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1 ALS Method for Optimisation Problems

1.1 Formulation of the Problem

Let

�(u) = min

be a minimisation problem over the whole tensor space u 2 V:

Approximation: Choose any format F � V. Solve

�(u) = min over all v 2 F :

This is the minimisation over all parameters in the representation of v 2 F :

Di�culty : While the original problem may be convex, the new problem is not.

Example: �(u) = hAu;ui � 2 hb;ui for the solution of Au = b with positive

de�nite matrix A.



Example: �(u) = kv � uk2 over all u 2 R1 = T(1;:::;1): v 2 V is arbitrary.

Ansatz:

u = u(1) 
 u(2) 
 : : :
 u(d); u(j) 2 Vj = Rnj

Necessary condition: r�(u) = 0 (multilinear system of equations).

ALS = alternating least-squares method:

1) solve r�(u(1) 
 u(2) 
 : : :
 u(d)) = 0 w.r.t. u(1) ) solution: û(1);

2) solve r�(û(1) 
 u(2) 
 : : :
 u(d)) = 0 w.r.t. u(2) ) solution: û(2);
...

d) solve r�(û(1) 
 : : :
 û(d�1) 
 u(d)) = 0 w.r.t. u(d) ) solution: û(d)

All partial steps are linear problems and easy to solve.

One ALS iteration is given by u0 = u(1) 
 : : :
 u(d) 7! u1 = û(1) 
 : : :
 û(d).

This de�nes a ALS sequence fum : m 2 N0g :

Questions: Does um converge? To what limit? Convergence speed?



1.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):

� The sequence fum : m 2 N0g is bounded,

� kum � um+1k ! 0;

�
1P
m=0

kum � um+1k2 <1;

� the set S of accumulation points of fumg is connected and compact.

Conclusion: If S contains an isolated point u�; it follows that um ! u�:

Note that, in general, the limit may depend on the starting value!



1.3 Study of Examples

1.3.1 Case of d = 2

v :=
�

1
0

�


�

1
0

�
+ 2

�
0
1

�


�

0
1

�
; �(u) = kv � uk2 :

1) u�� = 2
�

0
1

�


�

0
1

�
is the global minimiser and an attractive �xed point.

2) u� =
�

1
0

�


�

1
0

�
is a �xed point of the ALS iteration:

�(u� + �1 

�1

0

�
) = �(u�) + k�1k2 :

But �
��

1
t

�


�

1
t

��
= �(u�)� t2

�
2� t2

�
) u� is a saddle point and a repulsive �xed point.

Conclusion: Almost all starting values lead to um ! u��:



1.3.2 Case of d � 3

For a?b with kak = kbk = 1 consider �(u) = kv � uk2 with

v = 
3a+ 2
3 b:

Again u� = 
3a and u�� = 2
3 b are �xed points, �(u��) < �(u�):
But now both are local minima (attractive �xed points)!

Additional saddle point (repulsive �xed point): u��� = c
3 (a+ 1
2b):

The sequence fumg corresponding to the starting value

u0 = c(0)
�
a+ t

(0)
1 b

�


�
a+ t

(0)
2 b

�


�
a+ t

(0)
3 b

�
is completely de�ned by t

(0)
2 and t

(0)
3 : The characteristic value is

�m :=

����t(m)
2

����� ����t(m)
3

����� with � = 51=2 � 1; � = 2:

(A) �0 > 2�;  = 51=2 + 1 ) um ! u�� (global minimiser),

(B) �0 < 2� ) um ! u� (local minimiser),

(C) �0 = 2� ) um ! u��� (saddle point, global minimiser on the manifold

� = 2�).



We recall:

Conclusion: If the set of accumulation points of fumg contains an isolated

point u�; it follows that um ! u�:

Wang{Chu (2014): Global convergence for almost all u0:

Uschmajew (2015):

Analysis based on the  Lojasiewicz inequality yields:

All sequences um converge to some u� with r�(u�) = 0:

 Lojasiewicz (1965, Ensembles semi-analytiques): If � is analytic,

9� 2 (0; 1=2] j�(x)� �(x�)j1�� � kr�(x)k

in some neighbourhood of x�:



Convergence speed?

The proof by the  Lojasiewicz inequality is not constructive.

