ALS Iteration / (Non-)Closedness

Wolfgang Hackbusch

Max-Planck-Institut für *Mathematik in den Naturwissenschaften* and University of Kiel

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de

https://www.mis.mpg.de/scicomp/hackbusch.en.html

Creswick, February 9, 2018

Overview

I. ALS Method for Optimisation Problems

- Formulation of the Problem
- Study of Examples
- Global Convergence for Rank-1 Approximation

II. (Non-)Closedness Questions

- r-Term Format, Rank of a Tensor
- Properties of \mathcal{R}_r , Numerical Instability
- Strassen's Matrix Multiplication
- Matrix-Product (TT) Format, Tensor Networks
- Nonclosedness of the Cyclic Matrix-Product Format

Minimal Subspaces

- Definition
- Tensor Spaces of Linear Mappings, Functionals
- Characterisation of Minimal Subspaces in Infinite Dimensions

Topological Tensor Spaces

- Banach spaces, Crossnorms, Projective and Injective Norm
- Final Proof

1 ALS Method for Optimisation Problems

1.1 Formulation of the Problem

Let

 $\Phi(\mathbf{u}) = \min$

be a minimisation problem over the whole tensor space $\mathbf{u} \in \mathbf{V}.$

Approximation: Choose any format $\mathcal{F} \subset \mathbf{V}$. Solve

 $\Phi(\mathbf{u}) = \min$ over all $\mathbf{v} \in \mathcal{F}$.

This is the minimisation over all parameters in the representation of $v \in \mathcal{F}$.

Difficulty: While the original problem may be convex, the new problem is not.

Example: $\Phi(\mathbf{u}) = \langle \mathbf{A}\mathbf{u}, \mathbf{u} \rangle - 2 \langle \mathbf{b}, \mathbf{u} \rangle$ for the solution of $\mathbf{A}\mathbf{u} = \mathbf{b}$ with positive definite matrix \mathbf{A} .

Example: $\Phi(\mathbf{u}) = \|\mathbf{v} - \mathbf{u}\|^2$ over all $\mathbf{u} \in \mathcal{R}_1 = \mathcal{T}_{(1,...,1)}$. $\mathbf{v} \in \mathbf{V}$ is arbitrary.

Ansatz:

$$\mathbf{u} = u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}, \quad u^{(j)} \in V_j = \mathbb{R}^{n_j}$$

Necessary condition: $\nabla \Phi(\mathbf{u}) = 0$ (multilinear system of equations).

ALS = alternating least-squares method: 1) solve $\nabla \Phi(u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}) = 0$ w.r.t. $u^{(1)} \Rightarrow$ solution: $\hat{u}^{(1)}$, 2) solve $\nabla \Phi(\hat{u}^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}) = 0$ w.r.t. $u^{(2)} \Rightarrow$ solution: $\hat{u}^{(2)}$, : d) solve $\nabla \Phi(\hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d-1)} \otimes u^{(d)}) = 0$ w.r.t. $u^{(d)} \Rightarrow$ solution: $\hat{u}^{(d)}$ All partial steps are linear problems and easy to solve.

One ALS iteration is given by $\mathbf{u}_0 = u^{(1)} \otimes \ldots \otimes u^{(d)} \mapsto \mathbf{u}_1 = \hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d)}$. This defines a ALS sequence $\{\mathbf{u}_m : m \in \mathbb{N}_0\}$.

Questions: Does \mathbf{u}_m converge? To what limit? Convergence speed?

1.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):

- The sequence $\{\mathbf{u}_m : m \in \mathbb{N}_0\}$ is bounded,
- $\|\mathbf{u}_m \mathbf{u}_{m+1}\| \to \mathbf{0},$

•
$$\sum_{m=0}^{\infty} \|\mathbf{u}_m - \mathbf{u}_{m+1}\|^2 < \infty$$
,

• the set S of accumulation points of $\{\mathbf{u}_m\}$ is connected and compact.

Conclusion: If S contains an isolated point \mathbf{u}^* , it follows that $\mathbf{u}_m \to \mathbf{u}^*$.

Note that, in general, the limit may depend on the starting value!

1.3 Study of Examples

1.3.1 Case of d = 2

$$\mathbf{v}:=inom{1}{0}\otimesinom{1}{0}+2inom{0}{1}\otimesinom{0}{1},\quad \Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^2\,.$$

1) $\mathbf{u}^{**} = 2\begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix}$ is the global minimiser and an attractive fixed point. 2) $\mathbf{u}^* = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix}$ is a fixed point of the ALS iteration:

$$\Phi(\mathbf{u}^* + \delta_1 \otimes {\binom{1}{0}}) = \Phi(\mathbf{u}^*) + \|\delta_1\|^2.$$

But $\Phi\left(\binom{1}{t} \otimes \binom{1}{t}\right) = \Phi(\mathbf{u}^*) - t^2\left(2 - t^2\right)$

 \Rightarrow u^{*} is a saddle point and a repulsive fixed point.

