Algebra, Geometry and Ranks

Enrico Carlini

Department of Mathematical Sciences
Politecnico di Torino, Italy

Matrix Workshop, Creswick, 6th-7th February 2018

Tensor rank

Let V_{1}, \ldots, V_{m} be \mathbb{C}-vector spaces of dimension $\operatorname{dim} V_{i}=n_{i}+1$.
A tensor $T \in V=V_{1} \otimes \ldots \otimes V_{m}$ is

$$
T=\sum \alpha_{i_{1}, \ldots, i_{m}} v_{i_{1}} \otimes \ldots \otimes v_{i_{m}}
$$

where the coefficients $\alpha_{i_{1}, \ldots, i_{m}} \in \mathbb{C}$ and the vectors $v_{i_{j}} \in V_{j}$.
There are some distinguished elements in V that we commonly use to represent all the other elements

Elementary tensors

A tensor

$$
v_{1} \otimes \ldots \otimes v_{m} \in V
$$

with $v_{i} \in V_{i}$ is called elementary tensor.

Tensor rank

Note that using elementary tensors we can construct a basis for V and thus for any $T \in V$ we can write

$$
T=\sum_{i=1}^{r} E_{i}
$$

where the E_{i} are elementary tensors.
We give the following definition

Tensor rank

The tensor rank of T is

$$
\operatorname{rk}(T)=\min \left\{r: T=\sum_{i=1}^{r} E_{i}, E_{i} \text { elementary }\right\}
$$

Tensor rank

Example $V=V_{1} \otimes V_{2}$

In this case $T \in V$ can be written as

$$
T=\sum_{i, j} \alpha_{i j} v_{1} \otimes v_{2}
$$

Fixing bases in V_{1} and V_{2}, T corresponds to the $\operatorname{dim} V_{1} \times \operatorname{dim} V_{2}$ matrix

$$
\boldsymbol{A}_{\boldsymbol{T}}=\left(\alpha_{i j}\right) .
$$

Elementary tensors correspond to matrices of rank one, thus

$$
\operatorname{rk}(T)=\operatorname{rk}\left(A_{T}\right)
$$

Tensor rank

By basic properties of the tensor product we know that multilinear operators are tensors. For example, the multiplication of two matrices

$$
A \in \mathbb{C}^{n, m}, B \in \mathbb{C}^{m, p}
$$

corresponds to a tensor

$M_{\text {(n,m,p〉 }}$

$$
\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle} \in \mathbb{C}^{n, m^{*}} \otimes \in \mathbb{C}^{m, p^{*}} \otimes \mathbb{C}^{n, p}
$$

is the matrix multiplication tensor. If $n=m=p$, that is for square matrices, we just write $\mathbf{M}_{\langle\mathbf{n}\rangle}$.

Knowing $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$ relates to the computational complexity of matrix multiplication.

Tensor rank

It is not difficult to find an upper bound for $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}\right)$.

$\operatorname{rk}\left(\mathbf{M}_{\langle\mathrm{n}, \mathrm{m}, \mathrm{p}\rangle}\right) \leq n m p$

Given matrices

$$
A=\left(a_{i j}\right) \in \mathbb{C}^{n, m}, B=\left(b_{j l}\right) \in \mathbb{C}^{m, p}, C=c_{i l} \in \mathbb{C}^{n, p}
$$

and choosing dual bases $\left\{\alpha_{i j}\right\}$ and $\left\{\beta_{j l}\right\}$ we get that

$$
\mathbf{M}_{\langle\mathbf{n}, \mathbf{m}, \mathbf{p}\rangle}=\sum_{i j l} \alpha_{i j} \otimes \beta_{j l} \otimes c_{i l}
$$

and thus the conclusion follows.
For example $\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{n}\rangle}\right) \leq n^{3}$.

