ALS Iteration / (Non-)Closedness

Wolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften and University of Kiel

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de
https://www.mis.mpg.de/scicomp/hackbusch.en.html

Overview

I. ALS Method for Optimisation Problems

- Formulation of the Problem
- Study of Examples
- Global Convergence for Rank-1 Approximation
II. (Non-)Closedness Questions
- $\quad r$-Term Format, Rank of a Tensor
- Properties of \mathcal{R}_{r}, Numerical Instability
- Strassen's Matrix Multiplication
- Matrix-Product (TT) Format, Tensor Networks
- Nonclosedness of the Cyclic Matrix-Product Format

Minimal Subspaces

- Definition
- Tensor Spaces of Linear Mappings, Functionals
- Characterisation of Minimal Subspaces in Infinite Dimensions

Topological Tensor Spaces

- Banach spaces, Crossnorms, Projective and Injective Norm
- Final Proof

1 ALS Method for Optimisation Problems

1.1 Formulation of the Problem

Let

$$
\Phi(\mathbf{u})=\min
$$

be a minimisation problem over the whole tensor space $\mathbf{u} \in \mathbf{V}$.

Approximation: Choose any format $\mathcal{F} \subset \mathbf{V}$. Solve

$$
\Phi(\mathbf{u})=\min \text { over all } \mathbf{v} \in \mathcal{F} .
$$

This is the minimisation over all parameters in the representation of $\mathbf{v} \in \mathcal{F}$.

Difficulty: While the original problem may be convex, the new problem is not.

Example: $\Phi(\mathbf{u})=\langle\mathbf{A} \mathbf{u}, \mathbf{u}\rangle-2\langle\mathbf{b}, \mathbf{u}\rangle$ for the solution of $\mathbf{A u}=\mathbf{b}$ with positive definite matrix \mathbf{A}.

Example: $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ over all $\mathbf{u} \in \mathcal{R}_{1}=\mathcal{T}_{(1, \ldots, 1)} . \mathbf{v} \in \mathbf{V}$ is arbitrary.

Ansatz:

$$
\mathbf{u}=u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}, \quad u^{(j)} \in V_{j}=\mathbb{R}^{n_{j}}
$$

Necessary condition: $\nabla \Phi(\mathbf{u})=0$ (multilinear system of equations).

ALS $=$ alternating least-squares method:

1) solve $\nabla \Phi\left(u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}\right)=0$ w.r.t. $u^{(1)} \Rightarrow$ solution: $\hat{u}^{(1)}$,
2) solve $\nabla \Phi\left(\hat{u}^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}\right)=0$ w.r.t. $u^{(2)} \Rightarrow$ solution: $\hat{u}^{(2)}$, :
d) solve $\nabla \Phi\left(\hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d-1)} \otimes u^{(d)}\right)=0$ w.r.t. $u^{(d)} \Rightarrow$ solution: $\hat{u}^{(d)}$ All partial steps are linear problems and easy to solve.

One ALS iteration is given by $\mathbf{u}_{0}=u^{(1)} \otimes \ldots \otimes u^{(d)} \mapsto \mathbf{u}_{1}=\hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d)}$. This defines a ALS sequence $\left\{\mathbf{u}_{m}: m \in \mathbb{N}_{0}\right\}$.

Questions: Does u_{m} converge? To what limit? Convergence speed?

1.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):

- The sequence $\left\{\mathbf{u}_{m}: m \in \mathbb{N}_{0}\right\}$ is bounded,
- $\left\|\mathbf{u}_{m}-\mathbf{u}_{m+1}\right\| \rightarrow 0$,
- $\sum_{m=0}^{\infty}\left\|\mathbf{u}_{m}-\mathbf{u}_{m+1}\right\|^{2}<\infty$,
- the set S of accumulation points of $\left\{\mathbf{u}_{m}\right\}$ is connected and compact.

Conclusion: If S contains an isolated point \mathbf{u}^{*}, it follows that $\mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$.

Note that, in general, the limit may depend on the starting value!

1.3 Study of Examples

1.3.1 Case of $d=2$

$\mathbf{v}:=\binom{1}{0} \otimes\binom{1}{0}+2\binom{0}{1} \otimes\binom{0}{1}, \quad \Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$.

1) $\mathbf{u}^{* *}=2\binom{0}{1} \otimes\binom{0}{1}$ is the global minimiser and an attractive fixed point.
2) $\mathbf{u}^{*}=\binom{1}{0} \otimes\binom{1}{0}$ is a fixed point of the ALS iteration:

$$
\Phi\left(\mathbf{u}^{*}+\delta_{1} \otimes\binom{1}{0}\right)=\Phi\left(\mathbf{u}^{*}\right)+\left\|\delta_{1}\right\|^{2}
$$

But $\Phi\left(\binom{1}{t} \otimes\binom{1}{t}\right)=\Phi\left(\mathbf{u}^{*}\right)-t^{2}\left(2-t^{2}\right)$
$\Rightarrow \mathbf{u}^{*}$ is a saddle point and a repulsive fixed point.

Conclusion: Almost all starting values lead to $\mathbf{u}_{m} \rightarrow \mathbf{u}^{* *}$.

