Numerical Tensor Calculus

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften
and
Christians-Albrechts-Universität zu Kiel

wh@mis.mpg.de
https://www.mis.mpg.de/scicomp/hackbusch.en.html

Creswick, February 8, 2018

Overview

Tensors

- Where do large-scale tensors appear?
- Tensor operations
- High-dimensional problems in practice

Tensor Representations

- $\quad r$-Term Format (Canonical Format)
- Tensor Subspace Format (Tucker Format)
- Matricisation and Tucker Ranks
- HOSVD: Higher Order Singular-Value Decomposition

Hierarchical Format

- Dimension Partition Tree
- Algorithmic Realisation
- Operations

Solution of Linear Systems
Multivariate Cross Approximation
Tensorisation

1 Tensors

1.1 Where do large-scale tensors appear in Numerical Analysis?

1.1.1 Functions

Multivariate functions f defined on a Cartesian product

$$
\Omega=\Omega_{1} \times \Omega_{2} \times \ldots \times \Omega_{d}
$$

are tensors.

For instance,

$$
L^{2}(\Omega)=L^{2}\left(\Omega_{1}\right) \otimes L^{2}\left(\Omega_{2}\right) \otimes \ldots \otimes L^{2}\left(\Omega_{d}\right) .
$$

Tensor product of univariate functions:

$$
\left(\bigotimes_{j=1}^{d} f_{j}\right)\left(x_{1}, x_{2}, \ldots, x_{d}\right):=\prod_{j=1}^{d} f_{j}\left(x_{j}\right)
$$

1.1.2 Grid Functions

Discretisation in product grids $\omega=\omega_{1} \times \omega_{2} \times \ldots \times \omega_{d}$,
e.g., ω_{j} regular grid with n_{j} grid points.

Total number of grid points $N=\prod_{j=1}^{d} n_{j}$, e.g., n^{d}. Tensor space:

$$
\mathbb{R}^{N} \simeq \mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}} \otimes \ldots \otimes \mathbb{R}^{n_{d}}
$$

Tensor product of vectors $v^{(j)} \in \mathbb{R}^{n_{j}}$:

$$
\left(\bigotimes_{j=1}^{d} v^{(j)}\right)\left[i_{1}, i_{2}, \ldots, i_{d}\right]:=\prod_{j=1}^{d} v^{(j)}\left[i_{j}\right]
$$

Challenge: How to treat tensors when $N=n^{d}$ is huge ($N \gg$ memory space)?

1.1.3 Matrices or Operators

$$
\text { Let } \mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}, \quad \mathbf{W}=W_{1} \otimes W_{2} \otimes \ldots \otimes W_{d} \quad \text { be tensor spaces, }
$$

$$
A_{j}: V_{j} \rightarrow W_{j} \quad \text { linear mappings }(1 \leq j \leq d)
$$

The tensor product (Kronecker product)

$$
\mathbf{A}=A_{1} \otimes A_{2} \otimes \ldots \otimes A_{d}: \mathbf{V} \rightarrow \mathbf{W}
$$

is the mapping

$$
\mathbf{A}: v^{(1)} \otimes v^{(2)} \otimes \ldots \otimes v^{(d)} \mapsto A_{1} v^{(1)} \otimes A_{2} v^{(2)} \otimes \ldots \otimes A_{d} v^{(d)}
$$

If $A_{j} \in \mathbb{R}^{n \times n}$ then $\mathbf{A} \in \otimes^{d} \mathbb{R}^{n \times n} \simeq \mathbb{R}^{n^{d} \times n^{d}}$.

Example: Poisson problem $-\Delta u=f$ in $[0,1]^{d}, u=0$ on Γ.

The differential operator has the form

$$
L=\frac{\partial^{2}}{\partial x_{1}^{2}} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes \frac{\partial^{2}}{\partial x_{d}^{2}}
$$

Discretise by difference scheme with n grid points per direction.
The system matrix is

$$
\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}
$$

Challenge: Approximate the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$, where $n=d=1000$, so that

$$
N=n^{d}=1000^{1000}=10^{3000} .
$$

Later result: required storage: $O\left(d n \log ^{2} \frac{1}{\varepsilon}\right)$

1.2 Tensor Operations

addition: $\mathbf{v}+\mathbf{w}$,
scalar product: $\langle\mathbf{v}, \mathbf{w}\rangle$

