QI+..+1®... 1Ty

Challenge: Approximate the inverse of A € RVXN,

where n = d = 1000, so that

N = n® = 1000199 = 1039,

Later result: required storage: O(dn log? %)



1.2 Tensor Operations

addition: v +w,

scalar product: (v, w)
d : d : d : :
matrix-vector multiplication: <® A(9)> ((X) fv(])> = & A(J)U(J),
j=1 j=1 j=1
Hadamard product: (v ® w) [i] = v][i]w][i], pointwise product of functions

d d d
(@ ,U(j)) o (@ w(j)) =R o) @ i),
j=1 j=1 j=1

convolution: v,w € &j_1 R"™:u=vxw with u;y = > g<k<i Vi_kWk

d d d
(@ ,U(j)) * (@ w(j)) = Q) vV 5w,
j=1 j=1 j=1



1.3 High-Dimensional Problems in Practice

1) boundary value problems Lu = f in cubes or R3 = d =3, n; large
2) Hartree-Fock equations (as 1))

3) Schrodinger equation (d = 3 number of electrons + antisymmetry)
4) bvp L(p)u = f with parameters p = (p1,...,pm) =>d=m+1

5) bvp with stochastic coefficients = as 4) with m = oo

6) coding of a d-variate function in Cartesian product = d = d

7) ...

8) Lyapunov equation (A® I +1® A)x=Db



2 Tensor Representations

How to represent tensors with n? entries by few data?

Classical formats:

e r-Term Format (Canonical Format)

e Tensor Subspace Format (Tucker Format)
More recent:

e Hierarchical Tensor Format (including the TT format)



2.1 r-Term Format (Canonical Format)

By definition, each algebraic tensor ve V=V ® Vo, ®...® V; has a
representation

T .
V:Zv,gl)(@vgz)@...@v,gd) with v,(OJ)EVj
p=1
and suitable r. Set

Ry = {Zvlgl)@v/(})@...@vgd):’U/()j) EVJ}
p=1

Storage: rdn (for n = maxdim V}).
If  is of moderate size, this format is advantageous.
Often, a tensor v is replaced by an approximation ve € Ry with r = r(e).

rank(v) ;= min{r : v € R;}, Ry :={v e V:rank(v) <r}.



Recall the matrix A discretising the Laplace equation:

A=TRIR..T+.. +1Q...0 1 ®1Ty.

REMARK: A € R, and rank(A) = d (tensor rank, not matrix rank).
T: tridiagonal matrices of size n X n.

Size of A: N x N with N = n?.
Eg,n=d=1000 = N =n= 10001000 — 103000

We aim at the inverse of A € RVX{V,



Solution: A~1 ~ B, with B, of the form

d

.
B, = Z a; ® exp(—b;T}) € Rr,
=1 j=1

where a;,b; > 0 are explicitly known.

Proof. Approximate 1/x in [1, co) by exponential sums Eyr(x) = >_F_; a; exp(—b;x).
The best approximation satisfies

% _ Er()H < O(exp(—crl/z)).

0o,[1,00)

For a positive definite matrix with ¢(A) C [1,00), Er(A) approximates A1
with

|Er(A) = A7Y], < O(exp(—cr/?)).
Inthecase of A=T1QRIR...01+...+1®...% 1T, one obtains

Tr

d
Br = ET(A) = Z a; ® eXp(—biTj).
i=1 j=1



Operations with Tensors and Truncations

r d S d

A=Y XAV er, v=Y Ko eRrs

v=1j=1 v=1j=1

r S d

wi=Av=Y Y & AV e R,

v=1pu=1j=1

Because of the increased representation rank rs, one must apply a truncation

w— w' € R, with r’ < rs.

Unfortunately, truncation to lower rank is not straightforward in the r-term

format.

There are also other disadvantages of the r-term format (numerical instabilities,
etc.)



2.2 Tensor Subspace Format (Tucker Format)

2.2.1 Definition of 7;

Implementational description: 7, with r = (71,...,r;) contains all tensors of

the form

vV = Z Z a[zl,.. Zd] ®b(‘7)

11=1 14

with some vectors {b(]) 1 < i4; < rj} C V; possibly with r; < n; and
Y

ali1,...,1q] € R.

