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1 ALS Method for Optimisation Problems

1.1 Formulation of the Problem

Let
®(u) = min

be a minimisation problem over the whole tensor space u € V.

Approximation: Choose any format 7 C V. Solve

®(u) = min over all v € F.

This is the minimisation over all parameters in the representation of v € F.
Difficulty: While the original problem may be convex, the new problem is not.

Example: ®(u) = (Au,u) — 2 (b, u) for the solution of Au = b with positive
definite matrix A.



Example: ®(u) = ||v — u|? over all u € Ry = T(1,..1)- vV € V is arbitrary.

Ansatz:
u=uMeu@e.. oud ey, =RY

Necessary condition: V®(u) = 0 (multilinear system of equations).

ALS = alternating least-squares method:
1) solve V(b(u(l) Y U(2) XK...xQ u(d)) = 0 w.r.t. u(l) = solution: ,&(1)’
2) solve Vo) @ u® @ ... @ uld) = 0 w.r.t. ul® = solution: a2,

d) solve Vo(al) ® ... @ 44" @ ul®) = 0 w.r.t. ul® = solution: a(?)

All partial steps are linear problems and easy to solve.

One ALS iteration is given by ug = v @ ... @ vl — u; = 0V @ ... @ a().
This defines a ALS sequence {um : m € Ng}.

Questions: Does u,, converge? To what limit? Convergence speed?



1.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):
e The sequence {u;, : m € Ny} is bounded,

¢ [[um —wppaf — 0,

X 2
e > ||um_um—|—1|| < 00,

m=0

e the set S of accumulation points of {u,,} is connected and compact.

Conclusion: If S contains an isolated point u*, it follows that u,, — u®*.

Note that, in general, the limit may depend on the starting value!



1.3 Study of Examples

1.3.1 Caseof d =2

vi=(g)®(g)+2(0) @ (3), @) =|v—ul?

1) u*™* = 2(0) ® (0) is the global minimiser and an attractive fixed point.
2) u* = (é) ® (é) is a fixed point of the ALS iteration:

o +81® (1)) = S(u") + 51

sut o () @ (1)) = o(u) - 2 (2 12)
= u* is a saddle point and a repulsive fixed point.

Conclusion: Almost all starting values lead to u,;, — u™*.



1.3.2 Caseof d >3

For a_Lb with ||a|| = ||b|| = 1 consider ®(u) = ||v — u|? with

v==3a+2x30.

Again u* = ®3a and u** = 2 @3 b are fixed points, d(u**) < d(u*).
But now both are local minima (attractive fixed points)!
Additional saddle point (repulsive fixed point): u*** = ¢ ®3 (a + %b)

The sequence {u;,} corresponding to the starting value

ug = 0 (a + t§°>b) ® <a + tgo)b> ® (a + tgo)b>
(0) (0

is completely defined by ¢5" and #3 ). The characteristic value is

af B
(I ™ with =521 g=2.

Tm — 't

(A) 79 > 277, v =524+ 1 = u;, — u*™* (global minimiser),

(B) 70 < 277 = um — u* (local minimiser),

(C) 79 = 277 = uym — u™™* (saddle point, global minimiser on the manifold
T=277).



We recall:

Conclusion: If the set of accumulation points of {u;,} contains an isolated
point u*, it follows that u,, — u®*.

Wang—Chu (2014): Global convergence for almost all ug.

Uschmajew (2015):

Analysis based on the Lojasiewicz inequality yields:
All sequences u;, converge to some u* with Vo(u*) = 0.
t ojasiewicz (1965, Ensembles semi-analytiques): If ® is analytic,

36 € (0,1/2] |®(x) — D(zs)| 0 < || V()|

in some neighbourhood of x.



Convergence speed?
The proof by the Lojasiewicz inequality is not constructive.

Espig—Khachatryan (2015): Study of sequences for ®(u) = ||v — ul|? with

v = 8%+ (a®a®b+a®@b®a+bRa®a),
alb, lall = [[o]] = 1.

Depending on the value of ) it is shown that the convergence can be
e sublinear (A = 1/2),
e linear (A < 1/2).