Hadamard product: $(\mathbf{v} \odot \mathbf{w})[\mathbf{i}]=\mathbf{v}[\mathbf{i}] \mathbf{w}[\mathbf{i}]$, pointwise product of functions

$$
\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \odot\left(\bigotimes_{j=1}^{d} w^{(j)}\right)=\bigotimes_{j=1}^{d} v^{(j)} \odot w^{(j)},
$$

convolution: $\mathbf{v}, \mathbf{w} \in \otimes_{j=1}^{d} \mathbb{R}^{n}: \mathbf{u}=\mathbf{v} \star \mathbf{w}$ with $\mathbf{u}_{\mathbf{i}}=\sum_{\mathbf{0} \leq \mathbf{k} \leq \mathbf{i}} \mathbf{v}_{\mathbf{i}-\mathbf{k}} \mathbf{w}_{\mathbf{k}}$

$$
\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \star\left(\bigotimes_{j=1}^{d} w^{(j)}\right)=\bigotimes_{j=1}^{d} v^{(j)} \star w^{(j)} .
$$

1.3 High-Dimensional Problems in Practice

1) boundary value problems $L u=f$ in cubes or $\mathbb{R}^{3} \Rightarrow d=3, n_{j}$ large
2) Hartree-Fock equations (as 1))
3) Schrödinger equation ($d=3 \times$ number of electrons + antisymmetry $)$
4) bvp $L(p) u=f$ with parameters $p=\left(p_{1}, \ldots, p_{m}\right) \Rightarrow d=m+1$
5) bvp with stochastic coefficients \Rightarrow as 4) with $m=\infty$
6) coding of a d-variate function in Cartesian product $\Rightarrow d=d$
7) ...
8) Lyapunov equation $(A \otimes I+I \otimes A) \mathbf{x}=\mathbf{b}$

2 Tensor Representations

How to represent tensors with n^{d} entries by few data?

Classical formats:

- r-Term Format (Canonical Format)
- Tensor Subspace Format (Tucker Format)

More recent:

- Hierarchical Tensor Format (including the TT format)

$2.1 \quad r$-Term Format (Canonical Format)

By definition, each algebraic tensor $\mathbf{v} \in \mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}$ has a representation

$$
\mathbf{v}=\sum_{\rho=1}^{r} v_{\rho}^{(1)} \otimes v_{\rho}^{(2)} \otimes \ldots \otimes v_{\rho}^{(d)} \quad \text { with } v_{\rho}^{(j)} \in V_{j}
$$

and suitable r. Set

$$
\mathcal{R}_{r}:=\left\{\sum_{\rho=1}^{r} v_{\rho}^{(1)} \otimes v_{\rho}^{(2)} \otimes \ldots \otimes v_{\rho}^{(d)}: v_{\rho}^{(j)} \in V_{j}\right\}
$$

Storage: $r d n$ (for $n=\operatorname{maxdim} V_{j}$).
If r is of moderate size, this format is advantageous.
Often, a tensor \mathbf{v} is replaced by an approximation $\mathbf{v}_{\varepsilon} \in \mathcal{R}_{r}$ with $r=r(\varepsilon)$.

$$
\operatorname{rank}(\mathbf{v}):=\min \left\{r: \mathbf{v} \in \mathcal{R}_{r}\right\}, \quad \mathcal{R}_{r}:=\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}(\mathbf{v}) \leq r\}
$$

Recall the matrix A discretising the Laplace equation:

$$
\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}
$$

REMARK: $\mathbf{A} \in \mathcal{R}_{d}$ and $\operatorname{rank}(\mathbf{A})=d$ (tensor rank, not matrix rank).
T_{j} : tridiagonal matrices of size $n \times n$.

Size of A: $N \times N$ with $N=n^{d}$.
E.g., $n=d=1000 \quad \Longrightarrow \quad N=n^{d}=1000^{1000}=10^{3000}$.

We aim at the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$.

Solution: $\mathbf{A}^{-1} \approx \mathbf{B}_{r}$ with \mathbf{B}_{r} of the form

$$
\mathbf{B}_{r}=\sum_{i=1}^{r} a_{i} \bigotimes_{j=1}^{d} \exp \left(-b_{i} T_{j}\right) \in \mathcal{R}_{r}
$$

where $a_{i}, b_{i}>0$ are explicitly known.