Conclusion: Almost all starting values lead to $\mathbf{u}_m \to \mathbf{u}^{**}$.

1.3.2 Case of $d \ge 3$

For $a \perp b$ with ||a|| = ||b|| = 1 consider $\Phi(\mathbf{u}) = ||\mathbf{v} - \mathbf{u}||^2$ with $\mathbf{v} = \otimes^3 a + 2 \otimes^3 b.$

Again $\mathbf{u}^* = \otimes^3 a$ and $\mathbf{u}^{**} = 2 \otimes^3 b$ are fixed points, $\Phi(\mathbf{u}^{**}) < \Phi(\mathbf{u}^*)$. But now both are local minima (attractive fixed points)! Additional saddle point (repulsive fixed point): $\mathbf{u}^{***} = c \otimes^3 (a + \frac{1}{2}b)$.

The sequence $\{\mathbf{u}_m\}$ corresponding to the starting value

$$\mathbf{u}_{0} = c^{(0)} \left(a + t_{1}^{(0)} b \right) \otimes \left(a + t_{2}^{(0)} b \right) \otimes \left(a + t_{3}^{(0)} b \right)$$

is completely defined by $t_2^{(0)}$ and $t_3^{(0)}$. The characteristic value is

$$au_m := \left| t_2^{(m)} \right|^{lpha} \left| t_3^{(m)} \right|^{eta} \quad ext{with} \quad lpha = 5^{1/2} - 1, \ eta = 2.$$

(A) $\tau_0 > 2^{-\gamma}$, $\gamma = 5^{1/2} + 1 \Rightarrow \mathbf{u}_m \to \mathbf{u}^{**}$ (global minimiser), (B) $\tau_0 < 2^{-\gamma} \Rightarrow \mathbf{u}_m \to \mathbf{u}^*$ (local minimiser), (C) $\tau_0 = 2^{-\gamma} \Rightarrow \mathbf{u}_m \to \mathbf{u}^{***}$ (saddle point, global minimiser on the manifold $\tau = 2^{-\gamma}$). We recall:

Conclusion: If the set of accumulation points of $\{u_m\}$ contains an isolated point u^* , it follows that $u_m \to u^*$.

Wang–Chu (2014): Global convergence for almost all u_0 .

Uschmajew (2015):

Analysis based on the Łojasiewicz inequality yields: All sequences \mathbf{u}_m converge to some \mathbf{u}^* with $\nabla \Phi(\mathbf{u}^*) = 0$.

Łojasiewicz (1965, Ensembles semi-analytiques): If Φ is analytic,

$$\exists \theta \in (0, 1/2] \quad |\Phi(x) - \Phi(x_*)|^{1-\theta} \leq \|\nabla \Phi(x)\|$$

in some neighbourhood of x_* .

Convergence speed?

The proof by the Łojasiewicz inequality is not constructive.

Espig–Khachatryan (2015): Study of sequences for $\Phi(\mathbf{u}) = \|\mathbf{v} - \mathbf{u}\|^2$ with

$$\mathbf{v} = \otimes^{3} a + \lambda \left(a \otimes a \otimes b + a \otimes b \otimes a + b \otimes a \otimes a \right),$$

$$a \perp b, \qquad \|a\| = \|b\| = 1.$$

Depending on the value of λ it is shown that the convergence can be

- sublinear ($\lambda = 1/2$),
- linear ($\lambda < 1/2$).

For $\mathbf{v} = \otimes^3 a + 2 \otimes^3 b$, $\mathbf{u}_m \to \otimes^3 a$ or $2 \otimes^3 b$, we have

• superlinear convergence (of order $2 + 5^{1/2} > 1$)

Study of the general case: Gong–Mohlenkamp–Young 2017

2 (Non-)Closedness Questions

2.1 *r*-Term Format, Rank of a Tensor

K: underlying field (\mathbb{R} or \mathbb{C}). V_j vector spaces over K. Any algebraic tensor has the form $\mathbf{v} = \sum_{i=1}^r \bigotimes_{j=1}^d v_i^{(j)}, v_i^{(j)} \in V_j$, for some $r \in \mathbb{N}_0$. Fixing r, we obtain the set

$$\mathcal{R}_r := \left\{ \sum_{i=1}^r \bigotimes_{j=1}^d v_i^{(j)} : v_i^{(j)} \in V_j \right\}$$

of tensors with *representation rank* r. Using the rank

 $\mathsf{rank}(\mathbf{v}) := \min\{m : \mathbf{v} \in \mathcal{R}_m\},\$

we may write $\mathcal{R}_r := \{\mathbf{v} \in \mathbf{V} : \mathsf{rank}(\mathbf{v}) \leq r\}$.

The maximal rank of \mathbf{V} is

$$\mu := \sup\{\mathsf{rank}(\mathbf{v}) : \mathbf{v} \in \mathbf{V}\}.$$

 $\mu < \infty$ holds for finite-dimensional V_j and is equal to min $\{m : \mathcal{R}_{m+1} = \mathcal{R}_m\}$.