Espig{Khachatryan (2015): Study of sequences for �(u) = kv � uk2 with

v = 
3a+ � (a
 a
 b+ a
 b
 a+ b
 a
 a) ;

a?b; kak = kbk = 1:

Depending on the value of � it is shown that the convergence can be

� sublinear (� = 1=2);

� linear (� < 1=2):

For v = 
3a+ 2
3 b; um ! 
3a or 2
3 b, we have

� superlinear convergence (of order 2 + 51=2 > 1)

Study of the general case: Gong{Mohlenkamp{Young 2017



2 (Non-)Closedness Questions

2.1 r-Term Format, Rank of a Tensor

K: underlying �eld (R or C). Vj vector spaces over K: Any algebraic tensor has

the form v =
Pr
i=1

Nd
j=1 v

(j)
i ; v

(j)
i 2 Vj; for some r 2 N0: Fixing r; we obtain

the set

Rr :=

8<:
rX
i=1

dO
j=1

v
(j)
i : v

(j)
i 2 Vj

9=;
of tensors with representation rank r: Using the rank

rank(v) := minfm : v 2 Rmg;

we may write Rr := fv 2 V : rank(v) � rg :

The maximal rank of V is

� := supfrank(v) : v 2 Vg:

� <1 holds for �nite-dimensional Vj and is equal to minfm : Rm+1 = Rmg.



Properties of Rr:

- In general, the determination of rank(v) is NP hard (cf. H�astad 1990).

- In general, the maximal rank is not explicitly known. For equal dimensions

dim(Vj) = n :

nd�1

d
� rmax �

d

2(d� 1)
nd�1 +O(nd�2):

- For random tensors there may be more than one tensor rank with positive

probability. These ranks are called typical.

- Real tensors may have di�erent rank depending on the underlying �elds R or

C:

- In general, Rr is not closed. Example: a; b linearly independent and

v = a
 a
 b+ a
 b
 a+ b
 a
 a 2 R3nR2

v = (b+ na)

�
a+ 1

nb
�

 a+ a
 a
 (b� na)| {z }

vn2R2

� 1
nb
 b
 a:

- border rank: rank(v) := minfr 2 N0 : v 2 closure(Rr)g:



Numerical Instability

In the previous example, the terms of vn grow like O(n), while the result is of
size O(1):

This implies numerical cancellation: log2 n binary digits of vn are lost.

We say that the sequence fvng is unstable.

Proposition: Suppose dim(Vj) <1 and v 2 V =
Nd
j=1 Vj.

A stable sequence vn 2 Rr with limvn = v exists if and only if v 2 Rr:

Conclusion: If v = limvn =2 Rr; the sequence vn 2 Rr is unstable.

Best approximation problem: Let v� 2 V: Try to �nd v 2 Rr with

kv� � vk = inffkv� �wk : w 2 Rrg:
This optimisation problem need not be solvable.

The set of v� 2 V with inf 6= min has a positive measure if K = R (De Silva{Lim
2008), but measure zero if K = C (Qi{Micha lek{Lim, 2017).



3 Strassen's Matrix Multiplication

Standard matrix-matrix multiplication costs 2n3 operations.

Strassen 1969: 4:7nlog2 7 =4:7n2:8074

Two 2�2 block matrices can be multiplied as follows:"
a1 a2
a3 a4

# "
b1 b2
b3 b4

#
=

"
c1 c2
c3 c4

#
; ai; bi; ci submatrices with

c1 = m1 +m4 �m5 +m7; c2 = m2 +m4; c3 = m3 +m5; c4 = m1 +m3 �m2 +m6;

m1 = (a1 + a4)(b1 + b4);

m2 = (a3 + a4)b1;

m3 = a1(b2 � b4);

m4 = a4(b3 � b1);

m5 = (a1 + a2)b4;

m6 = (a3 � a1)(b1 + b2);

m7 = (a2 � a4)(b3 + b4):



Tensor of the matrix-matrix multiplication

"
a1 a2
a3 a4

# "
b1 b2
b3 b4

#
=

"
c1 c2
c3 c4

#
:

c� =
4X

�;�=1

v��� a� b� (1 � � � 4):

For instance for � = 1, the identity c1 = a1b1+a2b3 shows that v111 = v123 = 1,

and v1�� = 0 otherwise. Assume a representation of v by r terms:

v =
rX
i=1

O3

j=1
v

(j)
i 2

O3

j=1
K4:

The insertion into c� =
P4
�;�=1 v��� a� b� yields

c� =
rX
i=1

4X
�;�=1

v
(1)
i [�] v

(2)
i [�] v

(3)
i [�] a� b�

=
rX
i=1

v
(1)
i [�]

0@ 4X
�=1

v
(2)
i [�] a�

1A0@ 4X
�=1

v
(3)
i [�] b�

1A ;
requiring r multiplications.