Tensor rank

Strassen's result and $\mathbf{M}_{\langle\mathbf{2}\rangle}$

The usual matrix multiplication in the case 2×2 is

$$
\mathbf{M}_{\langle\mathbf{2}\rangle} \in \mathbb{C}^{2,2} \otimes \in \mathbb{C}^{2,2} \otimes \mathbb{C}^{2,2}
$$

where

$$
\mathbf{M}_{\langle\mathbf{2}\rangle}=\sum_{i=1}^{8} E_{i}
$$

for eight elementary tensors and thus

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{2}\rangle}\right) \leq 8
$$

But in the '60s Strassen wanted to prove that equality holds and...

Tensor rank

Strassen's result and $\mathbf{M}_{\langle\mathbf{2}\rangle}$

Strassen showed that

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{2}\rangle}\right) \leq 7
$$

and we now know that equality holds. That is

$$
\mathbf{M}_{\langle\mathbf{2}\rangle}=\sum_{i=1}^{7} F_{i}
$$

for seven, and no fewer, elementary tensors F_{i}. Thus one can multiply $n \times n$ matrix with complexity

$$
O\left(n^{\log _{2} 7}\right)
$$

Tensor rank

$M_{\langle 3\rangle}$

Clearly

$$
\operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{3}\rangle}\right) \leq 27,
$$

and we know that

$$
19 \leq \operatorname{rk}\left(\mathbf{M}_{\langle\mathbf{3}\rangle}\right) \leq 23,
$$

but we do not know the actual value yet!

Waring rank

Given a vector space $V=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ we can consider symmetric tensors that is elements of $\operatorname{Sym}^{\mathrm{d}} V$ that correspond to degree d homogeneous polynomials in the polynomial ring

$$
S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] .
$$

The vector space of degree d forms is usually denoted as S_{d}.

Elementary symmetric tensors

The elementary tensor

$$
v_{1} \otimes \ldots \otimes v_{d}
$$

is symmetric iff all the vectors v_{i} are equal. Thus elementary symmetric tensors are just pure powers

$$
L^{d} \in S_{d}
$$

Waring rank

Waring rank

Given a homogeneous degree d form $F \in S_{d}$, we define the Waring rank

$$
\operatorname{rk}(F)=\min \left\{r: F=L_{1}^{d}+\ldots+L_{r}^{d}, L_{i} \in S_{1}\right\}
$$

For example

Quadratic forms

If $F \in S_{2}$, then

$$
F(\mathbf{x})=\mathbf{x} A_{F} \mathbf{x}^{\top}
$$

for a suitable symmetric matrix A_{F}. Diagonalizing A_{F} is equivalent to writing F as a sum of powers of linear forms, thus

$$
\operatorname{rk}(F)=\operatorname{rk}\left(A_{F}\right)
$$

Waring rank

In char zero, we can find a basis of S_{d} made by powers

Characteristic zero

If $F \in S_{d}$, then

$$
\operatorname{rk}(F) \leq\binom{ n+d}{d}
$$

Positive characteristic

If $x y \in \mathbb{K}[x, y]$ with $\operatorname{char}(\mathbb{K})=2$, then

$$
\operatorname{rk}(x y)=+\infty
$$

since $(a x+b y)^{2}$ cannot contain the monomial $x y$.

Waring rank

Subadditivity

Clearly

$$
\operatorname{rk}\left(L^{d}\right)=1
$$

and

$$
\operatorname{rk}\left(L_{1}^{d}+L_{2}^{d}\right)=2
$$

iff L_{1} and L_{2} are not proportional. In general we have

$$
\operatorname{rk}\left(L_{1}^{d}+\ldots+L_{r}^{d}\right) \leq r
$$

and it is not easy to decide whether equality holds or not.
For example

$$
\operatorname{rk}\left(\left(a_{1} x+b_{1} y\right)^{2}+\left(a_{2} x+b_{2} y\right)^{2}+\left(a_{3} x+b_{3} y\right)^{2}\right) \leq 2
$$

Waring rank

Since a form F gives rise to a symmetric tensor T it is natural to study the relation between $\operatorname{rk}(F)$ and $\operatorname{rk}(T)$. Note that to compute the former we restrict to elementary symmetric tensors and thus

$$
\operatorname{rk}(T) \leq \operatorname{rk}(F)
$$

Comon's conjecture

The tensor rank and the symmetric tensor rank are equal, that is

$$
\operatorname{rk}(T)=\operatorname{rk}(F)
$$

August 2017 counterexample by J. Shitov.