Properties of \mathcal{R}_r :

- In general, the determination of rank(v) is NP hard (cf. Håstad 1990).
- In general, the maximal rank is not explicitly known. For equal dimensions $dim(V_j) = n$:

$$\frac{n^{d-1}}{d} \le r_{\max} \le \frac{d}{2(d-1)}n^{d-1} + O(n^{d-2}).$$

- For *random tensors* there may be more than one tensor rank with positive probability. These ranks are called *typical*.

- Real tensors may have different rank depending on the underlying fields $\mathbb R$ or $\mathbb C.$

- In general, \mathcal{R}_r is not closed. Example: a, b linearly independent and

$$\mathbf{v} = a \otimes a \otimes b + a \otimes b \otimes a + b \otimes a \otimes a \in \mathcal{R}_{3} \setminus \mathcal{R}_{2}$$
$$\mathbf{v} = \underbrace{(b+na) \otimes \left(a + \frac{1}{n}b\right) \otimes a + a \otimes a \otimes (b-na)}_{\mathbf{v}_{n} \in \mathcal{R}_{2}} - \frac{1}{n}b \otimes b \otimes a.$$
$$\mathbf{v}_{n} \in \mathcal{R}_{2}$$
- border rank:
$$\underline{\mathrm{rank}}(\mathbf{v}) := \min\{r \in \mathbb{N}_{0} : \mathbf{v} \in closure(\mathcal{R}_{r})\}.$$

Numerical Instability

In the previous example, the terms of v_n grow like O(n), while the result is of size O(1).

This implies *numerical cancellation*: $\log_2 n$ binary digits of \mathbf{v}_n are lost.

We say that the sequence $\{v_n\}$ is unstable.

Proposition: Suppose dim $(V_j) < \infty$ and $\mathbf{v} \in \mathbf{V} = \bigotimes_{j=1}^d V_j$. A stable sequence $\mathbf{v}_n \in \mathcal{R}_r$ with $\lim \mathbf{v}_n = \mathbf{v}$ exists if and only if $\mathbf{v} \in \mathcal{R}_r$.

Conclusion: If $\mathbf{v} = \lim \mathbf{v}_n \notin \mathcal{R}_r$, the sequence $\mathbf{v}_n \in \mathcal{R}_r$ is unstable.

Best approximation problem: Let $\mathbf{v}^* \in \mathbf{V}$. Try to find $\mathbf{v} \in \mathcal{R}_r$ with

$$\|\mathbf{v}^* - \mathbf{v}\| = \inf\{\|\mathbf{v}^* - \mathbf{w}\| : \mathbf{w} \in \mathcal{R}_r\}.$$

This optimisation problem need not be solvable.

The set of $v^* \in V$ with inf \neq min has a positive measure if $\mathbb{K} = \mathbb{R}$ (De Silva–Lim 2008), but measure zero if $\mathbb{K} = \mathbb{C}$ (Qi–Michałek–Lim, 2017).

3 Strassen's Matrix Multiplication

Standard matrix-matrix multiplication costs $2n^3$ operations. Strassen 1969: $4.7n^{\log_2 7} = 4.7n^{2.8074}$

Two 2×2 block matrices can be multiplied as follows:

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}, \qquad a_i, b_i, c_i \text{ submatrices with}$$

$$c_1 = m_1 + m_4 - m_5 + m_7, c_2 = m_2 + m_4, c_3 = m_3 + m_5, c_4 = m_1 + m_3 - m_2 + m_6, m_1 = (a_1 + a_4)(b_1 + b_4), m_2 = (a_3 + a_4)b_1, m_3 = a_1(b_2 - b_4), m_4 = a_4(b_3 - b_1), m_5 = (a_1 + a_2)b_4, m_6 = (a_3 - a_1)(b_1 + b_2), m_7 = (a_2 - a_4)(b_3 + b_4).$$

Tensor of the matrix-matrix multiplication $\begin{vmatrix} a_1 & a_2 \\ a_3 & a_4 \end{vmatrix} \begin{vmatrix} b_1 & b_2 \\ b_3 & b_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 \\ c_3 & c_4 \end{vmatrix}$:

$$c_{
u} = \sum_{\mu,\lambda=1}^{4} \mathbf{v}_{
u\mu\lambda} a_{\mu} b_{\lambda} \qquad (1 \le
u \le 4).$$

For instance for $\nu = 1$, the identity $c_1 = a_1b_1 + a_2b_3$ shows that $\mathbf{v}_{111} = \mathbf{v}_{123} = 1$, and $\mathbf{v}_{1\mu\lambda} = 0$ otherwise. Assume a representation of \mathbf{v} by r terms:

$$\mathbf{v} = \sum_{i=1}^r \bigotimes_{j=1}^3 v_i^{(j)} \in \bigotimes_{j=1}^3 \mathbb{K}^4.$$