For v=Q®3a+23 b, um — ®3a or 2 ®3 b, we have
e superlinear convergence (of order 2 + 51/2 > 1)

Study of the general case: Gong—Mohlenkamp—Young 2017



2 (Non-)Closedness Questions

2.1 r-Term Format, Rank of a Tensor

K: underlying field (R or C). V; vector spaces over K. Any algebraic tensor has

the form v = > 1®] 1V ,L(]), v,b(j) € V;, for some r € Ny. Fixing r, we obtain
the set

)L 0)
i=1j=1
of tensors with representation rank r. Using the rank
rank(v) := min{m : v € R},
we may write Ry :={v € V :rank(v) < r}.

The maximal rank of V is
p = sup{rank(v) : v € V}.

pr < oo holds for finite-dimensional V; and is equal to min{m : Ry,1+1 = Rm}.



Properties of r,:

- In general, the determination of rank(v) is NP hard (cf. Hastad 1990).

- In general, the maximal rank is not explicitly known. For equal dimensions
dim(V;) =n:
nd—l
<

<
= T 2(d-1)

- For random tensors there may be more than one tensor rank with positive

nd—l 4+ O(nd—Z).

probability. These ranks are called typical.

- Real tensors may have different rank depending on the underlying fields R or

C.

- In general, Ry is not closed. Example: a, b linearly independent and

V = aQa®b+a@b®a+b®a®a € R3\Ro
vV = (b—l—na)@(a—l—%b)®a—|—a®a®(b—na)—%b®b®a.

- border rank: rank(v) := min{r € Ng : v € closure(Rr)}.



Numerical Instability

In the previous example, the terms of vy, grow like O(n), while the result is of
size O(1).

This implies numerical cancellation: log, n binary digits of v, are lost.
We say that the sequence {v,} is unstable.

Proposition: Suppose dim(V;) < ococand ve 'V = ®§-l:1 V.
A stable sequence vy, € R, with limv,, = v exists if and only if v € R,.

Conclusion: If v = lim vy, € R, the sequence v, € Ry is unstable.

Best approximation problem: Let v* € V. Try to find v € R, with
|v* —v|| = inf{|[v* —w| : w € R}
This optimisation problem need not be solvable.

The set of v* € V with inf £ min has a positive measure if K = R (De Silva—Lim
2008), but measure zero if K = C (Qi—Michatek—Lim, 2017).



3 Strassen’s Matrix Multiplication

Standard matrix-matrix multiplication costs 2n3 operations.
Strassen 1969: 4.7n!0827 =4.772-8074

Two 2 x2 block matrices can be multiplied as follows:

a1 a b1 b 1 c | |
[ , a ] [ ) be ] B [ . ] ’ a;, b;, c; submatrices with
CL3 CL4_ b3 b4 C3 C4

C1 = M1+ Mg — Mg + M7, Cor = M + My, C3 = M3+ Mg, C4 = M1+ M3 — M2 + Mg
m1 = (a1 + aq)(b1 + ba),
my = (a3 + aq)by,
m3 = a1(b2 — ba),
my = aq(bz — b1),
mgs = (a1 + a2)bs,
me = (a3 — a1)(by + b2),
m7 = (a2 — aq)(b3 + ba).



: : Ce al a by b c1 C
Tensor of the matrix-matrix multiplication [ 172 ] [ L ] = [ 1 =2 ]:
a3 a4 by by c3 ¢4

4

> Vuurnauby (1 <v<4).
p,A=1

For instance for v = 1, the identity ¢c; = a1b1+asb3 shows that vi11 = vi23 = 1,
and vy,\ = 0 otherwise. Assume a representation of v by r terms:

3
v = Z®] o) e @) K

The insertion into ¢y = Zu,Azl Vuuh 0p by yields

r 4
=3 3 oI o N ay by

=1 pu, =1
T 4 4
= oV (Z nem au) (Z DRIPY bA) ,

requiring r multiplications.

Strassen 1969: rank(v) < 7, Winograd 1971: rank(v) =7,
Landsberg 2012: rank(v) = 7.