Strassen 1969: rank(v) � 7, Winograd 1971: rank(v) = 7,

Landsberg 2012: rank(v) = 7.



4 Matrix-Product (TT) Format, Tensor Networks

The hierarchical tensor format is based on a binary tree. A particular binary tree is

{1}  {2}

{1,2}  {3}

{1,2,3}  {4}

{1,2,3,4}  {5}

{1,2,3,4,5}  {6}

{1,2,3,4,5,6}  {7}

{1,2,3,4,5,6,7}

Choosing Uj := Vj for the subspaces at the leaves j = 1; : : : ; d;

one obtains the TT format (Oseledets{Tyrtyshnikov 2005). It coincides with the

description of the matrix product states (Vidal 2003, Verstraete{Cirac 2006)

used in physics:

Each component v[i1; : : : ; id] of v 2 V =
Nd
j=1K

nj is expressed by

v[i1i2 � � � id] = V (1)[i1] � V (2)[i2] � : : : � V (d�1)[id�1] � V (d)[id] 2 K ;

where V (j)[i] are matrices of size rj�1� rj with r0 = rd = 1: The minimal size

of rj is rankf1;:::;jg(v):



To avoid the special roles of the vectors V (1)[i1]; V (d)[id] and to describe periodic

situations, the Cyclic Matrix-Product format C(d; (rj)) is used in physics:

v[i1i2 � � � id] = tracefV (1)[i1] � V (2)[i2] � � � � � V (d�1)[id�1] � V (d)[id]g

=
r1X

k1=1

� � �
rdX

kd=1

Vkdk1
(1)[i1] � V (2)

k1k2
[i2] � : : : � V (d�1)[id�1] � Vkd�1kd

(d)[id]:

Tensor Network: tensor representations based on general graphs which are in

general not a tree. Here the graph is a cycle with d vertices.

THEOREM (Landsberg{Qi{Ye 2012) Formats based on a graph6=tree are in

general not closed.

Site-independent format Cind(d; r): V (j)[i] = V [i] and rj = r for all j:



4.1 Example for d = 3; V = 
3K2�2; r1 = r2 = r3 = 2 by

Harris{Micha lek{Sert�oz 2018

Let

m :=
r1X

k1=1

� � �
rdX

kd=1

E
(1)
kd;k1


E(2)
k1k2


 : : :
E(d�1)
kd�2kd�1


E(d)
kd�1;kd

2
dO
j=1

Krj�1�rj :

E
(j)
pq is the matrix with entries E

(j)
pq [k; `]=�pk�q`:

fE(j)
pq : 1 � p � rj�1; 1 � q � rjg is the canonical basis of Krj�1�rj :

LEMMA. Let V =
Nd
j=1 Vj: The set C(d; (rj)) consists of all

v = �(m) with � =
dO
j=1

�(j) and �(j) 2 L(Krj�1�rj ; Vj):

In our case, we have �(j) 2 L(K2�2;K2�2):

We �rst consider the site-independent case V (j)[i] = V [i] for all 1 � j � d := 3:



De�ne  2 L(K2�2;K2�2) by  (E12) = E12 =

"
0 1
0 0

#
and  (Epq) = 0 for

(p; q) 6= (1; 2): Together with the identity id 2 L(K2�2;K2�2); de�ne

v(t) =
�

3( + t � id)

�
(m) for t 2 R;

where m =
P2
k1=1

P2
k2=1

P2
k3=1Ek3k1


 Ek1k2

 Ek2k3

2 V:
Multilinearity yields v(t) = v0 + t � v1 + t2 � v2 + t3 � v3 with

v0 = (
3 )(m); v1 = [ 
  
 id+  
 id
  + id
  
  ](m);

v2 = [id
 id
  + id
  
 id+  
 id
 id](m); v3 = m:

Note that  (Eij) �  (Ek`) = 0: Since v0 and v1 involve three or two  

applications, v0 = v1 = 0 follows.

Evaluation of v2 yields

v2 =E21 
 E11 
 E12 + E22 
 E21 
 E12 + E11 
 E12 
 E21

+ E21 
 E12 
 E22 + E12 
 E21 
 E11 + E12 
 E22 
 E21:

v0 = v1 = 0 allows us to form the limit v2 = lim
t!0

t�2v(t): The Lemma states

that t�2v(t) 2 Cind(3; 2) for t > 0:



The non-closedness of Cind(3; 2) will follow from v2 =2 Cind(3; 2):

For an indirect proof assume v2 2 Cind(3; 2): The Lemma implies that there is

some � 2 L(K2�2;K2�2) with v2 = (
3�)(m):

It is easy to check that the range of the matricisation M1((
3�)(m)) =

�M1(m)(
2�)T is K2�2:

Therefore the map � must be surjective.