The insertion into $c_{\nu} = \sum_{\mu,\lambda=1}^{4} \mathbf{v}_{\nu\mu\lambda} a_{\mu} b_{\lambda}$ yields

$$c_{\nu} = \sum_{i=1}^{r} \sum_{\mu,\lambda=1}^{4} v_i^{(1)}[\nu] \, v_i^{(2)}[\mu] \, v_i^{(3)}[\lambda] \, a_{\mu} \, b_{\lambda}$$
$$= \sum_{i=1}^{r} v_i^{(1)}[\nu] \left(\sum_{\mu=1}^{4} v_i^{(2)}[\mu] \, a_{\mu} \right) \left(\sum_{\lambda=1}^{4} v_i^{(3)}[\lambda] \, b_{\lambda} \right),$$

requiring r multiplications.

Strassen 1969: $rank(v) \le 7$, Winograd 1971: rank(v) = 7, Landsberg 2012: rank(v) = 7.

4 Matrix-Product (TT) Format, Tensor Networks

The hierarchical tensor format is based on a binary tree. A particular binary tree is $\begin{array}{c} \scriptstyle \{1,2,3,4,5,6,7\}\\ \scriptstyle \{1,2,3,4,5,6\} \\ \scriptstyle \{1,2,3,4,5\} \\ \scriptstyle \{6\} \\ \scriptstyle \{1,2,3,4\} \\ \scriptstyle \{5\} \\ \scriptstyle \{1,2,3\} \\ \scriptstyle \{4\} \\ \scriptstyle \{1,2\} \\ \scriptstyle \{3\} \\ \scriptstyle \{1\} \\ \scriptstyle \{2\} \end{array}$ Choosing $U_j := V_j$ for the subspaces at the leaves $j = 1, \ldots, d$, one obtains the TT format (Oseledets–Tyrtyshnikov 2005). It coincides with the

description of the matrix product states (Vidal 2003, Verstraete–Cirac 2006) used in physics:

Each component $\mathbf{v}[i_1,\ldots,i_d]$ of $\mathbf{v}\in\mathbf{V}=igotimes_{j=1}^d\mathbb{K}^{n_j}$ is expressed by

 $\mathbf{v}[i_1 i_2 \cdots i_d] = V^{(1)}[i_1] \cdot V^{(2)}[i_2] \cdot \ldots \cdot V^{(d-1)}[i_{d-1}] \cdot V^{(d)}[i_d] \in \mathbb{K},$

where $V^{(j)}[i]$ are matrices of size $r_{j-1} \times r_j$ with $r_0 = r_d = 1$. The minimal size of r_j is rank $\{1,...,j\}$ (v).

To avoid the special roles of the vectors $V^{(1)}[i_1], V^{(d)}[i_d]$ and to describe periodic situations, the Cyclic Matrix-Product format $C(d, (r_j))$ is used in physics:

$$\mathbf{v}[i_{1}i_{2}\cdots i_{d}] = \operatorname{trace}\{V^{(1)}[i_{1}] \cdot V^{(2)}[i_{2}] \cdots V^{(d-1)}[i_{d-1}] \cdot V^{(d)}[i_{d}]\} \\ = \sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} V_{k_{d}k_{1}}^{(1)}[i_{1}] \cdot V^{(2)}_{k_{1}k_{2}}[i_{2}] \cdots V^{(d-1)}[i_{d-1}] \cdot V_{k_{d-1}k_{d}}^{(d)}[i_{d}].$$

Tensor Network: tensor representations based on general graphs which are in general not a tree. Here the graph is a cycle with d vertices.

THEOREM (Landsberg–Qi–Ye 2012) Formats based on a graph \neq tree are in general not closed.

Site-independent format $C_{ind}(d, r)$: $V^{(j)}[i] = V[i]$ and $r_j = r$ for all j.

4.1 Example for d = 3, $V = \otimes^3 \mathbb{K}^{2 \times 2}$, $r_1 = r_2 = r_3 = 2$ by Harris-Michałek-Sertöz 2018

Let

$$\mathbf{m} := \sum_{k_1=1}^{r_1} \cdots \sum_{k_d=1}^{r_d} E_{k_d,k_1}^{(1)} \otimes E_{k_1k_2}^{(2)} \otimes \ldots \otimes E_{k_{d-2}k_{d-1}}^{(d-1)} \otimes E_{k_{d-1},k_d}^{(d)} \in \bigotimes_{j=1}^d \mathbb{K}^{r_{j-1} \times r_j}$$

$$E_{pq}^{(j)} \text{ is the matrix with entries } E_{pq}^{(j)}[k,\ell] = \delta_{pk}\delta_{q\ell}.$$

$$\{E_{pq}^{(j)}: 1 \le p \le r_{j-1}, 1 \le q \le r_j\} \text{ is the canonical basis of } \mathbb{K}^{r_{j-1} \times r_j}.$$