Proof. Approximate $1 / x$ in $[1, \infty)$ by exponential sums $E_{r}(x)=\sum_{i=1}^{r} a_{i} \exp \left(-b_{i} x\right)$. The best approximation satisfies

$$
\left\|\frac{1}{\bullet}-E_{r}(\cdot)\right\|_{\infty,[1, \infty)} \leq O\left(\exp \left(-c r^{1 / 2}\right)\right)
$$

For a positive definite matrix with $\sigma(\mathbf{A}) \subset[1, \infty), E_{r}(\mathbf{A})$ approximates \mathbf{A}^{-1} with

$$
\left\|E_{r}(\mathbf{A})-\mathbf{A}^{-1}\right\|_{2} \leq O\left(\exp \left(-c r^{1 / 2}\right)\right)
$$

In the case of $\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}$ one obtains

$$
\mathbf{B}_{r}:=E_{r}(\mathbf{A})=\sum_{i=1}^{r} a_{i} \bigotimes_{j=1}^{d} \exp \left(-b_{i} T_{j}\right)
$$

Operations with Tensors and Truncations

$$
\mathbf{A}=\sum_{\nu=1}^{r} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} \in \mathcal{R}_{r}, \quad \mathbf{v}=\sum_{\nu=1}^{s} \bigotimes_{j=1}^{d} v_{\nu}^{(j)} \in \mathcal{R}_{s}
$$

\Rightarrow

$$
\mathbf{w}:=\mathbf{A} \mathbf{v}=\sum_{\nu=1}^{r} \sum_{\mu=1}^{s} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} v_{\mu}^{(j)} \in \mathcal{R}_{r s}
$$

Because of the increased representation rank $r s$, one must apply a truncation $\mathbf{w} \mapsto \mathbf{w}^{\prime} \in \mathcal{R}_{r^{\prime}}$ with $r^{\prime}<r s$.

Unfortunately, truncation to lower rank is not straightforward in the r-term format.

There are also other disadvantages of the r-term format (numerical instabilities, etc.)

2.2 Tensor Subspace Format (Tucker Format)

2.2.1 Definition of \mathcal{T}_{r}

Implementational description: $\mathcal{T}_{\mathbf{r}}$ with $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$ contains all tensors of the form

$$
\mathbf{v}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} b_{i_{j}}^{(j)}
$$

with some vectors $\left\{b_{i_{j}}^{(j)}: 1 \leq i_{j} \leq r_{j}\right\} \subset V_{j}$ possibly with $r_{j} \ll n_{j}$ and $\mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \in \mathbb{R}$.
The core tensor $\mathbf{a} \in \otimes_{j=1}^{d} \mathbb{K}^{r_{j}}$ has $\prod_{j=1}^{d} r_{j}$ entries. Disadvantage for large d.

Algebraic description:

Tensor space $\mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}$. Choose subspaces $U_{j} \subset V_{j}$ and consider the tensor subspace $\mathbf{U}=\stackrel{d}{\otimes=1} U_{j}$. Then

$$
\mathcal{T}_{\mathbf{r}}:=\bigcup_{\operatorname{dim}\left(U_{j}\right) \leq r_{j}} \bigotimes_{j=1}^{d} U_{j} .
$$

2.2.2 Matricisation and Tucker Ranks

Let $\mathbf{V}=\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}} \otimes \ldots \otimes \mathbb{R}^{n_{d}}$, fix $j \in\{1, \ldots, d\}$, set $n_{[j]}:=\prod_{k \neq j} n_{k}$.
The j-th matricisation maps a tensor $\mathbf{v} \in \mathbf{V}$ into a matrix

$$
M_{j} \in \mathbb{R}^{n_{j} \times n_{[j]}}
$$

defined by

$$
M_{j}\left[i_{j}, \mathbf{i}_{[j]}\right]:=\mathbf{v}\left[i_{1}, \ldots, i_{d}\right] \quad \text { for } \mathbf{i}_{[j]}:=\left(i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{d}\right)
$$

The isomorphism $\mathcal{M}_{j}: \mathbf{V} \rightarrow \mathbb{R}^{n_{j} \times n_{[j]}}$ is called the j-th matricisation.

Tucker rank or j-th rank:

$$
\operatorname{rank}_{j}(\mathrm{v}):=\operatorname{rank}\left(\mathcal{M}_{j}(\mathrm{v})\right) \quad \text { for } 1 \leq j \leq d
$$

Sometimes, $\mathbf{r}:=\left(\operatorname{rank}_{1}(\mathbf{v}), \ldots, \operatorname{rank}_{d}(\mathbf{v})\right)$ is called the multilinear rank of \mathbf{v}.