X-rank

We want to find a uniform setting to deal with ranks. First we note that our rank definition are invariant up to scalar multiplication, thus it is natural to work over the projective space.

Projective space

Given a $N+1$ dimensional vector space V, we define

$$
\mathbb{P}(V)=\mathbb{P}^{N} \backslash 0=V / \mathbb{C}^{*}
$$

and $[v] \in \mathbb{P}(V)$ is the equivalence class $\{\lambda v: \lambda \in \mathbb{C} \backslash\{0\}\}$.

X-rank

We want to work with special subset of the projective space, namely algebraic varieties.

V(I)

Given a homogeneous ideal $I \subseteq \mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$ we define the algebraic variety

$$
V(I)=\left\{p \in \mathbb{P}^{n}: F(p)=0 \text { for each } F \in I\right\}
$$

Note that to each algebraic variety $X \subseteq \mathbb{P}^{N}$ corresponds a radical ideal

I(X)

$$
I(X)=\{F \in S: F(p)=0 \text { for each } p \in X\}
$$

X-rank

Some features of algebraic varieties

- The algebraic variety X is completely determined by the ideal $I(X)$
- All ideal $I \subseteq S$ have a finite number of generators (Hilbert's basis theorem)
- For each ideal we can compute a numerical function $H F_{I(X)}(t)$ giving to us several information about X : emptyness, dimension, degree, etc (Hilbert function)
- Groebner bases of $I(X)$ are used to study X, for example its projections (Elimination theory)
- The image of an algebraic projective variety via a polynomial map is a projective variety
- Algebraic varieties are the closed subset of the Zariski topology

X-rank

Given an algebraic variety $X \subset \mathbb{P}^{N}$ and a point $p \in \mathbb{P}^{N}$, we define

X-rank

The X-rank of p with respect to X is

$$
X-\mathrm{rk}(p)=\min \left\{r: p \in\left\langle p_{1}, \ldots, p_{r}\right\rangle, p_{i} \in X\right\}
$$

where

$$
\left\langle p_{1}, \ldots, p_{r}\right\rangle=\mathbb{P}\left(\left\{\lambda_{1} v_{1}+\ldots+\lambda_{r} v_{r}: \lambda_{i} \in \mathbb{C}\right\}\right)
$$

is the linear span of the points $p_{i}=\left[v_{i}\right]$'s.
Clearly, $X-\mathrm{rk}(p)=1$ if and only if $p \in X$.

X-rank

Veronese varieties
Let $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and consider the map,

$$
\begin{gathered}
\mathbb{P}\left(S_{1}\right) \longrightarrow \mathbb{P}\left(S_{d}\right) \\
{[L] \mapsto\left[L^{d}\right]}
\end{gathered}
$$

this is usually denoted as

$$
\nu_{d}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}
$$

and its image

$$
X=\nu_{d}\left(\mathbb{P}^{n}\right)
$$

is an algebraic variety called the d-uple n-dimensional Veronese variety.

X-rank

Veronese varieties

Since the Veronese variety $X=\nu_{d}\left(\mathbb{P}^{n}\right)$ parameterizes pure powers of degree d in $n+1$ variables, it is clear that

$$
X-\mathrm{rk}([F])=\min \left\{r:[F] \in\left\langle\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right]\right\rangle\right\}
$$

and thus the X-rank with respect to the Veronese variety is just the Waring rank.

X-rank

Segre varieties

Given vector spaces V_{1}, \ldots, V_{t}, we consider the map

$$
\begin{gathered}
s: \mathbb{P}\left(V_{1}\right) \times \ldots \times \mathbb{P}\left(V_{t}\right) \longrightarrow \mathbb{P}\left(V_{1} \otimes \ldots \otimes V_{t}\right) \\
{\left[v_{1}\right], \ldots,\left[v_{t}\right] \mapsto\left[v_{1} \otimes \ldots \otimes v_{t}\right]}
\end{gathered}
$$

this is called the Segre map and its image X is called the Segre product of the varieties $\mathbb{P}\left(V_{i}\right)$.