4 Matrix-Product (TT) Format, Tensor Networks

The hierarchical tensor format is based on a binary tree. A particular binary tree is
{1,2,3,4,5,6,7}
T~
{1,2,3,45,6} {7}
N

{1,2,3,4,5} {6}
—

{1,2,3,4 {5}
N\

{1,2,3} {4}
—

{12} {3}
{1}/{\2} Choosing U; := V/; for the subspaces at the leaves j = 1,...,d,
one obtains the TT format (Oseledets—Tyrtyshnikov 2005). It coincides with the
description of the matrix product states (Vidal 2003, Verstraete—Cirac 20006)
used in physics:

Each component v[iq,...,i4] of ve V = ®§-l:1 K™J is expressed by

viigio - --ig) = VO[] - V@[ig] - v, ] vIdE] e K,

where VU)[i] are matrices of size rj—1 X rj with g = rg = 1. The minimal size
of Tj IS rank{l,_”,j}(v).



To avoid the special roles of the vectors V(1)[i;1], V{9)[i,] and to describe periodic
situations, the Cyclic Matrix-Product format C(d, (r;)) is used in physics:

vliziz--ig] = trace{VWW[iy] - V@[ig] - -+ VI Dy ] vID[ig)y
™ Td
= > Y Vi, Wil V;.c(lzlzz[’iz] VDG Ve Dag):
k=1 k=1

Tensor Network: tensor representations based on general graphs which are in
general not a tree. Here the graph is a cycle with d vertices.

THEOREM (Landsberg—Qi—Ye 2012) Formats based on a graph#tree are in
general not closed.

Site-independent format C;,,4(d,r): V[ = V[i] and r;j = r for all j.



4.1 Example for d = 3, V = @3K?*2 r{ = rp = r3 = 2 by
Harris—Michatek—Sertoz 2018

Let

71
(2) (d—1) (d) ri_1XT;
o kzl kz Ekd’kl k1k2 ®. .. ®Ekd—2kd 1 kd 1,kq ® Ko
1 a=1

E(j) is the matrix with entries Ez(jg)[k,ﬁ]:(Spk(ng.
{E(J) 1 <p<rj_1,1 <q<r;}is the canonical basis of K"-1%"5,

LEMMA. Let V = ®Z . V.. The set C(d, (r;)) consists of all
g=1"] J

d
v==0o(m) with =@ ¢\ and ¢\ € LK1, V).
j=1

In our case, we have ¢l9) € L(K2%2 K2x2),
We first consider the site-independent case V{1)[i] = V[i] forall1 < j < d := 3.



01
00

(p,q) # (1,2). Together with the identity id € L(K2*2 K?*2), define

Define ¢ € L(K?*2,K?%?) by (FE12) = E1p = [ and (FEpq) =0 for

v(t) = (&3¢ +t-id)) (m)  for t €R,
where m = 21241:1 Z%2:1 Zi3:1 Elsky ® Bk, ® Eolez € V-
Multilinearity yields v(t) = vg+ 1t vy +t% - vo +t3 - v3 with
vo=(®¢)(m), vi=[®¢YRid+y®ide®Y+id® @ ¢](m),
Vo =[id®idQ Y +id ® Y ® id + ¥ ® id ® id](m), V3 = m.

Note that (FE;;) - ¥(Ey) = 0. Since vg and vy involve three or two 1
applications, vg = vi = 0 follows.
Evaluation of v, yields

Vo = Fp1 ® B11 ® E1p + Epp @ By ® E1o + E11 @ E12 ® Eoq
+ Ep1 ® B2 ® Eop + E17 ® By ® B11 + B2 ® Eoo @ Eog.
vo = v1 = 0 allows us to form the limit vo = lim t~2v(¢). The Lemma states

t—0
that t=2v(t) € Cjpq(3,2) for t > 0.



The non-closedness of C;,q(3,2) will follow from vy ¢ C;hq(3, 2).

For an indirect proof assume vy € C;,q(3,2). The Lemma implies that there is
some ¢ € L(K?X? K?%2) with vy = (®3¢)(m).