Example: $\mathbf{v} \in \mathbf{V}:=\mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2}$. Then $\mathcal{M}_{2}(\mathrm{v})$ belongs to $\mathbb{R}^{2 \times 8}$:

$$
\mathcal{M}_{2}(\mathrm{v})=\left(\begin{array}{llllllll}
\mathbf{v}_{1111} & \mathbf{v}_{1112} & \mathbf{v}_{1121} & \mathbf{v}_{1122} & \mathbf{v}_{2111} & \mathbf{v}_{2112} & \mathbf{v}_{2121} & \mathbf{v}_{2122} \\
\mathbf{v}_{1211} & \mathbf{v}_{1212} & \mathbf{v}_{1221} & \mathbf{v}_{1222} & \mathbf{v}_{2211} & \mathbf{v}_{2212} & \mathbf{v}_{2221} & \mathbf{v}_{2222}
\end{array}\right)
$$

2.2.3 Important Properties

Alternative definition of \mathcal{T}_{r} :

$$
\mathcal{T}_{\mathbf{r}}=\left\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}_{j}(\mathbf{v}) \leq r_{j} \text { for all } 1 \leq j \leq d\right\}
$$

Also for $\operatorname{dim} V_{j}=\infty, \operatorname{rank}_{j}(\mathrm{v})$ can be defined.

Under rather general assumptions on the norms of V_{j} and \mathbf{V} one proves that

$$
\mathbf{v}_{n} \rightharpoonup \mathbf{v} \quad \Rightarrow \quad \operatorname{rank}_{j}(\mathbf{v}) \leq \underline{\lim }_{n \rightarrow \infty} \operatorname{rank}_{j}\left(\mathbf{v}_{n}\right)
$$

Conclusion: 1) \mathcal{T}_{r} is weakly closed.
2) If \mathbf{V} is a reflexive Banach space, $\inf _{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}}\|\mathbf{v}-\mathbf{u}\|=\left\|\mathbf{v}-\mathbf{u}_{\text {best }}\right\|$ has a solution $\mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathbf{r}}$.

2.2.4 HOSVD: Higher Order Singular-Value Decomposition

Diagonalisation:

$$
\mathbb{R}^{n_{j} \times n_{j}} \ni \mathcal{M}_{j}(\mathrm{v}) \mathcal{M}_{j}(\mathrm{v})^{\top}=\sum_{i=1}^{\mathrm{rank}_{j}(\mathrm{v})}\left(\sigma_{i}^{(j)}\right)^{2} b_{i}^{(j)}\left(b_{i}^{(j)}\right)^{\top}
$$

$\sigma_{i}^{(j)}: j$-th singular values; $\left\{b_{i}^{(j)}: 1 \leq i \leq \operatorname{rank}_{j}(\mathrm{v})\right\}:$ HOSVD basis.
Truncation: Let $\mathbf{v}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \stackrel{d}{\otimes=1} b_{i j}^{(j)} \in \mathcal{T}_{\mathbf{r}}$ with HOSVD basis vectors $b_{i}^{(j)}$. For $\mathrm{s}=\left(s_{1}, \ldots, s_{d}\right) \leq \mathbf{r}$ set

$$
\mathbf{u}_{\mathrm{HOSVD}}=\sum_{i_{1}=1}^{s_{1}} \cdots \sum_{i_{d}=1}^{s_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} b_{i_{j}}^{(j)} \in \mathcal{T}_{\mathrm{s}}
$$

Quasi-optimality:

$$
\left\|\mathbf{v}-\mathbf{u}_{\mathrm{HOSVD}}\right\| \leq\left(\sum_{j=1}^{d} \sum_{i=s_{j}+1}^{r_{j}}\left(\sigma_{i}^{(j)}\right)^{2}\right)^{1 / 2} \leq d^{1 / 2}\left\|\mathbf{v}-\mathbf{u}_{\text {best }}\right\| \quad\left(\mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathrm{s}}\right)
$$

Conclusions concerning the traditional formats:

1. r-term format \mathcal{R}_{r}

- advantage: low storage cost $r d n$
- disadvantage: difficult truncation, numerical instability may occur

2. tensor subspace format $\mathcal{T}_{\mathbf{r}}$

- advantage: stable and quasi-optimal truncation
- disadvantage: exponentially expensive storage for core tensor a

The next format combines the advantages.