LEMMA. Let $\mathbf{V} = \bigotimes_{j=1}^{d} V_j$. The set $\mathcal{C}(d, (r_j))$ consists of all

$$\mathbf{v} = \mathbf{\Phi}(\mathbf{m})$$
 with $\mathbf{\Phi} = \bigotimes_{j=1}^d \phi^{(j)}$ and $\phi^{(j)} \in L(\mathbb{K}^{r_{j-1} imes r_j}, V_j).$

In our case, we have $\phi^{(j)} \in L(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2})$. We first consider the site-independent case $V^{(j)}[i] = V[i]$ for all $1 \le j \le d := 3$. Define $\psi \in L(\mathbb{K}^{2\times 2}, \mathbb{K}^{2\times 2})$ by $\psi(E_{12}) = E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $\psi(E_{pq}) = 0$ for $(p,q) \neq (1,2)$. Together with the identity $id \in L(\mathbb{K}^{2\times 2}, \mathbb{K}^{2\times 2})$, define $\mathbf{v}(t) = \left(\otimes^3(\psi + t \cdot id)\right)$ (m) for $t \in \mathbb{R}$,

where $\mathbf{m} = \sum_{k_1=1}^2 \sum_{k_2=1}^2 \sum_{k_3=1}^2 E_{k_3k_1} \otimes E_{k_1k_2} \otimes E_{k_2k_3} \in \mathbf{V}$. Multilinearity yields $\mathbf{v}(t) = \mathbf{v}_0 + t \cdot \mathbf{v}_1 + t^2 \cdot \mathbf{v}_2 + t^3 \cdot \mathbf{v}_3$ with

 $\mathbf{v}_0 = (\otimes^3 \psi)(\mathbf{m}), \quad \mathbf{v}_1 = [\psi \otimes \psi \otimes id + \psi \otimes id \otimes \psi + id \otimes \psi \otimes \psi](\mathbf{m}), \\ \mathbf{v}_2 = [id \otimes id \otimes \psi + id \otimes \psi \otimes id + \psi \otimes id \otimes id](\mathbf{m}), \quad \mathbf{v}_3 = \mathbf{m}.$

Note that $\psi(E_{ij}) \cdot \psi(E_{k\ell}) = 0$. Since \mathbf{v}_0 and \mathbf{v}_1 involve three or two ψ applications, $\mathbf{v}_0 = \mathbf{v}_1 = 0$ follows. Evaluation of \mathbf{v}_2 yields

$$\mathbf{v}_{2} = E_{21} \otimes E_{11} \otimes E_{12} + E_{22} \otimes E_{21} \otimes E_{12} + E_{11} \otimes E_{12} \otimes E_{21} \\ + E_{21} \otimes E_{12} \otimes E_{22} + E_{12} \otimes E_{21} \otimes E_{11} + E_{12} \otimes E_{22} \otimes E_{21}.$$

 $\mathbf{v}_0 = \mathbf{v}_1 = 0$ allows us to form the limit $\mathbf{v}_2 = \lim_{t \to 0} t^{-2} \mathbf{v}(t)$. The Lemma states that $t^{-2} \mathbf{v}(t) \in \mathcal{C}_{ind}(3,2)$ for t > 0.

The non-closedness of $C_{ind}(3,2)$ will follow from $v_2 \notin C_{ind}(3,2)$.

For an indirect proof assume $\mathbf{v}_2 \in \mathcal{C}_{ind}(3, 2)$. The Lemma implies that there is some $\phi \in L(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2})$ with $\mathbf{v}_2 = (\otimes^3 \phi)(\mathbf{m})$. It is easy to check that the range of the matricisation $\mathcal{M}_1((\otimes^3 \phi)(\mathbf{m})) =$

 $\phi \mathcal{M}_1(\mathbf{m})(\otimes^2 \phi)^{\mathsf{T}}$ is $\mathbb{K}^{2 \times 2}$.

Therefore the map ϕ must be surjective.

Since $\phi \in L(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2})$, surjectivity implies injectivity. Hence $\phi : \mathbb{K}^{2 \times 2} \to \mathbb{K}^{2 \times 2}$ is a vector space isomorphism and $\otimes^{3}\phi : \mathbf{V} \to \mathbf{V}$ a tensor space isomorphisms. $\mathbf{v}_{2} = (\otimes^{3}\phi)(\mathbf{m}) \Rightarrow \operatorname{rank}(\mathbf{v}_{2}) = \operatorname{rank}(\mathbf{m})$.

The representation of v_2 yields $rank(v_2) \le 6$. On the other hand, rank(m) = 7 holds for the Strassen tensor m. This contradiction proves that $v_2 \notin C_{ind}(3, 2)$.

Similarly $\mathbf{v}_2 \notin \mathcal{C}(3, (2, 2, 2))$ follows (no site-independence).