1.3.2 Case of $d \geq 3$

For $a \perp b$ with $\|a\|=\|b\|=1$ consider $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ with

$$
\mathbf{v}=\otimes^{3} a+2 \otimes^{3} b
$$

Again $\mathbf{u}^{*}=\otimes^{3} a$ and $\mathbf{u}^{* *}=2 \otimes^{3} b$ are fixed points, $\Phi\left(\mathbf{u}^{* *}\right)<\Phi\left(\mathbf{u}^{*}\right)$.
But now both are local minima (attractive fixed points)!
Additional saddle point (repulsive fixed point): $\mathbf{u}^{* * *}=c \otimes^{3}\left(a+\frac{1}{2} b\right)$.
The sequence $\left\{\mathbf{u}_{m}\right\}$ corresponding to the starting value

$$
\mathbf{u}_{0}=c^{(0)}\left(a+t_{1}^{(0)} b\right) \otimes\left(a+t_{2}^{(0)} b\right) \otimes\left(a+t_{3}^{(0)} b\right)
$$

is completely defined by $t_{2}^{(0)}$ and $t_{3}^{(0)}$. The characteristic value is

$$
\tau_{m}:=\left|t_{2}^{(m)}\right|^{\alpha}\left|t_{3}^{(m)}\right|^{\beta} \quad \text { with } \quad \alpha=5^{1 / 2}-1, \beta=2
$$

(A) $\tau_{0}>2^{-\gamma}, \gamma=5^{1 / 2}+1 \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{* *}$ (global minimiser),
(B) $\tau_{0}<2^{-\gamma} \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$ (local minimiser),
(C) $\tau_{0}=2^{-\gamma} \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{* * *}$ (saddle point, global minimiser on the manifold $\left.\tau=2^{-\gamma}\right)$.

We recall:

Conclusion: If the set of accumulation points of $\left\{\mathbf{u}_{m}\right\}$ contains an isolated point \mathbf{u}^{*}, it follows that $\mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$.

Wang-Chu (2014): Global convergence for almost all \mathbf{u}_{0}.

Uschmajew (2015):

Analysis based on the Łojasiewicz inequality yields:
All sequences \mathbf{u}_{m} converge to some \mathbf{u}^{*} with $\nabla \Phi\left(\mathbf{u}^{*}\right)=0$.

Łojasiewicz (1965, Ensembles semi-analytiques): If Φ is analytic,

$$
\exists \theta \in(0,1 / 2] \quad\left|\Phi(x)-\Phi\left(x_{*}\right)\right|^{1-\theta} \leq\|\nabla \Phi(x)\|
$$

in some neighbourhood of x_{*}.

Convergence speed?

The proof by the Łojasiewicz inequality is not constructive.
Espig-Khachatryan (2015): Study of sequences for $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ with

$$
\begin{aligned}
\mathbf{v}= & \otimes^{3} a+\lambda(a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a) \\
& a \perp b, \quad\|a\|=\|b\|=1
\end{aligned}
$$

Depending on the value of λ it is shown that the convergence can be

- sublinear $(\lambda=1 / 2)$,
- linear $(\lambda<1 / 2)$.

For $\mathbf{v}=\otimes^{3} a+2 \otimes^{3} b, \mathbf{u}_{m} \rightarrow \otimes^{3} a$ or $2 \otimes^{3} b$, we have

- superlinear convergence (of order $2+5^{1 / 2}>1$)

Study of the general case: Gong-Mohlenkamp-Young 2017

2 (Non-)Closedness Questions

$2.1 \quad r$-Term Format, Rank of a Tensor

\mathbb{K} : underlying field $\left(\mathbb{R}\right.$ or \mathbb{C}). V_{j} vector spaces over \mathbb{K}. Any algebraic tensor has the form $\mathbf{v}=\sum_{i=1}^{r} \otimes_{j=1}^{d} v_{i}^{(j)}, v_{i}^{(j)} \in V_{j}$, for some $r \in \mathbb{N}_{0}$. Fixing r, we obtain the set

$$
\mathcal{R}_{r}:=\left\{\sum_{i=1}^{r} \bigotimes_{j=1}^{d} v_{i}^{(j)}: v_{i}^{(j)} \in V_{j}\right\}
$$

of tensors with representation rank r. Using the rank

$$
\operatorname{rank}(\mathrm{v}):=\min \left\{m: \mathbf{v} \in \mathcal{R}_{m}\right\},
$$

we may write $\mathcal{R}_{r}:=\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}(\mathrm{v}) \leq r\}$.
The maximal rank of V is

$$
\mu:=\sup \{\operatorname{rank}(\mathbf{v}): \mathbf{v} \in \mathbf{V}\} .
$$

$\mu<\infty$ holds for finite-dimensional V_{j} and is equal to $\min \left\{m: \mathcal{R}_{m+1}=\mathcal{R}_{m}\right\}$.