Since � 2 L(K2�2;K2�2); surjectivity implies injectivity.

Hence � : K2�2 ! K2�2 is a vector space isomorphism and 
3� : V ! V a

tensor space isomorphisms. v2 = (
3�)(m) ) rank(v2) = rank(m):

The representation of v2 yields rank(v2) � 6:

On the other hand, rank(m) = 7 holds for the Strassen tensor m.

This contradiction proves that v2 =2 Cind(3; 2):

Similarly v2 =2 C(3; (2; 2; 2)) follows (no site-independence).



4.2 Example for V = 
dC2; rj = 2

Smallest (nontrivial) dimension: Vj = C2;

tensor space V = 
dC2

Site-independent cyclic format Cind(d; 2); i.e., rj = 2

Result:

d = 3 : Cind(3; 2) is closed (cf. Harris{Micha lek{Sert�oz 2018)

d > 3 : Cind(d; 2) is not closed (cf. Seynnaeve 2018)

For K = R; d � 3, Cind(d; 2) is not closed (cf. Seynnaeve 2018)



5 Minimal Subspaces

5.1 Tensor Subspace Format

Set of tensors of multilinear rank � r = (r1; : : : ; rd) 2 Nd is

Tr :=
[

dim(Uj)�rj

dO
j=1

Uj:

Question: Is Tr closed?

In the �nite-dimensional case, dimVj < 1; compactness arguments show that

Tr is closed.

What happens in the case of in�nite-dimensional Banach spaces V =
Nd
j=1 Vj?



5.2 Minimal Subspaces

Let v 2 V =
Nd
j=1 Vj | possibly dimVj = 1 | be an algebraic tensor.

The minimal subspaces Umin
j (v) are de�ned by

v 2
dO
j=1

Umin
j (v); and

if v 2
dO
j=1

Uj (Uj subspace of Vj), then Umin
j (v) � Uj:

REMARK: (a) dimUmin
j (v) � rank(v) <1:

(b)
�Nd

j=1U
0
j

�
\
�Nd

j=1U
00
j

�
=
Nd
j=1

�
U 0j \ U 00j

�
:

Conclusion: Umin
j (v) is the subspace of minimal dimension in

v 2 Uj 
V[j] with V[j] :=
O
k 6=j

Vj:



5.2.1 Matricisation

The j-th matricisationMj : V =
Nd
k=1K

nk ! Knj�n[j] de�ned by

v 7!Mj := Mj(v) 2 Knj�n[j] with n[j] :=
Y
k 6=j

nk;

Mj[ij; i[j]] := v[i1; : : : ; id]; i[j] := (i1; : : : ; ij�1; ij+1; : : : ; id):

REMARK. If Vj = Knj ; then Umin
j (v) = range(Mj(v)) = range(Mj):

Consequences:

rankj(v) := rank(Mj(v)) for 1 � j � d;

Tr = fv 2 V : rankj(v) � rj for 1 � j � dg:

Generalisation for in�nite-dimensional Hilbert spaces is possible (nj = 1);

but not for general Banach spaces.



6 Tensor Spaces of Linear Mappings

Let Vj;Wj be vector spaces de�ning V :=
dN
j=1

Vj and W :=
dN
j=1

Wj. Then the
sets of linear maps

Lj := L(Vj;Wj)

are again vector spaces. They de�ne the tensor space

L :=
dO
j=1

Lj:

L can be embedded into L(V;W): A =
dN
j=1

A(j) 2 L is the linear map de�ned
by

A
dO
j=1

v(j) :=
dO
j=1

�
A(j)v(j)

�
:



6.1 Functionals

REMARK: dim(Vj) = 1 ) V =
dN

k=1
Vk isomorphic to

V[j] := V1 
 V2 
 : : :
 Vj�1 
 Vj+1 : : :
 Vd;

in particular

K
K
 : : :
K
 Vj 
K
 : : :
K 'Vj:

Let functionals 'k : Vk ! K be given for all k 6= j: Then

'[j] := '1 
 : : :
 'j�1 
 id
 'j+1 
 : : :
 'd 2 L(V; Vj)

maps V into Vj:

We identify
N
k 6=j

'k 2 V0[j] with '[j] 2 L(V; Vj).