The core tensor a € ®;-i:1 K" has Hg'l:1 r; entries. Disadvantage for large d.

Algebraic description:

Tensor space V. =V; ® Vo ® ... ® V. Choose subspaces U; C V; and consider

d
the tensor subspace U = & U;. Then
=1



2.2.2 Matricisation and Tucker Ranks

Let V=RM QR Q... R, fix j € {1,...,d}, set ni;] = e 7k

The j-th matricisation maps a tensor v € V into a matrix

M; € R"™"]
defined by

M][Z], l[j]] = v[i1, ..., 1] for 1[]] = (41, - .. s 0150541 - yT)-

The isomorphism M; : V — R™ "™ is called the j-th matricisation.

Tucker rank or j-th rank:

rank;(v) := rank(M,(v)) for1 <j <d.
Sometimes, r := (ranki(Vv),...,ranky(v)) is called the multilinear rank of v.
Example: v € V := R?2 @ R2 ® R? ® R2. Then M>(Vv) belongs to R2*8:

MQ(V): Viiil Vi112 Vi121 V1122 V2111 V2112 V2121 V2122
V1211 V1212 V1221 V1222 V2211 V2212 V2221 V2222



2.2.3 Important Properties

Alternative definition of 7:

ﬂ:{VEV:rankj(V)grjforall1§j§d}.

Also for dim V; = oo, rank;(v) can be defined.

Under rather general assumptions on the norms of V; and V one proves that

Vi — V = rank;(v) < limp— oo rank;(vn).

Conclusion: 1) 7y is weakly closed.
2) If V is a reflexive Banach space, inf 7. ||[V — u|| = ||V — upeg|| has a solution
Upest € 7r-



2.2.4 HOSVD: Higher Order Singular-Value Decomposition

Diagonalisation:

rank;(v) _ . _
1=1

J,Ej): j-th singular values; {bgj) 1 <4 <rankj(v)}: HOSVD basis.

1 rd d :
Truncation: Let v= 3 --- 3 aliy,...,ig] ® b)) € Tr with HOSVD basis
i1=1  ig=1 j=1 "
vectors bgj). For s = (s1,...,84) <r set
S S ()
UHQOSVD — Z R Z a[ila 77’d] ® bz € 7
=1  ig=1 j=1

asi-optimality:
Quasi-optimality 12

d 7j AN 2
1/2
v =unosvol < (X X (6P) 7| < a2 v - tpeall  (bes € T5)
j=1i=s;+1



Conclusions concerning the traditional formats:

1. r-term format R,
e advantage: low storage cost rdn

e disadvantage: difficult truncation, numerical instability may occur

2. tensor subspace format 7y
e advantage: stable and quasi-optimal truncation

e disadvantage: exponentially expensive storage for core tensor a

The next format combines the advantages.



3 Hierarchical Format

3.1 Dimension Partition Tree

Example: ve V =V; ® Vo ® V3 ® V4. There are subspaces such that
vespan{v}; CUn®Ugn CV

/ AN
U{1,2} C U1 ® Uy U{3’4} CU3z3Q® U,
VAN VAN
Uy C Vg U C Vo Uz C V3 Uyg CVy

Optimal subspaces are Uy, := UM"(v).
For o C D :={1,...,d} and af := D\«, the minimal subspaces UM™"(v) and
UM (v) satisfy
v e UTN(v) @ UM (v)
with minimal dimension.

Dimension partition tree:
Any binary tree with root D := {1,...,d} and leaves {1},{2}, ..., {d}.



{1,2,3,4,5,6,7}

T~
11,2,3,4,5,6} {7}
N
{1,2,3,4,5} {6}
D={1,2,3,4} — N
{1,2,3,4} {5}
/ \ {12ﬁ4}
11,2} 13,4} o
BZa I
AN

L2 13 [ ) e

Figure 1: Balanced tree and linear tree

The hierarchical format based on the linear tree is also called the TT format.



3.2 Algorithmic Realisation

Typical situation: U{1,2} C U1 ® Uy (nestedness property).

Bases: U7 = span {bgl)}, U = span {b§2)}, U{172} —  span {bg{l’z})}.