Properties of \mathcal{R}_{r} :

- In general, the determination of $\operatorname{rank}(\mathrm{v})$ is NP hard (cf. Håstad 1990).
- In general, the maximal rank is not explicitly known. For equal dimensions $\operatorname{dim}\left(V_{j}\right)=n:$

$$
\frac{n^{d-1}}{d} \leq r_{\max } \leq \frac{d}{2(d-1)} n^{d-1}+O\left(n^{d-2}\right)
$$

- For random tensors there may be more than one tensor rank with positive probability. These ranks are called typical.
- Real tensors may have different rank depending on the underlying fields \mathbb{R} or \mathbb{C}.
- In general, \mathcal{R}_{r} is not closed. Example: a, b linearly independent and

$$
\begin{aligned}
& \mathbf{v}=a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a \in \mathcal{R}_{3} \backslash \mathcal{R}_{2} \\
& \mathbf{v}=\underbrace{(b+n a) \otimes\left(a+\frac{1}{n} b\right) \otimes a+a \otimes a \otimes(b-n a)}_{\mathbf{v}_{n} \in \mathcal{R}_{2}}-\frac{1}{n} b \otimes b \otimes a
\end{aligned}
$$

- border rank: $\underline{\operatorname{rank}(\mathbf{v}):=\min \left\{r \in \mathbb{N}_{0}: \mathbf{v} \in \operatorname{closure}\left(\mathcal{R}_{r}\right)\right\} ~}$

Numerical Instability

In the previous example, the terms of \mathbf{v}_{n} grow like $O(n)$, while the result is of size $O(1)$.

This implies numerical cancellation: $\log _{2} n$ binary digits of \mathbf{v}_{n} are lost.
We say that the sequence $\left\{\mathbf{v}_{n}\right\}$ is unstable.
Proposition: Suppose $\operatorname{dim}\left(V_{j}\right)<\infty$ and $\mathbf{v} \in \mathbf{V}=\otimes_{j=1}^{d} V_{j}$.
A stable sequence $\mathbf{v}_{n} \in \mathcal{R}_{r}$ with $\lim \mathbf{v}_{n}=\mathbf{v}$ exists if and only if $\mathbf{v} \in \mathcal{R}_{r}$.
Conclusion: If $\mathbf{v}=\lim \mathbf{v}_{n} \notin \mathcal{R}_{r}$, the sequence $\mathbf{v}_{n} \in \mathcal{R}_{r}$ is unstable.
Best approximation problem: Let $\mathbf{v}^{*} \in \mathbf{V}$. Try to find $\mathbf{v} \in \mathcal{R}_{r}$ with

$$
\left\|\mathbf{v}^{*}-\mathbf{v}\right\|=\inf \left\{\left\|\mathbf{v}^{*}-\mathbf{w}\right\|: \mathbf{w} \in \mathcal{R}_{r}\right\} .
$$

This optimisation problem need not be solvable.
The set of $\mathbf{v}^{*} \in \mathbf{V}$ with inf $\neq \min$ has a positive measure if $\mathbb{K}=\mathbb{R}$ (De Silva-Lim 2008), but measure zero if $\mathbb{K}=\mathbb{C}$ (Qi-Michałek-Lim, 2017).

3 Strassen's Matrix Multiplication

Standard matrix-matrix multiplication costs $2 n^{3}$ operations.
Strassen 1969: $4.7 n^{\log _{2} 7}=4.7 n^{2.8074}$

Two 2×2 block matrices can be multiplied as follows:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right]=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right], \quad a_{i}, b_{i}, c_{i} \text { submatrices with } } \\
c_{1} & =m_{1}+m_{4}-m_{5}+m_{7}, c_{2}=m_{2}+m_{4}, c_{3}=m_{3}+m_{5}, c_{4}=m_{1}+m_{3}-m_{2}+m_{6} \\
m_{1} & =\left(a_{1}+a_{4}\right)\left(b_{1}+b_{4}\right) \\
m_{2} & =\left(a_{3}+a_{4}\right) b_{1} \\
m_{3} & =a_{1}\left(b_{2}-b_{4}\right) \\
m_{4} & =a_{4}\left(b_{3}-b_{1}\right) \\
m_{5} & =\left(a_{1}+a_{2}\right) b_{4} \\
m_{6} & =\left(a_{3}-a_{1}\right)\left(b_{1}+b_{2}\right) \\
m_{7} & =\left(a_{2}-a_{4}\right)\left(b_{3}+b_{4}\right)
\end{aligned}
$$

Tensor of the matrix-matrix multiplication $\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]=\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right]$:

$$
c_{\nu}=\sum_{\mu, \lambda=1}^{4} \mathbf{v}_{\nu \mu \lambda} a_{\mu} b_{\lambda} \quad(1 \leq \nu \leq 4) .
$$

For instance for $\nu=1$, the identity $c_{1}=a_{1} b_{1}+a_{2} b_{3}$ shows that $\mathbf{v}_{111}=\mathbf{v}_{123}=1$, and $\mathbf{v}_{1 \mu \lambda}=0$ otherwise. Assume a representation of \mathbf{v} by r terms:

$$
\mathbf{v}=\sum_{i=1}^{r} \bigotimes_{j=1}^{3} v_{i}^{(j)} \in \bigotimes_{j=1}^{3} \mathbb{K}^{4}
$$

The insertion into $c_{\nu}=\sum_{\mu, \lambda=1}^{4} \mathbf{v}_{\nu \mu \lambda} a_{\mu} b_{\lambda}$ yields

$$
\begin{aligned}
c_{\nu} & =\sum_{i=1}^{r} \sum_{\mu, \lambda=1}^{4} v_{i}^{(1)}[\nu] v_{i}^{(2)}[\mu] v_{i}^{(3)}[\lambda] a_{\mu} b_{\lambda} \\
& =\sum_{i=1}^{r} v_{i}^{(1)}[\nu]\left(\sum_{\mu=1}^{4} v_{i}^{(2)}[\mu] a_{\mu}\right)\left(\sum_{\lambda=1}^{4} v_{i}^{(3)}[\lambda] b_{\lambda}\right),
\end{aligned}
$$

requiring r multiplications.