4.2 Example for $\mathbf{V} = \otimes^d \mathbb{C}^2$, $r_j = 2$

Smallest (nontrivial) dimension: $V_j = \mathbb{C}^2$,

tensor space $\mathbf{V} = \otimes^d \mathbb{C}^2$

Site-independent cyclic format $C_{ind}(d, 2)$, i.e., $r_j = 2$

Result:

d = 3: $C_{ind}(3, 2)$ is closed (cf. Harris–Michałek–Sertöz 2018)

d > 3: $C_{ind}(d, 2)$ is not closed (cf. Seynnaeve 2018)

For $\mathbb{K} = \mathbb{R}$, $d \geq 3$, $C_{ind}(d, 2)$ is not closed (cf. Seynnaeve 2018)

5 Minimal Subspaces

5.1 Tensor Subspace Format

Set of tensors of multilinear rank $\leq \mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{N}^d$ is

$$\mathcal{T}_{\mathbf{r}} := \bigcup_{\dim(U_j) \leq r_j} \bigotimes_{j=1}^d U_j.$$

Question: Is T_r closed?

In the finite-dimensional case, dim $V_j < \infty$, compactness arguments show that T_r is closed.

What happens in the case of infinite-dimensional Banach spaces $\mathbf{V} = \bigotimes_{j=1}^{d} V_j$?

5.2 Minimal Subspaces

Let $\mathbf{v} \in \mathbf{V} = \bigotimes_{j=1}^{d} V_j$ — possibly dim $V_j = \infty$ — be an *algebraic* tensor. The minimal subspaces $U_j^{\min}(\mathbf{v})$ are defined by

$$\mathbf{v} \in \bigotimes_{j=1}^{d} U_{j}^{\min}(\mathbf{v}), \text{ and}$$

if $\mathbf{v} \in \bigotimes_{j=1}^{d} U_{j}$ (U_{j} subspace of V_{j}), then $U_{j}^{\min}(\mathbf{v}) \subset U_{j}$.

REMARK: (a) dim $U_j^{\min}(\mathbf{v}) \leq \operatorname{rank}(\mathbf{v}) < \infty$. (b) $\left(\bigotimes_{j=1}^d U_j' \right) \cap \left(\bigotimes_{j=1}^d U_j'' \right) = \bigotimes_{j=1}^d \left(U_j' \cap U_j'' \right)$.

Conclusion: $U_i^{\min}(\mathbf{v})$ is the subspace of minimal dimension in

$$\mathbf{v} \in U_j \otimes \mathbf{V}_{[j]}$$
 with $\mathbf{V}_{[j]} := \bigotimes_{k \neq j} V_j$.

5.2.1 Matricisation

The *j*-th matricisation $\mathcal{M}_j : \mathbf{V} = \bigotimes_{k=1}^d \mathbb{K}^{n_k} \to \mathbb{K}^{n_j \times n_{[j]}}$ defined by $\mathbf{v} \mapsto M_j := \mathcal{M}_j(\mathbf{v}) \in \mathbb{K}^{n_j \times n_{[j]}}$ with $n_{[j]} := \prod_{k \neq j} n_k$, $M_j[i_j, \mathbf{i}_{[j]}] := \mathbf{v}[i_1, \dots, i_d], \quad \mathbf{i}_{[j]} := (i_1, \dots, i_{j-1}, i_{j+1}, \dots, i_d).$ **REMARK**. If $V_j = \mathbb{K}^{n_j}$, then $U_j^{\min}(\mathbf{v}) = range(\mathcal{M}_j(\mathbf{v})) = range(M_j).$

Consequences:

$$egin{aligned} \mathsf{rank}_j(\mathbf{v}) &:= \mathsf{rank}(\mathcal{M}_j(\mathbf{v})) & ext{ for } 1 \leq j \leq d, \ \mathcal{T}_{\mathbf{r}} &= \{\mathbf{v} \in \mathbf{V} : \mathsf{rank}_j(\mathbf{v}) \leq r_j ext{ for } 1 \leq j \leq d\}. \end{aligned}$$

Generalisation for infinite-dimensional Hilbert spaces is possible $(n_j = \infty)$, but not for general Banach spaces.

6 Tensor Spaces of Linear Mappings

Let V_j, W_j be vector spaces defining $\mathbf{V} := \bigotimes_{j=1}^d V_j$ and $\mathbf{W} := \bigotimes_{j=1}^d W_j$. Then the sets of linear maps

$$L_j := L(V_j, W_j)$$

are again vector spaces. They define the tensor space

$$\mathbf{L} := \bigotimes_{j=1}^d L_j.$$

L can be embedded into $L(\mathbf{V}, \mathbf{W})$: $\mathbf{A} = \bigotimes_{j=1}^d A^{(j)} \in \mathbf{L}$ is the linear map defined by

$$\mathbf{A}\bigotimes_{j=1}^{d} v^{(j)} := \bigotimes_{j=1}^{d} \left(A^{(j)} v^{(j)} \right).$$