1<i<rq 1<j<r 1§€§T‘{1,2}
({12}) = = ({12}.0),(1) o ,(2)
by =3 ) e T @b
i=1j=1

Only the basis vectors b(yj) of U; C V; (1 < j < d) are explicitly stored,
for the other nodes store the coefficient matrices

C(Oé,ﬁ) — (C(Q7€)) c R"» XTay
17 i

. 1,...d
The tensor is represented by v = clbg{ }).

Storage: (d—1)r3+drn for [C(O‘fe), c1, b(yj)] (r := maxq dim Uqy; n := max; dim(V}))



3.3 Truncation, Operations

Operations are typically recursive w.r.t. to the tree structure.
They involve only the data [C’(O"E), c1, b,()?)].

The typical operation cost is

O(dr* + dnr?).

The HOSVD truncation is based on SVDs involving the coefficient matrices
C(oz,f) c R7e1 XTag.

(a1, ap: sons of «).



3.4 Operations - Example: scalar product

Let v,w € V be given by (C’(O‘ £) ey /(J)> and (C”(O‘ £) e //(J)) resp.

Determine the scalar products [37(5‘) = <b;(a), b;-’(a)> recursively by

g0 = (b bn(a)> <Z (@i)y(ar) g /(o) Z ”(a,J)b”(a1)®bg(a2)>

;(Oé ) g(gﬂu) <b;€(a1)’ bg(a1)> <b2(042), bg(a2)>

_ q 02(,(2‘ 1) ”(&,J)Blg%l)ﬁ(az)

|
M /\

k
QN
B
K

&
>
S

Y

(a1, ap: sons of «; 6( ) explicitly computable for leaves a = {j}).



4 Solution of Linear Systems

Linear system
Ax = b,

wherex,b € V = ®3-l:1 Viand A € ®7_; L(V},V}) C L(V, V) are represented
in one of the formats (e.g., A: r-term format, x, b: hierarchical format):

Standard linear iteration:
x™tl = x™ — B(Ax™ — b).

— representation ranks blow up.

Therefore truncations 1" are used (‘truncated iteration’):
x™tl — 7(x™ — B(T (AX™ — b))).

Cost per step: nd X powers of the involved representation ranks.



x"tl — 7 (x™ — B(T (Ax — b)))
Choice of B:

If A corresponds to an elliptic pde of order 2, the discretisation of A is spectrally
equivalent = B = B, from above has a simple r-term format.

Obvious variants: cg-like methods
Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM),
Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011,
Ballani-Grasedyck 2013, Savas-Eldén 2013

Remark: For d = 2, these linear systems may be written as matrix equations:

(AQI+1I®A)x=b < AX+XA=B (Lyapunov)
(cf. Benner-Breiten 2013). Used in Control Theory and Model Reduction.



Variational Approach

Define
d(x) := (Ax,x) — 2 (b, x)
if A is positive definite or
b(x) == ||Ax - b||?
or
®(x) := | B (Ax — b)|?
and try to minimise ®(x) over all parameters of x is a fixed format.
Literature:

Espig-Hackbusch-Rohwedder-Schneider, Falcé-Nouy,
Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets, Uschmajew,...



5 Multivariate Cross Approximation

Matrix Case

Choose suitable r rows and columns:

* * *

£ S ES
* %k >k *x *x % 3k % *x X

S X ES

M — £ £ B
* % %k *x *x % >k % *x X

S S ES
* % >k *x *x % 3k %k *x X

* * *

S S ES

They define a rank-r matrix M, interpolating M at these rows and columns.
If rank(M) = r, then M, = M.

Order d > 3: In principle similar when using the hierarchical format.
Required number of evaluations of the tensor is O (Zj nj))



6 Tensorisation

Vj = R" = storage: rdn + (d — 1)r>. Now: n — O(logn)

Let the vector y € R" represent the grid values of a function in (0, 1]:

yqu(MTH> 0<pu<n-1).

Choose, e.g., n = 2d, and note that R" =V : = ®§l:1 R2.
Isomorphism by binary integer representation:
L= z;l:l 20~ with p; € {0,1}, ie.,

Yu = VI[p1, 1oy -5 g—1, ).