Strassen 1969: $\operatorname{rank}(\mathrm{v}) \leq 7$, Winograd 1971: $\operatorname{rank}(\mathrm{v})=7$, Landsberg 2012: $\operatorname{rank}(v)=7$.

4 Matrix-Product (TT) Format, Tensor Networks

The hierarchical tensor format is based on a binary tree. A particular binary tree is
\{1,2,3,4,5,6,7\}

```
            {1,2,3,4,5,6} {7}
                {1,2,3,4,5} {6}
                {1,2,3,4} {5}
            {1,2,3} {4}
    {1,2} {3}
```

$\{1\}\{2\}$
Choosing $U_{j}:=V_{j}$ for the subspaces at the leaves $j=1, \ldots, d$, one obtains the TT format (Oseledets-Tyrtyshnikov 2005). It coincides with the description of the matrix product states (Vidal 2003, Verstraete-Cirac 2006) used in physics:
Each component $\mathbf{v}\left[i_{1}, \ldots, i_{d}\right]$ of $\mathbf{v} \in \mathbf{V}=\otimes_{j=1}^{d} \mathbb{K}^{n_{j}}$ is expressed by

$$
\mathbf{v}\left[i_{1} i_{2} \cdots i_{d}\right]=V^{(1)}\left[i_{1}\right] \cdot V^{(2)}\left[i_{2}\right] \cdot \ldots \cdot V^{(d-1)}\left[i_{d-1}\right] \cdot V^{(d)}\left[i_{d}\right] \in \mathbb{K}
$$

where $V^{(j)}[i]$ are matrices of size $r_{j-1} \times r_{j}$ with $r_{0}=r_{d}=1$. The minimal size of r_{j} is $\operatorname{rank}_{\{1, \ldots, j\}}(\mathrm{v})$.

To avoid the special roles of the vectors $V^{(1)}\left[i_{1}\right], V^{(d)}\left[i_{d}\right]$ and to describe periodic situations, the Cyclic Matrix-Product format $\mathcal{C}\left(d,\left(r_{j}\right)\right)$ is used in physics:

$$
\begin{aligned}
\mathbf{v}\left[i_{1} i_{2} \cdots i_{d}\right] & =\operatorname{trace}\left\{V^{(1)}\left[i_{1}\right] \cdot V^{(2)}\left[i_{2}\right] \cdots \cdots V^{(d-1)}\left[i_{d-1}\right] \cdot V^{(d)}\left[i_{d}\right]\right\} \\
& =\sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} V_{k_{d} k_{1}}^{(1)}\left[i_{1}\right] \cdot V_{k_{1} k_{2}}^{(2)}\left[i_{2}\right] \cdot \ldots \cdot V^{(d-1)}\left[i_{d-1}\right] \cdot V_{k_{d-1} k_{d}}{ }^{(d)}\left[i_{d}\right] .
\end{aligned}
$$

Tensor Network: tensor representations based on general graphs which are in general not a tree. Here the graph is a cycle with d vertices.

THEOREM (Landsberg-Qi-Ye 2012) Formats based on a graph \neq tree are in general not closed.

Site-independent format $\mathcal{C}_{\text {ind }}(d, r): V^{(j)}[i]=V[i]$ and $r_{j}=r$ for all j.
4.1 Example for $d=3, \mathbf{V}=\otimes^{3} \mathbb{K}^{2 \times 2}, r_{1}=r_{2}=r_{3}=2$ by Harris-Michałek-Sertöz 2018

Let
$\mathrm{m}:=\sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} E_{k_{d}, k_{1}}^{(1)} \otimes E_{k_{1} k_{2}}^{(2)} \otimes \ldots \otimes E_{k_{d-2} k_{d-1}}^{(d-1)} \otimes E_{k_{d-1}, k_{d}}^{(d)} \in \bigotimes_{j=1}^{d} \mathbb{K}^{r_{j-1} \times r_{j}}$.
$E_{p q}^{(j)}$ is the matrix with entries $E_{p q}^{(j)}[k, \ell]=\delta_{p k} \delta_{q \ell}$.
$\left\{E_{p q}^{(j)}: 1 \leq p \leq r_{j-1}, 1 \leq q \leq r_{j}\right\}$ is the canonical basis of $\mathbb{K}^{r_{j-1} \times r_{j}}$.
LEMMA. Let $\mathbf{V}=\otimes_{j=1}^{d} V_{j}$. The set $\mathcal{C}\left(d,\left(r_{j}\right)\right)$ consists of all

$$
\mathbf{v}=\Phi(\mathbf{m}) \quad \text { with } \quad \Phi=\bigotimes_{j=1}^{d} \phi^{(j)} \text { and } \phi^{(j)} \in L\left(\mathbb{K}^{r_{j-1} \times r_{j}}, V_{j}\right)
$$

In our case, we have $\phi^{(j)} \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$.
We first consider the site-independent case $V^{(j)}[i]=V[i]$ for all $1 \leq j \leq d:=3$.