6.1 Functionals

REMARK: dim
$$(V_j) = 1 \Rightarrow \mathbf{V} = \bigotimes_{k=1}^d V_k$$
 isomorphic to
$$\mathbf{V}_{[j]} := V_1 \otimes V_2 \otimes \ldots \otimes V_{j-1} \otimes V_{j+1} \ldots \otimes V_d;$$

in particular

$$\mathbb{K}\otimes\mathbb{K}\otimes\ldots\otimes\mathbb{K}\otimes V_{j}\otimes\mathbb{K}\otimes\ldots\otimes\mathbb{K}\simeq V_{j}.$$

Let functionals $\varphi_k : V_k \to \mathbb{K}$ be given for all $k \neq j$. Then

$$\varphi^{[j]} := \varphi_1 \otimes \ldots \otimes \varphi_{j-1} \otimes id \otimes \varphi_{j+1} \otimes \ldots \otimes \varphi_d \in L(\mathbf{V}, V_j)$$
maps V into V_j .

We identify
$$\bigotimes_{k \neq j} \varphi_k \in \mathbf{V}'_{[j]}$$
 with $\varphi^{[j]} \in L(\mathbf{V}, V_j)$.

6.1.1 Minimal Subspaces

$$U_{j}^{\min}(\mathbf{v}) := \left\{ \varphi(\mathbf{v}) : \varphi \in a \bigotimes_{k \neq j} V_{k}' \right\}$$
$$= \left\{ \varphi(\mathbf{v}) : \varphi \in \left(a \bigotimes_{k \neq j} V_{k} \right)' \right\}.$$

 V'_k : algebraic dual space of V_k .

In the finite-dimensional case, this statement is equivalent to $U_j^{\min}(\mathbf{v}) = range(\mathcal{M}_j(\mathbf{v}))$.

In the infinite-dimensional case, the definition of $rank_j(v)$ can be extended by

 $\operatorname{rank}_{j}(\mathbf{v}) := \dim(U_{j}^{\min}(\mathbf{v})).$

Under rather general assumptions on the norms of V_i and V we shall prove that

$$\mathbf{v}_n
ightarrow \mathbf{v} \qquad \Rightarrow \qquad \dim(U_j^{\min}(\mathbf{v})) \leq \liminf_{n \to \infty} \dim(U_j^{\min}(\mathbf{v}_n)).$$

Conclusion:

(1) T_r is weakly closed.
(2) If V is a reflexive Banach space,

$$\inf_{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}} \|\mathbf{v} - \mathbf{u}\| = \|\mathbf{v} - \mathbf{u}_{\mathsf{best}}\|$$

has a solution $\mathbf{u}_{\text{best}} \in \mathcal{T}_{\mathbf{r}}.$

Why weak convergence? There is a sequence $\mathbf{u}_n \in \mathcal{T}_{\mathbf{r}}$ with $\|\mathbf{v} - \mathbf{u}_n\| \rightarrow \inf_{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}} \|\mathbf{v} - \mathbf{u}\|$. In the reflexive case, there is subsequence such that $\mathbf{u}_n \rightharpoonup \mathbf{u}_{\text{best}} \in \mathbf{V}$.

 $\dim(U_j^{\min}(\mathbf{u}_n)) \leq r_j \Rightarrow \dim(U_j^{\min}(\mathbf{u}_{\text{best}})) \leq r_j \Rightarrow \mathbf{u}_{\text{best}} \in \mathcal{T}_{\mathbf{r}}.$

7 **Topological Tensor Spaces**

7.1 Case of Banach Spaces

 V_j ($1 \le j \le d$): normed space with $\|\cdot\|_j$, possibly a Banach space (i.e., complete).

 $\mathbf{V}_{\mathsf{alg}} := a \bigotimes_{j=1}^{d} V_j$ is the algebraic tensor space.

 $\|\cdot\|$ chosen norm on V_{alg} .

Completion of \mathbf{V}_{alg} w.r.t. $\|\cdot\|$ yields the topological tensor space (Banach tensor space)

$$\mathbf{V}:=\mathbf{V}_{\mathsf{top}}:={}_{\|\cdot\|}igotimes_{j=1}^dV_j$$
 .

REMARKS: (1) V_{top} depends on the choice of $\|\cdot\|$ (2) $\|\cdot\|$ is not fixed by the norms $\|\cdot\|_j$.

7.2 Crossnorms

A necessary condition for reasonable topological tensor spaces is the continuity of the tensor product, i.e.,

$$\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\| \leq C \prod_{j=1}^{d} \left\|v^{(j)}\right\|_{j}$$

for some $C < \infty$ and all $v^{(j)} \in V_j$.

DEFINITION: $\|\cdot\|$ is called a crossnorm if

$$\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\| = \prod_{j=1}^{d} \left\|v^{(j)}\right\|_{j}$$

REMARK: There are different crossnorms $\|\cdot\|$ for the same $\|\cdot\|_j$!