Application of tensor tools (SVD: black-box procedure)

1) Tensorisation: y € R™ — v € V (storage size: n = 2¢)

2) Apply the tensor truncation: v —— v¢

3) Observation: often the data size decreases from n = 2% to O(d) = O(logn).



EXAMPLE

y € C™ with y,, = (" leads to an elementary tensor v € V, i.e,,

c C2.

d
. . 1
v — ® o) with vU7) = [ ni—1
=1 ¢
Storage size = 2d = 2logy n.

Example:
f(x) =1/(x+9) € C((0,1]), § > 0, can be well-approximated by exponential
sums (cf. Braess-H.):
f(x) ~ Zzzl ay exp(—byx) (av, by > 0)
error: O(n exp(—21/27rr1/2)) for 6 =0, O(exp(—cr)) for § = O(1).

Storage size:

2dr = 2rlogy n = O(log®(g) log(n))



p-Methods

~ r .
f(z) ~ f(z) = 3 ape?™¥ 1) trigonometric approximation
k=1

=> tensorisation, storage 2dr = 27 logs n, error < Hf — f

~ T
Similar for f(x) = Y ajsin(27ik) etc.
k=1

Polynomials:
f(x) = P(x), P polynomial of degree < p

r d -
An r-term representation ). & v,gj) does not work well.
i=1j=1
Instead, the hierarchical format (in particular, the TT format) is used.



Hierarchical Format, Matricisation

1 — {12} — {123} — {1,...,d-1} — {1,....d}
Tree: / e S /
2 3 4 .. d
(also called TT format)
Consider the tensorisation v € ®?:1 R? of the vector y = (yo,---,Yn—1) € R™
The matricisation for a = {1,...,5} (1 < j < d —1) yields
L Y0 Ym o Yn—m |
Ma(v) = :yl ::ym“Ll ?n_m+1 with m = 27.
L Ym—-1 Y2m—-1 ° Yn-1 i

Recall: rankq(v) = dim My(v).



Polynomials

f polynomial of degree p = rankqy(v) = dim My(v) < p+ 1.

hp method, i.e., piecewise polynomial

Singularity at x = 0, partition:

1 1 2 2 4 11 1
[075 ) [ﬁ)ﬁ]a [ﬁaﬁ Yt Za?]a [571]
Local polynomials of degree p = rankq(v) = dim Mq(v) < p+ 2.

Conclusion: If any hp approximation with a piecewise polynomial P of degree
< p exists, then the tensorised grid function f can be approximated by a tensor
f such that the ranks are bounded by p + 2 and

Hf—f , < If =Pl
The data size is bounded by

< 2d(p+2)2.

The computation of f is completely black-box (e.g., no information about the
location of the singularity required).



Error analysis for asymptotically smooth functions

Functions f satisfying

fB)(2)] < Ckla™"% forall k€N, 0 <z <1 and some a > 0.

are called asymptotically smooth in (0, 1].

For any £ € (0,1] there is a polynomial p of degree N such that

¢ /€

B L ¢ —a—N
1f = Pllig /261,00 = e, [f(z) —p(z)] <enge = > (Z) 3 '

Proof. Choose p as Taylor approximation of degree V.



Convolution of tensorised vectors is possible.

With the suitable interpretation,

(é U(j)) X (é w(j)) - ® (v0) 4 )

J=1
’U(j), w(j) e K27

IS correct.

Literature:
W. Hackbusch: Tensor spaces and numerical tensor calculus. Springer 2012



Program for tomorrow’s lecture:

|. ALS Method for Optimisation Problems

— Formulation of the Problem

—  Study of Examples

— Global Convergence for Rank-1 Approximation

II. (Non-)Closedness Questions

— pr-Term Format, Rank of a Tensor

— Properties of R, Numerical Instability

— Strassen’s Matrix Multiplication

— Matrix-Product (TT) Format, Tensor Networks

— Nonclosedness of the Cyclic Matrix-Product Format

Minimal Subspaces

— Definition

— Tensor Spaces of Linear Mappings, Functionals

— Characterisation of Minimal Subspaces in Infinite Dimensions

Topological Tensor Spaces
— Banach spaces, Crossnorms, Projective and Injective Norm
— Final Proof