X-rank

Segre varieties

Since the Segre variety $X=s\left(\mathbb{P}\left(V_{1}\right) \times \ldots \times \mathbb{P}\left(V_{t}\right)\right)$ parameterizes elementary tensors in $V_{1} \otimes \ldots \otimes V_{t}$, it is clear that

$$
X-\operatorname{rk}([T])=\min \left\{r:[T] \in\left\langle\left[E_{1}\right], \ldots,\left[E_{r}\right]\right\rangle\right\}
$$

and thus the X-rank with respect to the Segre variety is just the (tensor) rank.

X-rank

To study general tensor we can use Segre varieties and to study symmetric tensor we can use Veronese varieties. However, intermediate situations can be of interest. For example,

$$
x \otimes y \otimes z \otimes t+y \otimes x \otimes z \otimes t+x \otimes y \otimes t \otimes z+y \otimes x \otimes t \otimes z
$$

is a partially symmetric.

Segre-Veronese varieties

Segre-Veronese varieties parameterizes tensors with prescribed symmetry, for example the variety

$$
s\left(\nu_{2} \mathbb{P}(\langle x, y\rangle), \nu_{2} \mathbb{P}(\langle z, t\rangle)\right)
$$

parameterizes elementary objects of the form

$$
x \otimes x \otimes z \otimes z
$$

Secant varieties

It is a common process to start from an algebraic variety $X \subseteq \mathbb{P}^{N}$ and to produce a new one.

Secant varieties

For any non-negative integer i we define the i-th secant variety of X

$$
\sigma_{i}(X)=\bigcup_{P_{1}, \ldots, P_{i} \in X}\left\langle P_{1}, \ldots, P_{i}\right\rangle
$$

where the bar denotes the Zariski closure.
We note that
there is an open dense subset of $\sigma_{i}(X)$ formed by points of the type

$$
\lambda_{1} P_{1}+\ldots+\lambda_{i} P_{i}
$$

for points P_{j} 's in X and scalars λ_{j} 's.

Secant varieties

For example

$$
\sigma_{1}(X)=X
$$

and
$\sigma_{2}(X)$ is the variety of secant lines to X and it is formed by true secant lines and tangent lines to X.

Secant varieties

Linear spaces

If X is a linear space, that is $X \simeq \mathbb{P}^{m}$ for some m, then

$$
\sigma_{i}(X)=X
$$

for all $i>0$.

Hypersurfaces

If $X \subseteq \mathbb{P}^{N}$ is a hypersurface, not a hyperplane, then

$$
\sigma_{i}(X)=\mathbb{P}^{N}
$$

for all $i>0$.

Secant varieties

It is clear that, for $X \subset \mathbb{P}^{N}$, we have

Chain of inclusion

$$
X=\sigma_{1}(X) \subseteq \sigma_{2}(X) \subseteq \ldots \subseteq \mathbb{P}^{N}
$$

and also
$\sigma_{i}(X)=\sigma_{i+1}(X) \Longrightarrow \sigma_{i}(X)$ is a linear space
For example, for $i=1$, we note that there is an open dense subset of $\sigma_{2}(X)$ made by points of the form

$$
\lambda_{1} P_{1}+\lambda_{2} P_{2}
$$

for $P_{1}, P_{2} \in X$ and $\lambda_{1}, \lambda_{2} \in \mathbb{C}$. Since

$$
\sigma_{2}(X)=\sigma_{1}(X)=X
$$

we conclude that all lines joining pairs of points in X completely lie in X. Thus X is a linear space.

Secant varieties

If $X \subseteq \mathbb{P}^{N}$ is non-degenerate, that is X is not contained in any hyperplane, then

$$
X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \ldots \subset \sigma_{r}(X)=\mathbb{P}^{N}
$$

and all inclusions are strict
Thus the natural question to find

$$
\min \left\{r: \sigma_{r}(X)=\mathbb{P}^{N}\right\} .
$$

Note that Veronese and Segre varieties are non-degenerate.