It is easy to check that the range of the matricisation M1((®3¢)(m)) =
M1 (m)(®%¢)T is K2*2.

Therefore the map ¢ must be surjective.

Since ¢ € L(K?*%2 K?2%2), surjectivity implies injectivity.
Hence ¢ : K2X2 — K2%2 js a vector space isomorphism and ®3¢:V — V a
tensor space isomorphisms. vo = (®3¢)(m) = rank(vy) = rank(m).

The representation of vy yields rank(vp) < 6.
On the other hand, rank(m) = 7 holds for the Strassen tensor m.
This contradiction proves that vy ¢ C;i4(3,2).

Similarly vy & C(3,(2,2,2)) follows (no site-independence).



4.2 Example for V = Q4C2, r; =2

Tj

Smallest (nontrivial) dimension: V; = C?,

tensor space V = Q4(C?2

Site-independent cyclic format Cjhq4(d, 2), i.e., r; = 2

Result:

d=3":C;q(3,2) is closed (cf. Harris—Michatek—Sert6z 2018)
d > 3:Cihq(d,?2) is not closed (cf. Seynnaeve 2018)

For K=R, d > 3, Cihq(d,2) is not closed (cf. Seynnaeve 2018)



5 Minimal Subspaces

5.1 Tensor Subspace Format

Set of tensors of multilinear rank < r = (r1,...,r4) € N is

d

Tr 1= U ® Uj.

dim(U;)<r; j=1

Question: Is 7+ closed?

In the finite-dimensional case, dimV; < oo, compactness arguments show that
Ty is closed.

What happens in the case of infinite-dimensional Banach spaces V = ®§-l:1 Vi?



5.2 Minimal Subspaces
Let ve VvV = ®§-l:1 Vi — p.ossibly dim V; = oo — be an algebraic tensor.
The minimal subspaces U]m'”(v) are defined by
d .
v € QUM(v), and
7=1
d .
if v.e X U; (U; subspace of Vj), then U;""(v) C Uj.
j=1
REMARK: (a) dim U™"(v) < rank(v) < oo.
d / d M _ xd / 1"
(b) (®F_1Uj) N (&)1 U7) = &1 (Uj N 17).

Conclusion: U]mi”(v) is the subspace of minimal dimension in

VvV € Uj ®V[j] with V[]] — gv‘}
J



5.2.1 Matricisation

The j-th matricisation M : V = ®%:1 K% — K™ ”"] defined by

Vi M= Mj(v) € K" %" with np; = 1] n,
k]
MJ[ZJ, 1[]]] i= V[il, - ,id], 1[]] = (7:17 c o aij—la ij_|_1, PN ,id).

REMARK. If V; = K"J, then U]mi”(v) = range(M;(v)) = range(M;).

Consequences:

rank;(v) := rank(M,(v)) for 1 < j <d,
Tr ={v € V :rank;(v) <r; for 1 < j < d}.

Generalisation for infinite-dimensional Hilbert spaces is possible (n; = c0),
but not for general Banach spaces.



6 Tensor Spaces of Linear Mappings

d d
Let V;, W) be vector spaces defining V := @ V; and W := @ W;. Then the

sets of linear maps 7=1 j=1
Lj = L(‘/j, W])

are again vector spaces. They define the tensor space

d
L := ®LJ
j=1

d :
L can be embedded into L(V,W): A = ® AU) € L is the linear map defined
by J=1

d d
A QW) = ® (AD)
j=1 j=1



6.1 Functionals

d
REMARK: dim(V;) =1 = V = @ V), isomorphic to
k=1

V[]] — V1®V2®...®‘/3_1®‘/}_|_1...®Vd;
in particular

KK®...9KeV;eK®... 9K ~V;.

Let functionals ;. : V). — K be given for all k £ 5. Then

90[]] — 901®---®¢j—1®id®¢j—i—l®"'®gpdE L(V,V)
maps V into V.

We identify ® @), € Vi, with bl ¢ L(V,V)).
k77 g



6.1.1 Minimal Subspaces

Ujmi”(v) = {gp(v) L p € a®k;éj V,é}

_ {w(v) -y e <"’®k7ﬁj Vk)/}°

Vk/:: algebraic dual space of V.
In the finite-dimensional case, this statement is equivalent to Ujmi”(v) = range(M;(v)).