Define $\psi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$ by $\psi\left(E_{12}\right)=E_{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $\psi\left(E_{p q}\right)=0$ for $(p, q) \neq(1,2)$. Together with the identity $i d \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$, define

$$
\mathbf{v}(t)=\left(\otimes^{3}(\psi+t \cdot i d)\right)(\mathbf{m}) \quad \text { for } t \in \mathbb{R}
$$

where $\mathbf{m}=\sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \sum_{k_{3}=1}^{2} E_{k_{3} k_{1}} \otimes E_{k_{1} k_{2}} \otimes E_{k_{2} k_{3}} \in \mathbf{V}$. Multilinearity yields $\mathbf{v}(t)=\mathbf{v}_{0}+t \cdot \mathbf{v}_{1}+t^{2} \cdot \mathbf{v}_{2}+t^{3} \cdot \mathbf{v}_{3}$ with

$$
\begin{aligned}
& \mathbf{v}_{0}=\left(\otimes^{3} \psi\right)(\mathbf{m}), \quad \mathbf{v}_{1}=[\psi \otimes \psi \otimes i d+\psi \otimes i d \otimes \psi+i d \otimes \psi \otimes \psi](\mathbf{m}), \\
& \mathbf{v}_{2}=[i d \otimes i d \otimes \psi+i d \otimes \psi \otimes i d+\psi \otimes i d \otimes i d](\mathbf{m}), \quad \mathbf{v}_{3}=\mathbf{m}
\end{aligned}
$$

Note that $\psi\left(E_{i j}\right) \cdot \psi\left(E_{k \ell}\right)=0$. Since \mathbf{v}_{0} and \mathbf{v}_{1} involve three or two ψ applications, $\mathbf{v}_{0}=\mathbf{v}_{1}=0$ follows.
Evaluation of \mathbf{v}_{2} yields

$$
\begin{aligned}
\mathbf{v}_{2}= & E_{21} \otimes E_{11} \otimes E_{12}+E_{22} \otimes E_{21} \otimes E_{12}+E_{11} \otimes E_{12} \otimes E_{21} \\
& +E_{21} \otimes E_{12} \otimes E_{22}+E_{12} \otimes E_{21} \otimes E_{11}+E_{12} \otimes E_{22} \otimes E_{21}
\end{aligned}
$$

$\mathbf{v}_{0}=\mathbf{v}_{1}=0$ allows us to form the limit $\mathbf{v}_{2}=\lim _{t \rightarrow 0} t^{-2} \mathbf{v}(t)$. The Lemma states that $t^{-2} \mathbf{v}(t) \in \mathcal{C}_{\text {ind }}(3,2)$ for $t>0$.

The non-closedness of $\mathcal{C}_{\text {ind }}(3,2)$ will follow from $\mathrm{v}_{2} \notin \mathcal{C}_{\text {ind }}(3,2)$.
For an indirect proof assume $\mathbf{v}_{2} \in \mathcal{C}_{\text {ind }}(3,2)$. The Lemma implies that there is some $\phi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$ with $\mathbf{v}_{2}=\left(\otimes^{3} \phi\right)(\mathbf{m})$.
It is easy to check that the range of the matricisation $\mathcal{M}_{1}\left(\left(\otimes^{3} \phi\right)(\mathbf{m})\right)=$ $\phi \mathcal{M}_{1}(\mathbf{m})\left(\otimes^{2} \phi\right)^{\top}$ is $\mathbb{K}^{2 \times 2}$.
Therefore the map ϕ must be surjective.
Since $\phi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$, surjectivity implies injectivity.
Hence $\phi: \mathbb{K}^{2 \times 2} \rightarrow \mathbb{K}^{2 \times 2}$ is a vector space isomorphism and $\otimes^{3} \phi: \mathbf{V} \rightarrow \mathbf{V}$ a tensor space isomorphisms. $\mathbf{v}_{2}=\left(\otimes^{3} \phi\right)(\mathbf{m}) \Rightarrow \operatorname{rank}\left(\mathbf{v}_{2}\right)=\operatorname{rank}(\mathbf{m})$.

The representation of \mathbf{v}_{2} yields rank $\left(\mathrm{v}_{2}\right) \leq 6$.
On the other hand, $\operatorname{rank}(\mathbf{m})=7$ holds for the Strassen tensor \mathbf{m}.
This contradiction proves that $\mathbf{v}_{2} \notin \mathcal{C}_{\text {ind }}(3,2)$.

Similarly $\mathbf{v}_{2} \notin \mathcal{C}(3,(2,2,2))$ follows (no site-independence).

4.2 Example for $\mathbf{V}=\otimes^{d} \mathbb{C}^{2}, r_{j}=2$

Smallest (nontrivial) dimension: $V_{j}=\mathbb{C}^{2}$,
tensor space $\mathbf{V}=\otimes^{d} \mathbb{C}^{2}$

Site-independent cyclic format $\mathcal{C}_{\text {ind }}(d, 2)$, i.e., $r_{j}=2$

Result:
$d=3: \mathcal{C}_{\text {ind }}(3,2)$ is closed (cf. Harris-Michatek-Sertöz 2018)
$d>3: \mathcal{C}_{\text {ind }}(d, 2)$ is not closed (cf. Seynnaeve 2018)

For $\mathbb{K}=\mathbb{R}, d \geq 3, \mathcal{C}_{\text {ind }}(d, 2)$ is not closed (cf. Seynnaeve 2018)

5 Minimal Subspaces

5.1 Tensor Subspace Format

Set of tensors of multilinear rank $\leq \mathbf{r}=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{N}^{d}$ is

$$
\mathcal{T}_{\mathbf{r}}:=\bigcup_{\operatorname{dim}\left(U_{j}\right) \leq r_{j}} \bigotimes_{j=1}^{d} U_{j} .
$$

Question: Is \mathcal{T}_{r} closed?