Secant varieties

Expected dimension

If $X \subseteq \mathbb{P}^{N}$ and $\operatorname{dim} X=n$, then the expected dimension of $\sigma_{i}(X)$ is

$$
\operatorname{expdim} \sigma_{i}(X)=i n+i-1=i(n+1)-1
$$

this value comes from a parameter count and it is such that

$$
\operatorname{dim} \sigma_{i}(X) \leq \operatorname{expdim} \sigma_{i}(X)
$$

Note that equality does not always hold.

X-rank and Secant varieties

Let's explore the connection between rank and secant varieties
If X-rank $(P)=r$
then

$$
P \in\left\langle P_{1}, \ldots, P_{r}\right\rangle
$$

where the points P_{i} 's are in X. Thus

$$
P \in \sigma_{r}(X) .
$$

In particular, knowing some elements of the ideal

$$
I\left(\sigma_{r}(X)\right)=\left(G_{1}, \ldots, G_{l}\right)
$$

gives an effective test to check whether

$$
X-\operatorname{rank}(P) \neq r
$$

X-rank and Secant varieties

If $P \in \sigma_{r}(X)$
then

$$
P \in \overline{\bigcup_{P_{1}, \ldots, P_{r} \in X}\left\langle P_{1}, \ldots, P_{r}\right\rangle}
$$

but we can have

$$
X-\operatorname{rank}(P)<r
$$

or

$$
X-\operatorname{rank}(P)>r
$$

Border X-rank
The border X-rank of P is the smallest i such that

$$
P \in \sigma_{i}(X) .
$$

X-rank and Secant varieties

If the border X-rank of P is r
then P is a limit of X-rank r elements.
Knowing f the ideal

$$
I\left(\sigma_{r}(X)\right)=\left(G_{1}, \ldots, G_{l}\right)
$$

gives an necessary and sufficient condition for
the border $X-\operatorname{rank}(P)$ to be r.

X-rank and Secant varieties

Example $x^{2} y \in \mathbb{C}[x, y]$
Let $X=\nu_{3}\left(\mathbb{P}^{1}\right)$, and thus the X-rank is just the Waring rank. Since

$$
x^{2} y=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left[(x+\lambda y)^{3}-x^{3}\right]
$$

we have that $\left[x^{2} y\right] \in \sigma_{2}(X)$, that is $x^{2} y$ has border rank two. However, the equation

$$
x^{2} y=(a x+b y)^{3}+(c x+d y)^{3}
$$

has no solutions in \mathbb{C} and thus

$$
\operatorname{rk}\left(x^{2} y\right) \geq 3
$$

and actually equality holds.

X-rank and Secant varieties

If $X \subseteq \mathbb{P}^{N}$ is such that

$$
\sigma_{r}(X)=\mathbb{P}^{N}
$$

then there is an open and dense subset of \mathbb{P}^{N} made of elements such that $X-\mathrm{rank}=r$.

Generic X-rank

We say that the generic X-rank is r and we write X-grank $=r$ if

$$
\sigma_{r}(X)=\mathbb{P}^{N}
$$

and $\sigma_{r-1}(X) \neq \mathbb{P}^{N}$.
Generic element vs random element.

X-rank and Secant varieties

Example generic Waring rank for $n=1$ and $d=3$

In this case $X=\nu_{3}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{3}$ and it can be easily checked that

$$
\sigma_{2}(X)=\mathbb{P}^{3}
$$

and thus

$$
X-\text { grank }=2
$$

This means that the generic degree 3 element of $\mathbb{C}[x, y]$ has Waring rank 2. But there are elements having Waring rank 3, such as

$$
x^{2} y
$$

Since $\operatorname{expdim} \sigma_{i}(X)=i(\operatorname{dim} X+1)-1$, we get

$$
X-\text { expgrank }=\left\lceil\frac{N+1}{\operatorname{dim} X+1}\right\rceil
$$