3 Hierarchical Format

3.1 Dimension Partition Tree

Example: $\mathbf{v} \in \mathbf{V}=V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{4}$. There are subspaces such that

Optimal subspaces are $\mathbf{U}_{\alpha}:=\mathbf{U}_{\alpha}^{\min }(\mathbf{v})$.
For $\alpha \subset D:=\{1, \ldots, d\}$ and $\alpha^{c}:=D \backslash \alpha$, the minimal subspaces $U_{\alpha}^{\min }(\mathrm{v})$ and $U_{\alpha^{c}}^{\min }(\mathbf{v})$ satisfy

$$
\mathbf{v} \in U_{\alpha}^{\min }(\mathbf{v}) \otimes U_{\alpha^{c}}^{\min }(\mathbf{v})
$$

with minimal dimension.

Dimension partition tree:
Any binary tree with root $D:=\{1, \ldots, d\}$ and leaves $\{1\},\{2\}, \ldots,\{d\}$.

Figure 1: Balanced tree and linear tree
The hierarchical format based on the linear tree is also called the TT format.

3.2 Algorithmic Realisation

Typical situation: $\quad \mathrm{U}_{\{1,2\}} \subset U_{1} \otimes U_{2}$ (nestedness property).

Bases: $U_{1}=\operatorname{span}_{1 \leq i \leq r_{1}}\left\{b_{i}^{(1)}\right\}, U_{2}=\operatorname{span}_{1 \leq j \leq r_{2}}\left\{b_{j}^{(2)}\right\}, \mathbf{U}_{\{1,2\}}=\operatorname{span}_{1 \leq \ell \leq r_{\{1,2\}}}\left\{\mathbf{b}_{\ell}^{(\{1,2\})}\right\}$.

$$
\mathbf{b}_{\ell}^{(\{1,2\})}=\sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}} c_{i j}^{(\{1,2\}, \ell)} b_{i}^{(1)} \otimes b_{j}^{(2)}
$$

Only the basis vectors $b_{\nu}^{(j)}$ of $U_{j} \subset V_{j}(1 \leq j \leq d)$ are explicitly stored, for the other nodes store the coefficient matrices

$$
C^{(\alpha, \ell)}=\left(c_{i j}^{(\alpha, \ell)}\right)_{i j} \in \mathbb{R}^{r_{\alpha_{1}} \times r_{\alpha_{2}}}
$$

The tensor is represented by $\mathbf{v}=c_{1} \mathbf{b}_{1}^{(\{1, \ldots, d\})}$.
Storage: $(d-1) r^{3}+d r n$ for $\left[C^{(\alpha, \ell)}, c_{1}, b_{\nu}^{(j)}\right]\left(r:=\max _{\alpha} \operatorname{dim} U_{\alpha} ; n:=\max _{j} \operatorname{dim}\left(V_{j}\right)\right)$

3.3 Truncation, Operations

Operations are typically recursive w.r.t. to the tree structure.
They involve only the data $\left[C^{(\alpha, \ell)}, c_{1}, b_{\nu}^{(j)}\right]$.
The typical operation cost is

$$
O\left(d r^{4}+d n r^{2}\right)
$$

The HOSVD truncation is based on SVDs involving the coefficient matrices

$$
C^{(\alpha, \ell)} \in \mathbb{R}^{r_{\alpha_{1}} \times r_{\alpha_{2}}}
$$

$\left(\alpha_{1}, \alpha_{2}\right.$: sons of $\left.\alpha\right)$.

3.4 Operations - Example: scalar product

Let $\mathbf{v}, \mathbf{w} \in \mathbf{V}$ be given by $\left(C^{\prime(\alpha, \ell)}, c_{1}^{\prime}, b_{\nu}^{\prime(j)}\right)$ and $\left(C^{\prime \prime(\alpha, \ell)}, c_{1}^{\prime \prime}, b_{\nu}^{\prime \prime(j)}\right)$ resp.

$$
\mathbf{v}=c_{1}^{\prime} \mathbf{b}_{1}^{\prime(D)}, \mathbf{w}=c_{1}^{\prime \prime} \mathbf{b}_{1}^{\prime \prime(D)} \quad \Rightarrow \quad\langle\mathbf{v}, \mathbf{w}\rangle=c_{1}^{\prime} c_{1}^{\prime \prime}\left\langle\mathbf{b}_{1}^{\prime(D)}, \mathbf{b}_{1}^{\prime \prime(D)}\right\rangle
$$