In the finite-dimensional case, $\operatorname{dim} V_{j}<\infty$, compactness arguments show that \mathcal{T}_{r} is closed.

What happens in the case of infinite-dimensional Banach spaces $\mathbf{V}=\otimes_{j=1}^{d} V_{j}$?

5.2 Minimal Subspaces

Let $\mathbf{v} \in \mathbf{V}=\otimes_{j=1}^{d} V_{j}$ — possibly $\operatorname{dim} V_{j}=\infty$ - be an algebraic tensor.
The minimal subspaces $U_{j}^{\text {min }}(\mathrm{v})$ are defined by

$$
\begin{aligned}
\mathbf{v} & \in \bigotimes_{j=1}^{d} U_{j}^{\min }(\mathbf{v}), \quad \text { and } \\
\text { if } \mathbf{v} & \in \bigotimes_{j=1}^{d} U_{j}\left(U_{j} \text { subspace of } V_{j}\right) \text {, then } U_{j}^{\min }(\mathbf{v}) \subset U_{j} .
\end{aligned}
$$

REMARK: (a) $\operatorname{dim} U_{j}^{\min }(\mathrm{v}) \leq \operatorname{rank}(\mathrm{v})<\infty$.
(b) $\left(\otimes_{j=1}^{d} U_{j}^{\prime}\right) \cap\left(\otimes_{j=1}^{d} U_{j}^{\prime \prime}\right)=\otimes_{j=1}^{d}\left(U_{j}^{\prime} \cap U_{j}^{\prime \prime}\right)$.

Conclusion: $U_{j}^{\text {min }}(\mathrm{v})$ is the subspace of minimal dimension in

$$
\mathbf{v} \in U_{j} \otimes \mathbf{V}_{[j]} \quad \text { with } \quad \mathbf{V}_{[j]}:=\bigotimes_{k \neq j} V_{j} .
$$

5.2.1 Matricisation

The j-th matricisation $\mathcal{M}_{j}: \mathbf{V}=\otimes_{k=1}^{d} \mathbb{K}^{n_{k}} \rightarrow \mathbb{K}^{n_{j} \times n_{[j]}}$ defined by

$$
\begin{aligned}
\mathbf{v} \mapsto M_{j}:=\mathcal{M}_{j}(\mathbf{v}) \in \mathbb{K}^{n_{j} \times n_{[j]}} \quad \text { with } n_{[j]}:=\prod_{k \neq j} n_{k}, \\
M_{j}\left[i_{j}, \mathbf{i}_{[j]}\right]:=\mathbf{v}\left[i_{1}, \ldots, i_{d}\right], \quad \mathbf{i}_{[j]}:=\left(i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{d}\right) .
\end{aligned}
$$

REMARK. If $V_{j}=\mathbb{K}^{n_{j}}$, then $U_{j}^{\min }(\mathbf{v})=\operatorname{range}\left(\mathcal{M}_{j}(\mathbf{v})\right)=\operatorname{range}\left(M_{j}\right)$.

Consequences:

$$
\begin{aligned}
\operatorname{rank}_{j}(\mathbf{v}) & :=\operatorname{rank}\left(\mathcal{M}_{j}(\mathbf{v})\right) \quad \text { for } 1 \leq j \leq d \\
\mathcal{T}_{\mathbf{r}} & =\left\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}_{j}(\mathbf{v}) \leq r_{j} \text { for } 1 \leq j \leq d\right\}
\end{aligned}
$$

Generalisation for infinite-dimensional Hilbert spaces is possible ($n_{j}=\infty$), but not for general Banach spaces.

6 Tensor Spaces of Linear Mappings

Let V_{j}, W_{j} be vector spaces defining $\mathbf{V}:=\stackrel{d}{\otimes}{ }_{j=1}^{d} V_{j}$ and $\mathbf{W}:=\stackrel{d}{\underset{j}{\otimes}}$ set W_{j}. Then the
sets of linear maps

$$
L_{j}:=L\left(V_{j}, W_{j}\right)
$$

are again vector spaces. They define the tensor space

$$
\mathbf{L}:=\bigotimes_{j=1}^{d} L_{j} .
$$

\mathbf{L} can be embedded into $L(\mathbf{V}, \mathbf{W}): \mathbf{A}=\stackrel{{ }_{j=1}^{\otimes}}{\text { by }} A^{(j)} \in \mathbf{L}$ is the linear map defined

$$
\mathbf{A} \bigotimes_{j=1}^{d} v^{(j)}:=\bigotimes_{j=1}^{d}\left(A^{(j)} v^{(j)}\right) .
$$