7.3 **Projective Norm** $\|\cdot\|_{\wedge}$

The *strongest possible norm* is the projective norm (Schatten, Grothendieck), defined by

$$\begin{aligned} \|\mathbf{v}\|_{\wedge(V_1,\dots,V_d)} &:= \|\mathbf{v}\|_{\wedge} \\ &:= \inf\left\{\sum_{i=1}^m \prod_{j=1}^d \left\|v_i^{(j)}\right\|_j : \mathbf{v} = \sum_{i=1}^m \bigotimes_{j=1}^d v_i^{(j)}\right\} \end{aligned}$$

for
$$\mathbf{v} \in a \bigotimes_{j=1}^{d} V_j$$
.

• $\left\|\cdot\right\|_{\wedge}$ is crossnorm.

 \bullet Any norm $\|\cdot\|$ satisfying the continuity requirement satisfies

 $\left\|\cdot\right\|\lesssim\left\|\cdot\right\|_{\wedge}.$

7.4 Duals and Injective Norm $\|\cdot\|_{\vee}$

The dual space V_j^* is the space of the continuous and linear functions on V_j . We now require:

also the tensor product $\otimes : \times_{j=1}^{d} V_j^* \to {}_a \otimes_{j=1}^{d} V_j^*$ is continuous, i.e.,

$$\left\|\bigotimes_{j=1}^{d}\varphi_{j}\right\|^{*} \leq C \prod_{j=1}^{d} \left\|\varphi_{j}\right\|_{j}^{*} \text{ for all } \varphi_{j} \in V_{j}^{*}.$$

• For
$$\mathbf{v} \in {}_{a} \bigotimes_{j=1}^{d} V_{j}$$
 define $\|\cdot\|_{\vee(V_{1},...,V_{d})}$ by
 $\|\mathbf{v}\|_{\vee(V_{1},...,V_{d})} := \|\mathbf{v}\|_{\vee} := \sup_{\substack{\mathbf{0} \neq \varphi_{j} \in V_{j}^{*} \\ 1 \leq j \leq d}} \frac{|(\varphi_{1} \otimes \varphi_{2} \otimes \ldots \otimes \varphi_{d})(\mathbf{v})|}{\prod_{j=1}^{d} \|\varphi_{j}\|_{j}^{*}}.$

• $\|\cdot\|_{\vee}$ is a crossnorm.

• $\|\cdot\|_{\vee}$ is the weakest norm with the continuity condition from above.

7.5 Minimal Subspaces, Final Part

ous.

We recall $U_j^{\min}(\mathbf{v}) := \left\{ \varphi(\mathbf{v}) : \varphi \in a \otimes_{k \neq j} V'_k \right\}$. Hahn-Banach theorem yields $U_j^{\min}(\mathbf{v}) = \left\{ \varphi(\mathbf{v}) : \varphi \in a \bigotimes_{k \neq j} V^*_k \right\}$. $\varphi = \bigotimes_{k \neq j} \varphi^{(k)} \in a \bigotimes_{k \neq j} V'_k$ induces the map $\varphi^{[j]} \in L(\mathbf{V}, V_j)$. (1) If $\|\cdot\| \gtrsim \|\cdot\|_{\vee}$ then $\varphi \in a \bigotimes_{k \neq j} V^*_k$ implies that $\varphi^{[j]} \in \mathcal{L}(\mathbf{V}, V_j)$ is continu-

(2) Weak convergence $\mathbf{v}_n \rightharpoonup \mathbf{v}$ implies $\varphi_{[j]}(\mathbf{v}_n) \rightharpoonup \varphi^{[j]}(\mathbf{v})$ in V_j .

Proof. For any $\varphi^{(j)} \in V_j^*$ we have $\varphi^{(j)}(\varphi^{[j]}(\mathbf{v}_n)) = (\bigotimes_k \varphi^{(k)})(\mathbf{v}_n)$. Since $\Phi := \bigotimes_k \varphi^{(k)} \in \mathbf{V}^*$, $\mathbf{v}_n \rightharpoonup \mathbf{v}$ yields $\Phi(\mathbf{v}_n) \rightarrow \Phi(\mathbf{v}) = \varphi^{(j)}(\varphi^{[j]}(\mathbf{v}))$.

(3) Let the sequences $(\mathbf{v}_n^{(i)})_{n\in\mathbb{N}}$ for $1 \leq i \leq N$ converge weakly to linearly independent limits $\mathbf{v}^{(i)} \in \mathbf{V}$ (i.e., $\mathbf{v}_n^{(i)} \rightarrow \mathbf{v}^{(i)}$). Then there is an n_0 such that for all $n \geq n_0$, the N-tuples $(\mathbf{v}_n^{(i)} : 1 \leq i \leq N)$ are linearly independent.

Hence $\mathbf{v}_n \rightarrow \mathbf{v} \Rightarrow \dim(U_j^{\min}(\mathbf{v})) \leq \liminf_{n \rightarrow \infty} \dim(U_j^{\min}(\mathbf{v}_n)).$