Determine the scalar products $\beta_{i j}^{(\alpha)}:=\left\langle\mathbf{b}_{i}^{\prime(\alpha)}, \mathbf{b}_{j}^{\prime \prime(\alpha)}\right\rangle$ recursively by

$$
\begin{aligned}
\beta_{i j}^{(\alpha)} & =\left\langle\mathbf{b}_{i}^{\prime(\alpha)}, \mathbf{b}_{j}^{\prime \prime(\alpha)}\right\rangle=\left\langle\sum_{k, \ell} c_{k, \ell}^{\prime(\alpha, i)} b_{k}^{\prime\left(\alpha_{1}\right)} \otimes b_{\ell}^{\prime\left(\alpha_{2}\right)}, \sum_{p, q} c_{p, q}^{\prime \prime(\alpha, j)} b_{p}^{\prime \prime\left(\alpha_{1}\right)} \otimes b_{q}^{\prime \prime\left(\alpha_{2}\right)}\right\rangle \\
& =\sum_{k, \ell} \sum_{p, q} c_{k, \ell}^{\prime(\alpha, i)} c_{p, q}^{\prime \prime(\alpha, j)}\left\langle b_{k}^{\prime\left(\alpha_{1}\right)}, b_{p}^{\prime \prime\left(\alpha_{1}\right)}\right\rangle\left\langle b_{\ell}^{\prime\left(\alpha_{2}\right)}, b_{q}^{\prime \prime\left(\alpha_{2}\right)}\right\rangle \\
& =\sum_{k, \ell} \sum_{p, q} c_{k, \ell}^{\prime(\alpha, i)} c_{p, q}^{\prime \prime(\alpha, j)} \beta_{k p}^{\left(\alpha_{1}\right)} \beta_{\ell q}^{\left(\alpha_{2}\right)}
\end{aligned}
$$

(α_{1}, α_{2} : sons of $\alpha ; \beta_{k p}^{(\alpha)}$ explicitly computable for leaves $\alpha=\{j\}$).

4 Solution of Linear Systems

Linear system

$$
\mathrm{Ax}=\mathrm{b}
$$

where $\mathbf{x}, \mathbf{b} \in \mathbf{V}=\otimes_{j=1}^{d} V_{j}$ and $\mathbf{A} \in \otimes_{j=1}^{d} \mathcal{L}\left(V_{j}, V_{j}\right) \subset \mathcal{L}(\mathbf{V}, \mathbf{V})$ are represented in one of the formats (e.g., A: r-term format, \mathbf{x}, \mathbf{b} : hierarchical format):

Standard linear iteration:

$$
\mathbf{x}^{m+1}=\mathbf{x}^{m}-\mathbf{B}\left(\mathbf{A} \mathbf{x}^{m}-\mathbf{b}\right)
$$

\Rightarrow representation ranks blow up.

Therefore truncations T are used ('truncated iteration'):

$$
\mathbf{x}^{m+1}=T\left(\mathbf{x}^{m}-\mathbf{B}\left(T\left(\mathbf{A} \mathbf{x}^{m}-\mathbf{b}\right)\right)\right)
$$

Cost per step: $n d \times$ powers of the involved representation ranks.

$$
\mathbf{x}^{m+1}=T\left(\mathbf{x}^{m}-\mathbf{B}(T(\mathbf{A} \mathbf{x}-\mathbf{b}))\right)
$$

Choice of B:
If \mathbf{A} corresponds to an elliptic pde of order 2 , the discretisation of Δ is spectrally equivalent $\Rightarrow \mathbf{B}=\mathbf{B}_{r}$ from above has a simple r-term format.

Obvious variants: cg-like methods

Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM), Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011, Ballani-Grasedyck 2013, Savas-Eldén 2013

Remark: For $d=2$, these linear systems may be written as matrix equations:

$$
(A \otimes I+I \otimes A) \mathbf{x}=\mathbf{b} \quad \Leftrightarrow \quad A X+X A=B \quad \text { (Lyapunov) }
$$

(cf. Benner-Breiten 2013). Used in Control Theory and Model Reduction.