6.1 Functionals

REMARK: $\operatorname{dim}\left(V_{j}\right)=1 \Rightarrow \mathbf{V}=\stackrel{d}{\otimes}{ }_{k=1} V_{k}$ isomorphic to

$$
\mathbf{V}_{[j]}:=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{j-1} \otimes V_{j+1} \ldots \otimes V_{d}
$$

in particular

$$
\mathbb{K} \otimes \mathbb{K} \otimes \ldots \otimes \mathbb{K} \otimes V_{j} \otimes \mathbb{K} \otimes \ldots \otimes \mathbb{K} \simeq V_{j}
$$

Let functionals $\varphi_{k}: V_{k} \rightarrow \mathbb{K}$ be given for all $k \neq j$. Then

$$
\varphi^{[j]}:=\varphi_{1} \otimes \ldots \otimes \varphi_{j-1} \otimes i d \otimes \varphi_{j+1} \otimes \ldots \otimes \varphi_{d} \in L\left(\mathrm{~V}, V_{j}\right)
$$

maps V into V_{j}.
We identify $\underset{k \neq j}{\otimes} \varphi_{k} \in \mathbf{V}_{[j]}^{\prime}$ with $\varphi^{[j]} \in L\left(\mathbf{V}, V_{j}\right)$.

6.1.1 Minimal Subspaces

$$
\begin{aligned}
U_{j}^{\min }(\mathbf{v}) & :=\left\{\varphi(\mathbf{v}): \varphi \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{\prime}\right\} \\
& =\left\{\varphi(\mathbf{v}): \varphi \in\left(a \bigotimes_{k \neq j} V_{k}\right)^{\prime}\right\} .
\end{aligned}
$$

V_{k}^{\prime} : algebraic dual space of V_{k}.
In the finite-dimensional case, this statement is equivalent to $U_{j}^{\min }(\mathbf{v})=\operatorname{range}\left(\mathcal{M}_{j}(\mathbf{v})\right)$.

In the infinite-dimensional case, the definition of $\operatorname{rank}_{j}(\mathrm{v})$ can be extended by

$$
\operatorname{rank}_{j}(\mathbf{v}):=\operatorname{dim}\left(U_{j}^{\min }(\mathbf{v})\right)
$$

Under rather general assumptions on the norms of V_{j} and \mathbf{V} we shall prove that

$$
\mathbf{v}_{n} \rightharpoonup \mathbf{v} \quad \Rightarrow \quad \operatorname{dim}\left(U_{j}^{\min }(\mathbf{v})\right) \leq \liminf _{n \rightarrow \infty} \operatorname{dim}\left(U_{j}^{\min }\left(\mathbf{v}_{n}\right)\right)
$$

Conclusion:

(1) \mathcal{T}_{r} is weakly closed.
(2) If V is a reflexive Banach space,

$$
\inf _{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}}\|\mathbf{v}-\mathbf{u}\|=\left\|\mathbf{v}-\mathbf{u}_{\text {best }}\right\|
$$

has a solution $\mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathbf{r}}$.

Why weak convergence?
There is a sequence $\mathbf{u}_{n} \in \mathcal{T}_{\mathbf{r}}$ with $\left\|\mathbf{v}-\mathbf{u}_{n}\right\| \rightarrow \inf _{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}}\|\mathbf{v}-\mathbf{u}\|$.
In the reflexive case, there is subsequence such that $\mathbf{u}_{n} \rightharpoonup \mathbf{u}_{\text {best }} \in \mathbf{V}$.
$\operatorname{dim}\left(U_{j}^{\min }\left(\mathbf{u}_{n}\right)\right) \leq r_{j} \Rightarrow \operatorname{dim}\left(U_{j}^{\min }\left(\mathbf{u}_{\text {best }}\right)\right) \leq r_{j} \Rightarrow \mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathbf{r}}$.

7 Topological Tensor Spaces

7.1 Case of Banach Spaces

$V_{j}(1 \leq j \leq d)$: normed space with $\|\cdot\|_{j}$, possibly a Banach space (i.e., complete).
$\mathrm{V}_{\mathrm{alg}}:={ }_{a} \otimes_{j=1}^{d} V_{j}$ is the algebraic tensor space.
$\|\cdot\|$ chosen norm on $\mathrm{V}_{\mathrm{alg}}$.
Completion of $\mathbf{V}_{\text {alg }}$ w.r.t. $\|\cdot\|$ yields the topological tensor space (Banach tensor space)

$$
\mathbf{V}:=\mathbf{V}_{\mathrm{top}}:=\|\cdot\| \bigotimes_{j=1}^{d} V_{j}
$$

REMARKS: (1) $\mathrm{V}_{\text {top }}$ depends on the choice of $\|\cdot\|$
(2) $\|\cdot\|$ is not fixed by the norms $\|\cdot\|_{j}$.

7.2 Crossnorms

A necessary condition for reasonable topological tensor spaces is the continuity of the tensor product, i.e.,

$$
\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\| \leq C \prod_{j=1}^{d}\left\|v^{(j)}\right\|_{j}
$$

for some $C<\infty$ and all $v^{(j)} \in V_{j}$.

DEFINITION: $\|\cdot\|$ is called a crossnorm if

$$
\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\|=\prod_{j=1}^{d}\left\|v^{(j)}\right\|_{j} .
$$

REMARK: There are different crossnorms $\|\cdot\|$ for the same $\|\cdot\|_{j}$!