In the infinite-dimensional case, the definition of rank;(v) can be extended by

rank;(v) := dim(Ujmin(V)).



Under rather general assumptions on the norms of V; and V we shall prove that

Vp =V = dim(UJmin(V)) < liminf dim(UJmin(Vn)).

n—aoo

Conclusion:
(1) 7r is weakly closed.
(2) If V is a reflexive Banach space,
anf IV —ull = [V — Upest|

has a solution up. € 7r.

Why weak convergence?
There is a sequence uy € 7y with ||[v —uy|| — infycr ||[v —u].
In the reflexive case, there is subsequence such that u, — up € V.

dim(U]mi”(un)) <r;= dim(U]mi”(ubest)) < 7rj = Upeg € Tr



7 Topological Tensor Spaces

7.1 Case of Banach Spaces

V; (1 < j < d): normed space with |[|-||;, possibly a Banach space
(i.e., complete).

V.. = a ®;i:1 V; is the algebraic tensor space.

alg -

||| chosen norm on V.

Completion of V
space)

alg W-r-t. ||-|| yields the topological tensor space (Banach tensor

d
V= Viop = 1 & Vi

REMARKS: (1) Viop depends on the choice of ||-||
(2) [||l is not fixed by the norms |[-||, .



7.2 Crossnorms

A necessary condition for reasonable topological tensor spaces is the continuity
of the tensor product, i.e.,

d
R )
j=1

for some C < oo and all v{9) € V]

<c 1 o9
j=1 /

DEFINITION: ||-|| is called a crossnorm if

d d
®v(j) =TI H”(j)H-'
j=1 j=1 J

REMARK: There are different crossnorms ||-|| for the same ||-||;!



7.3 Projective Norm ||| ,

The strongest possible norm is the projective norm (Schatten, Grothendieck),
defined by

||V||/\(V1,...,Vd) ‘= ||V||/\
T () 2 )
= inf Z H vz-] H.:V:Z@)vz‘]
i=1 =1 J i—1j=1
d
for ve,® V.
J=1
® |||\ is crossnorm.
e Any norm ||-|| satisfying the continuity requirement satisfies

S MMl -



7.4 Duals and Injective Norm ||-||,,

The dual space V]* is the space of the continuous and linear functions on V.

We now require:
also the tensor product ) : X?:ﬂ/j" o a®§.l:1 V]* is continuous, i.e.,

d
H®j:1 Fj

*

< CH;.lzl ||gojH;k for all p; € V"

o For v € a®)_; Vj define |-y, 1)) by

(P1® P2 ® ... ®¢q) (V)]

IVllv,... vy = VIl :=  sup
ot e T Y
1<j<d
e |||\, is a crossnorm.

e |||\, is the weakest norm with the continuity condition from above.



7.5 Minimal Subspaces, Final Part

We recall UM"(v) := {¢(V) : ¢ € ¢ ®ir; V. }. Hahn—Banach theorem yields
J k#j Yk
U]mm(v) — {gp(v) L P E a®k7éj Vk*} :
© = Qr+j go(k) € a Qk£j Vk’ induces the map go[j] e L(V,V;).

(1) If ||| 2 |-l then ¢ € o ®j; V¥ implies that ol € £(V,V}) is continu-
ous.

(2) Weak convergence v, — v implies ;(vn) — oll(v) in Vi.

Proof. For any ¢U) e V]* we have o) (lil(v,)) = (®k gp(k)) (V).
Since ® := ®p o(F) € V*, v, — v yields ®(vy,) — d(v) = o) (pll(v)).

(3) Let the sequences (Vg))neN for 1 < ¢ < N converge weakly to linearly
independent limits v(?) € V (i.e., Vf,(f) — V(i)). Then there is an ng such that
for all n > ng, the N-tuples (vf{’) :1 <4¢ < N) are linearly independent.

Hence vy, — Vv = dim(UM"(v)) < lim inf dim(U™"(vp)).

n—aoeo