Variational Approach

Define

$$
\Phi(\mathbf{x}):=\langle\mathbf{A} \mathbf{x}, \mathbf{x}\rangle-2\langle\mathbf{b}, \mathbf{x}\rangle
$$

if \mathbf{A} is positive definite or

$$
\Phi(\mathrm{x}):=\|\mathbf{A x}-\mathrm{b}\|^{2}
$$

or

$$
\Phi(\mathrm{x}):=\|\mathbf{B}(\mathbf{A x}-\mathrm{b})\|^{2}
$$

and try to minimise $\Phi(\mathbf{x})$ over all parameters of x is a fixed format.

Literature:
Espig-Hackbusch-Rohwedder-Schneider, Falcó-Nouy,
Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets, Uschmajew,...

5 Multivariate Cross Approximation

Matrix Case

Choose suitable r rows and columns:

$$
M=\left[\begin{array}{llllllllll}
& * & & & * & & * & & & \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
& * & & & * & & * & & &
\end{array}\right]
$$

They define a rank-r matrix M_{r} interpolating M at these rows and columns.
If $\operatorname{rank}(M)=r$, then $M_{r}=M$.
Order $d \geq$ 3: In principle similar when using the hierarchical format.
Required number of evaluations of the tensor is $\left.O\left(\sum_{j} n_{j}\right)\right)$.

6 Tensorisation

$V_{j}=\mathbb{R}^{n} \Rightarrow$ storage: $r d n+(d-1) r^{3}$. Now: $n \rightarrow O(\log n)$
Let the vector $y \in \mathbb{R}^{n}$ represent the grid values of a function in $(0,1]$:

$$
y_{\mu}=f\left(\frac{\mu+1}{n}\right) \quad(0 \leq \mu \leq n-1) .
$$

Choose, e.g., $n=2^{d}$, and note that $\mathbb{R}^{n} \cong \mathbf{V}:=\bigotimes_{j=1}^{d} \mathbb{R}^{2}$.
Isomorphism by binary integer representation:
$\mu=\sum_{j=1}^{d} \mu_{j} 2^{j-1}$ with $\mu_{j} \in\{0,1\}$, i.e.,

$$
y_{\mu}=\mathbf{v}\left[\mu_{1}, \mu_{2}, \ldots, \mu_{d-1}, \mu_{d}\right]
$$

Application of tensor tools (SVD: black-box procedure)

1) Tensorisation: $y \in \mathbb{R}^{n} \longmapsto \mathbf{v} \in \mathbf{V}$ (storage size: $n=2^{d}$)
2) Apply the tensor truncation: $\mathbf{v} \longmapsto \mathbf{v} \varepsilon$
3) Observation: often the data size decreases from $n=2^{d}$ to $O(d)=O(\log n)$.

EXAMPLE

$y \in \mathbb{C}^{n}$ with $y_{\mu}=\zeta^{\mu}$ leads to an elementary tensor $\mathbf{v} \in \mathbf{V}$, i.e.,

$$
\mathbf{v}=\bigotimes_{j=1}^{d} v^{(j)} \quad \text { with } v^{(j)}=\left[\begin{array}{c}
1 \\
\zeta^{2^{j-1}}
\end{array}\right] \in \mathbb{C}^{2}
$$

Storage size $=2 d=2 \log _{2} n$.

Example:
$f(x)=1 /(x+\delta) \in C((0,1]), \delta \geq 0$, can be well-approximated by exponential sums (cf. Braess-H.):

$$
\begin{array}{ll}
& f(x) \approx \sum_{\nu=1}^{r} a_{\nu} \exp \left(-b_{\nu} x\right) \quad\left(a_{\nu}, b_{\nu}>0\right) \\
\text { error: } \quad & O\left(n \exp \left(-2^{1 / 2} \pi r^{1 / 2}\right)\right) \text { for } \delta=0, \quad O(\exp (-c r)) \text { for } \delta=O(1) .
\end{array}
$$

Storage size:

$$
2 d r=2 r \log _{2} n=O\left(\log ^{2}(\varepsilon) \log (n)\right)
$$

p-Methods

$f(x) \approx \tilde{f}(x)=\sum_{k=1}^{r} a_{k} e^{2 \pi i(k-1)}$ trigonometric approximation
\Rightarrow tensorisation, storage $2 d r=2 r \log _{2} n$, error $\leq\|f-\tilde{f}\|$
Similar for $\tilde{f}(x)=\sum_{k=1}^{r} a_{k} \sin (2 \pi i k)$ etc.
Polynomials:
$f(x) \approx P(x), P$ polynomial of degree $\leq p$

An r-term representation $\sum_{i=1}^{r} \bigotimes_{j=1}^{d} v_{i}^{(j)}$ does not work well.
Instead, the hierarchical format (in particular, the TT format) is used.