7.3 Projective Norm $\|\cdot\|_{\wedge}$

The strongest possible norm is the projective norm (Schatten, Grothendieck), defined by

$$
\begin{aligned}
\|\mathbf{v}\|_{\wedge\left(V_{1}, \ldots, V_{d}\right)} & :=\|\mathbf{v}\|_{\wedge} \\
& :=\inf \left\{\sum_{i=1}^{m} \prod_{j=1}^{d}\left\|v_{i}^{(j)}\right\|_{j}: \mathbf{v}=\sum_{i=1}^{m} \bigotimes_{j=1}^{d} v_{i}^{(j)}\right\}
\end{aligned}
$$

for $\mathbf{v} \in a{ }_{j=1}^{\otimes} V_{j}$.

- $\|\cdot\|_{\wedge}$ is crossnorm.
- Any norm $\|\cdot\|$ satisfying the continuity requirement satisfies

$$
\|\cdot\| \lesssim\|\cdot\|_{\wedge} .
$$

7.4 Duals and Injective Norm $\|\cdot\|_{\vee}$

The dual space V_{j}^{*} is the space of the continuous and linear functions on V_{j}. We now require: also the tensor product $\otimes: \times_{j=1}^{d} V_{j}^{*} \rightarrow a \otimes_{j=1}^{d} V_{j}^{*}$ is continuous, i.e.,

$$
\left\|\bigotimes_{j=1}^{d} \varphi_{j}\right\|^{*} \leq C \prod_{j=1}^{d}\left\|\varphi_{j}\right\|_{j}^{*} \text { for all } \varphi_{j} \in V_{j}^{*}
$$

- For $\mathbf{v} \in{ }_{a} \otimes_{j=1}^{d} V_{j}$ define $\|\cdot\|_{\vee\left(V_{1}, \ldots V_{d}\right)}$ by

$$
\|\mathbf{v}\|_{\vee\left(V_{1}, \ldots, V_{d}\right)}:=\|\mathbf{v}\|_{\vee}:=\sup _{\substack{0 \neq \varphi_{j} \in V_{j}^{*} \\ 1 \leq j \leq d}} \frac{\left|\left(\varphi_{1} \otimes \varphi_{2} \otimes \ldots \otimes \varphi_{d}\right)(\mathbf{v})\right|}{\prod_{j=1}^{d}\left\|\varphi_{j}\right\|_{j}^{*}}
$$

- $\|\cdot\|_{V}$ is a crossnorm.
- $\|\cdot\|_{V}$ is the weakest norm with the continuity condition from above.

7.5 Minimal Subspaces, Final Part

We recall $U_{j}^{\min }(\mathbf{v}):=\left\{\varphi(\mathbf{v}): \varphi \in{ }_{a} \otimes_{k \neq j} V_{k}^{\prime}\right\}$. Hahn-Banach theorem yields

$$
U_{j}^{\min }(\mathrm{v})=\left\{\varphi(\mathrm{v}): \varphi \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{*}\right\} .
$$

$\varphi=\otimes_{k \neq j} \varphi^{(k)} \in{ }_{a} \otimes_{k \neq j} V_{k}^{\prime}$ induces the map $\varphi^{[j]} \in L\left(\mathbf{V}, V_{j}\right)$.
(1) If $\|\cdot\| \gtrsim\|\cdot\|_{V}$ then $\varphi \in{ }_{a} \otimes_{k \neq j} V_{k}^{*}$ implies that $\varphi^{[j]} \in \mathcal{L}\left(\mathrm{V}, V_{j}\right)$ is continuous.
(2) Weak convergence $\mathbf{v}_{n} \rightharpoonup \mathbf{v}$ implies $\varphi_{[j]}\left(\mathbf{v}_{n}\right) \rightharpoonup \varphi^{[j]}(\mathbf{v})$ in V_{j}.

Proof. For any $\varphi^{(j)} \in V_{j}^{*}$ we have $\varphi^{(j)}\left(\varphi^{[j]}\left(\mathbf{v}_{n}\right)\right)=\left(\otimes_{k} \varphi^{(k)}\right)\left(\mathbf{v}_{n}\right)$. Since $\Phi:=\bigotimes_{k} \varphi^{(k)} \in \mathbf{V}^{*}, \mathbf{v}_{n} \rightharpoonup \mathbf{v}$ yields $\Phi\left(\mathbf{v}_{n}\right) \rightarrow \Phi(\mathbf{v})=\varphi^{(j)}\left(\varphi^{[j]}(\mathbf{v})\right)$.
(3) Let the sequences $\left(\mathbf{v}_{n}^{(i)}\right)_{n \in \mathbb{N}}$ for $1 \leq i \leq N$ converge weakly to linearly independent limits $\mathbf{v}^{(i)} \in \mathbf{V}$ (i.e., $\mathbf{v}_{n}^{(i)} \rightharpoonup \mathbf{v}^{(i)}$). Then there is an n_{0} such that for all $n \geq n_{0}$, the N-tuples ($\mathbf{v}_{n}^{(i)}: 1 \leq i \leq N$) are linearly independent.

Hence $\quad \mathbf{v}_{n} \rightharpoonup \mathbf{v} \quad \Rightarrow \quad \operatorname{dim}\left(U_{j}^{\min }(\mathbf{v})\right) \leq \liminf _{n \rightarrow \infty} \operatorname{dim}\left(U_{j}^{\min }\left(\mathbf{v}_{n}\right)\right)$.