6.1.1 Minimal Subspaces

Umin
j (v) :=

�
'(v) : ' 2 a

O
k 6=j V

0
k

�
=

(
'(v) : ' 2

�
a
O

k 6=j Vk

�0)
:

V 0k: algebraic dual space of Vk:

In the �nite-dimensional case, this statement is equivalent to Umin
j (v) = range(Mj(v)):

In the in�nite-dimensional case, the de�nition of rankj(v) can be extended by

rankj(v) := dim(Umin
j (v)):



Under rather general assumptions on the norms of Vj and V we shall prove that

vn * v ) dim(Umin
j (v)) � lim inf

n!1 dim(Umin
j (vn)):

Conclusion:

(1) Tr is weakly closed.

(2) If V is a reexive Banach space,

inf
u2Tr

kv � uk = kv � ubestk

has a solution ubest 2 Tr:

Why weak convergence?

There is a sequence un 2 Tr with kv � unk ! infu2Tr kv � uk :
In the reexive case, there is subsequence such that un * ubest 2 V:

dim(Umin
j (un)) � rj ) dim(Umin

j (ubest)) � rj ) ubest 2 Tr:



7 Topological Tensor Spaces

7.1 Case of Banach Spaces

Vj (1 � j � d): normed space with k�kj, possibly a Banach space

(i.e., complete).

Valg := a
Nd
j=1 Vj is the algebraic tensor space.

k�k chosen norm on Valg:

Completion of Valg w.r.t. k�k yields the topological tensor space (Banach tensor

space)

V := Vtop := k�k
Od

j=1
Vj :

REMARKS: (1) Vtop depends on the choice of k�k
(2) k�k is not �xed by the norms k�kj :



7.2 Crossnorms

A necessary condition for reasonable topological tensor spaces is the continuity

of the tensor product, i.e., 
dO
j=1

v(j)

 � C
dY
j=1

v(j)

j

for some C <1 and all v(j) 2 Vj:

DEFINITION: k�k is called a crossnorm if
dO
j=1

v(j)

 =
dY
j=1

v(j)

j
:

REMARK: There are di�erent crossnorms k�k for the same k�kj !



7.3 Projective Norm k�k^

The strongest possible norm is the projective norm (Schatten, Grothendieck),

de�ned by

kvk^(V1;:::;Vd) := kvk^

:= inf

8<:
mX
i=1

dY
j=1

v(j)
i


j

: v =
mX
i=1

dO
j=1

v
(j)
i

9=;
for v 2 a

dN
j=1

Vj .

� k�k^ is crossnorm.

� Any norm k�k satisfying the continuity requirement satis�es

k�k . k�k^ :



7.4 Duals and Injective Norm k�k_

The dual space V �j is the space of the continuous and linear functions on Vj:

We now require:

also the tensor product
N

: �dj=1V
�
j ! a

Nd
j=1 V

�
j is continuous, i.e.,Od

j=1
'j

� � C
Yd

j=1

'j�j for all 'j 2 V �j :

� For v 2 a
Nd
j=1 Vj de�ne k�k_(V1;:::Vd) by

kvk_(V1;:::;Vd) := kvk_ := sup
0 6='j2V �j
1�j�d

j('1 
 '2 
 : : :
 'd) (v)jQd
j=1 k'jk�j

:

� k�k_ is a crossnorm.

� k�k_ is the weakest norm with the continuity condition from above.



7.5 Minimal Subspaces, Final Part

We recall Umin
j (v) :=

n
'(v) : ' 2 a

N
k 6=j V

0
k

o
. Hahn{Banach theorem yields

Umin
j (v) =

�
'(v) : ' 2 a

O
k 6=j V

�
k

�
:

' =
N
k 6=j '

(k) 2 a
N
k 6=j V

0
k induces the map '[j] 2 L(V; Vj):

(1) If k�k & k�k_ then ' 2 a
N
k 6=j V

�
k implies that '[j] 2 L(V; Vj) is continu-

ous.

(2) Weak convergence vn * v implies '[j](vn) * '[j](v) in Vj:

Proof. For any '(j) 2 V �j we have '(j)('[j](vn)) =
�N

k '
(k)
�

(vn):

Since � :=
N
k '

(k) 2 V�; vn * v yields �(vn) ! �(v) = '(j)('[j](v)):

(3) Let the sequences (v
(i)
n )n2N for 1 � i � N converge weakly to linearly

independent limits v(i) 2 V (i.e., v
(i)
n * v(i)). Then there is an n0 such that

for all n � n0, the N -tuples (v
(i)
n : 1 � i � N) are linearly independent.

Hence vn * v ) dim(Umin
j (v)) � lim inf

n!1 dim(Umin
j (vn)):