Hierarchical Format, Matricisation

(also called TT format)

Consider the tensorisation $\mathbf{v} \in \bigotimes_{j=1}^{d} \mathbb{R}^{2}$ of the vector $y=\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{R}^{n}$.
The matricisation for $\alpha=\{1, \ldots, j\}(1 \leq j \leq d-1)$ yields

$$
\mathcal{M}_{\alpha}(\mathbf{v})=\left[\begin{array}{llll}
y_{0} & y_{m} & \cdots & y_{n-m} \\
y_{1} & y_{m+1} & \cdots & y_{n-m+1} \\
\vdots & \vdots & & \vdots \\
y_{m-1} & y_{2 m-1} & \cdots & y_{n-1}
\end{array}\right] \text { with } m:=2^{j}
$$

Recall: $\operatorname{rank}_{\alpha}(\mathbf{v})=\operatorname{dim} \mathcal{M}_{\alpha}(\mathbf{v})$.

Polynomials

f polynomial of degree $p \Rightarrow \operatorname{rank}_{\alpha}(\mathbf{v})=\operatorname{dim} \mathcal{M}_{\alpha}(\mathbf{v}) \leq p+1$.
hp method, i.e., piecewise polynomial
Singularity at $x=0$, partition:

$$
\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{4}{n}\right], \ldots,\left[\frac{1}{4}, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right] .
$$

Local polynomials of degree $p \Rightarrow \operatorname{rank}_{\alpha}(\mathbf{v})=\operatorname{dim} \mathcal{M}_{\alpha}(\mathbf{v}) \leq p+2$.
Conclusion: If any hp approximation with a piecewise polynomial \mathbf{P} of degree $\leqq p$ exists, then the tensorised grid function \mathbf{f} can be approximated by a tensor $\tilde{\mathbf{f}}$ such that the ranks are bounded by $p+2$ and

$$
\|\mathbf{f}-\tilde{\mathbf{f}}\|_{2} \leq\|\mathbf{f}-\mathbf{P}\|_{2}
$$

The data size is bounded by

$$
\leq 2 d(p+2)^{2}
$$

The computation of $\tilde{\mathbf{f}}$ is completely black-box (e.g., no information about the location of the singularity required).

Error analysis for asymptotically smooth functions

Functions f satisfying

$$
\left|f^{(k)}(x)\right| \leq C k!x^{-k-a} \quad \text { for all } k \in \mathbb{N}, 0<x \leq 1 \text { and some } a>0
$$

are called asymptotically smooth in (0, 1].

For any $\xi \in(0,1]$ there is a polynomial p of degree N such that

$$
\|f-p\|_{[\xi / 2, \xi], \infty}=\max _{\xi / 2 \leq x \leq \xi}|f(x)-p(x)| \leq \varepsilon_{N, \xi}:=\frac{C}{2}\left(\frac{\xi}{4}\right)^{-a} 3^{-a-N}
$$

Proof. Choose p as Taylor approximation of degree N.

Convolution of tensorised vectors is possible.

With the suitable interpretation,

$$
\begin{gathered}
\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \star\left(\bigotimes_{j=1}^{d} w^{(j)}\right)=\bigotimes_{j=1}^{d}\left(v^{(j)} \star w^{(j)}\right) \\
v^{(j)}, w^{(j)} \in \mathbb{K}^{2},
\end{gathered}
$$

is correct.

Literature:

W. Hackbusch: Tensor spaces and numerical tensor calculus. Springer 2012

Program for tomorrow's lecture:

I. ALS Method for Optimisation Problems

- Formulation of the Problem
- Study of Examples
- Global Convergence for Rank-1 Approximation
II. (Non-)Closedness Questions
- $\quad r$-Term Format, Rank of a Tensor
- Properties of \mathcal{R}_{r}, Numerical Instability
- Strassen's Matrix Multiplication
- Matrix-Product (TT) Format, Tensor Networks
- Nonclosedness of the Cyclic Matrix-Product Format

Minimal Subspaces

- Definition
- Tensor Spaces of Linear Mappings, Functionals
- Characterisation of Minimal Subspaces in Infinite Dimensions

Topological Tensor Spaces

- Banach spaces, Crossnorms, Projective and Injective Norm
- Final Proof