Waring rank: what do we know

We now consider X to be a Veronese variety and then the X-rank is just the Waring rank of a homogeneous polynomial. We know the generic Waring rank:

Alexander and Hirschowitz results $\simeq 1990$

For degree d forms in $n+1$ variables we have that

$$
X-\operatorname{grank}(n, d)=\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil
$$

unless $(n, d)=$

$$
(n, 2),(2,4),(3,4),(4,3),(4,4)
$$

Waring rank: what do we know

The defective case $(n, d)=(2,4)$
Let $F \in S_{4}$ where $S=\mathbb{C}[x, y, z]$ and consider the equation

$$
F=\sum_{i=1}^{5}\left(a_{i} x+b_{i} y+c_{i} z\right)^{5}
$$

Since $\operatorname{dim} S_{4}=15$ and since we have 15 variables, we expect to be able to solve for a_{i}, b_{i} and c_{i}. However, it is not difficult to see that, for any choice of a_{i}, b_{i} and c_{i} there exists a partial differential operator ∂ of order 2 such that

$$
\partial \circ \sum_{i=1}^{5}\left(a_{i} x+b_{i} y+c_{i} z\right)^{5}=0
$$

Waring rank: what do we know

The defective case $(n, d)=(2,4)$

But for a generic $F \in S_{4}$ there is no order 2 operator annihilating F, thus

$$
\operatorname{rk}(F) \geq 6
$$

and actually equality holds.
In other words,

$$
\operatorname{expdim} \sigma_{5}(X)=14
$$

but is is actually 13 and

$$
\sigma_{5}(X) \subset \mathbb{P}\left(S_{4}\right)=\mathbb{P}^{14} .
$$

Tensor rank: what do we know

We now consider the Segre variety

$$
X=s\left(\mathbb{P}\left(V_{1}\right) \times \ldots \times \mathbb{P}\left(V_{t}\right)\right) \subset \mathbb{P}^{N}
$$

and then the X-rank is just the tensor rank.
We can easily write down a formula for

$$
X-\text { expgrank }=\left\lceil\frac{1+N}{1-t+\sum_{i} \operatorname{dim} V_{i}}\right\rceil
$$

but, in general, we do no know whether the formula gives the actual value.

Tensor rank: what do we know

We know the exact value of the X-grank in the following cases:

- $\operatorname{dim} V_{i}=2$ for $1 \leq i \leq t$
- $t=2$, that is only two factors
- $t=3$, that is only three factors

There are several conjecture giving a list of defective cases and claiming that the list is exhaustive.

Maximal X-rank

Even when we know X-grank, we do not know how big the rank can be for special elements.

For example, consider $X=\nu_{3}\left(\mathbb{P}^{1}\right)$, that is we study the Waring rank of bivariate cubic forms.
By A-H result, we know that

$$
X-\text { grank }=2
$$

but we also know that $\operatorname{rk}\left(x^{2} y\right)=3$, and actually this is the largest possible value.

Maximal rank of binary forms

For degree d binary forms, that is $X=\nu_{d}\left(\mathbb{P}^{1}\right)$, we have

$$
X-\operatorname{mrank}=d+1
$$

Maximal X-rank

For $X \subset \mathbb{P}^{N}$, we define:
X-mrank

$$
X-\operatorname{mrank}=\max \left\{X-\operatorname{rank}(p): p \in \mathbb{P}^{N}\right\}
$$

Blekherman-Teitler 2015

$$
X-\text { mrank }=\leq 2(X-\text { grank })
$$

Maximal X-rank

Not sharp

Note that the B-T bound is not sharp, even for binary forms, e.g. for binary cubic forms the generic rank is 2 and the maximal rank is 3 .

Plane curves

We know the maximal Waring rank for $n=2$ and $d=3,4,5$ and it is exactly one more than the generic rank, that is $5,7,8$.

Form of high rank

We only know few cases of forms having Waring rank larger than the generic rank, for example monomials in 3 variables have this property (2012). But we do not have an answer for almost all pairs (n, d).

