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Tensor rank

Let V1, . . . ,Vm be C-vector spaces of dimension dim Vi = ni +1.

A tensor T ∈ V = V1 ⊗ . . .⊗ Vm is

T =
∑

αi1,...,imvi1 ⊗ . . .⊗ vim

where the coefficients αi1,...,im ∈ C and the vectors vij ∈ Vj .

There are some distinguished elements in V that we commonly
use to represent all the other elements

Elementary tensors
A tensor

v1 ⊗ . . .⊗ vm ∈ V

with vi ∈ Vi is called elementary tensor.
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Tensor rank

Note that using elementary tensors we can construct a basis
for V and thus for any T ∈ V we can write

T =
r∑

i=1

Ei

where the Ei are elementary tensors.
We give the following definition

Tensor rank
The tensor rank of T is

rk(T ) = min{r : T =
r∑

i=1

Ei ,Ei elementary}.
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Tensor rank

Example V = V1 ⊗ V2

In this case T ∈ V can be written as

T =
∑
i,j

αijv1 ⊗ v2.

Fixing bases in V1 and V2, T corresponds to the
dim V1 × dim V2 matrix

AT = (αij).

Elementary tensors correspond to matrices of rank one, thus

rk(T ) = rk(AT ).
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Tensor rank

By basic properties of the tensor product we know that
multilinear operators are tensors. For example, the
multiplication of two matrices

A ∈ Cn,m,B ∈ Cm,p

corresponds to a tensor

M〈n,m,p〉

M〈n,m,p〉 ∈ Cn,m∗⊗ ∈ Cm,p∗ ⊗ Cn,p

is the matrix multiplication tensor. If n = m = p, that is for
square matrices, we just write M〈n〉.

Knowing rk(M〈n,m,p〉) relates to the computational complexity of
matrix multiplication.
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Tensor rank

It is not difficult to find an upper bound for rk(M〈n,m,p〉).

rk(M〈n,m,p〉) ≤ nmp

Given matrices

A = (aij) ∈ Cn,m,B = (bjl) ∈ Cm,p,C = cil ∈ Cn,p

and choosing dual bases {αij} and {βjl} we get that

M〈n,m,p〉 =
∑

ijl

αij ⊗ βjl ⊗ cil

and thus the conclusion follows.

For example rk(M〈n〉) ≤ n3.
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Tensor rank

Strassen’s result and M〈2〉
The usual matrix multiplication in the case 2× 2 is

M〈2〉 ∈ C2,2⊗ ∈ C2,2 ⊗ C2,2

where

M〈2〉 =
8∑

i=1

Ei

for eight elementary tensors and thus

rk(M〈2〉) ≤ 8.

But in the ’60s Strassen wanted to prove that equality holds
and...
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Tensor rank

Strassen’s result and M〈2〉
Strassen showed that

rk(M〈2〉) ≤ 7,

and we now know that equality holds. That is

M〈2〉 =
7∑

i=1

Fi

for seven, and no fewer, elementary tensors Fi . Thus one can
multiply n × n matrix with complexity

O(nlog27).
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Tensor rank

M〈3〉
Clearly

rk(M〈3〉) ≤ 27,

and we know that

19 ≤ rk(M〈3〉) ≤ 23,

but we do not know the actual value yet!
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Waring rank

Given a vector space V = 〈x0, . . . , xn〉 we can consider
symmetric tensors that is elements of SymdV that correspond
to degree d homogeneous polynomials in the polynomial ring

S = C[x0, . . . , xn].

The vector space of degree d forms is usually denoted as Sd .

Elementary symmetric tensors
The elementary tensor

v1 ⊗ . . .⊗ vd

is symmetric iff all the vectors vi are equal. Thus elementary
symmetric tensors are just pure powers

Ld ∈ Sd .

10/43 E. Carlini Algebra, Geometry and Ranks



Waring rank

Waring rank

Given a homogeneous degree d form F ∈ Sd , we define the
Waring rank

rk(F ) = min{r : F = Ld
1 + . . .+ Ld

r ,Li ∈ S1}

For example

Quadratic forms
If F ∈ S2, then

F (x) = xAF x>

for a suitable symmetric matrix AF . Diagonalizing AF is
equivalent to writing F as a sum of powers of linear forms, thus

rk(F ) = rk(AF ).
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Waring rank

In char zero, we can find a basis of Sd made by powers

Characteristic zero
If F ∈ Sd , then

rk(F ) ≤
(

n + d
d

)
.

Positive characteristic
If xy ∈ K[x , y ] with char(K) = 2, then

rk(xy) = +∞

since (ax + by)2 cannot contain the monomial xy .
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Waring rank

Subadditivity
Clearly

rk(Ld) = 1,

and
rk(Ld

1 + Ld
2) = 2

iff L1 and L2 are not proportional. In general we have

rk(Ld
1 + . . .+ Ld

r ) ≤ r

and it is not easy to decide whether equality holds or not.

For example

rk((a1x + b1y)2 + (a2x + b2y)2 + (a3x + b3y)2) ≤ 2.
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Waring rank

Since a form F gives rise to a symmetric tensor T it is natural to
study the relation between rk(F ) and rk(T ). Note that to
compute the former we restrict to elementary symmetric
tensors and thus

rk(T ) ≤ rk(F ).

Comon’s conjecture
The tensor rank and the symmetric tensor rank are equal, that
is

rk(T ) = rk(F ).

August 2017 counterexample by J. Shitov.
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X-rank

We want to find a uniform setting to deal with ranks. First we
note that our rank definition are invariant up to scalar
multiplication, thus it is natural to work over the projective
space.

Projective space
Given a N + 1 dimensional vector space V , we define

P(V ) = PN \ 0 = V/C∗

and [v ] ∈ P(V ) is the equivalence class {λv : λ ∈ C \ {0}}.
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X-rank

We want to work with special subset of the projective space,
namely algebraic varieties.

V(I)

Given a homogeneous ideal I ⊆ C[x0, . . . , xN ] we define the
algebraic variety

V (I) = {p ∈ Pn : F (p) = 0 for each F ∈ I}.

Note that to each algebraic variety X ⊆ PN corresponds a
radical ideal

I(X)

I(X ) = {F ∈ S : F (p) = 0 for each p ∈ X}.
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X-rank

Some features of algebraic varieties
The algebraic variety X is completely determined by the
ideal I(X )

All ideal I ⊆ S have a finite number of generators (Hilbert’s
basis theorem)
For each ideal we can compute a numerical function
HFI(X)(t) giving to us several information about X :
emptyness, dimension, degree, etc (Hilbert function)
Groebner bases of I(X ) are used to study X , for example
its projections (Elimination theory)
The image of an algebraic projective variety via a
polynomial map is a projective variety
Algebraic varieties are the closed subset of the Zariski
topology
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X-rank

Given an algebraic variety X ⊂ PN and a point p ∈ PN , we
define

X -rank
The X -rank of p with respect to X is

X−rk(p) = min{r : p ∈ 〈p1, . . . ,pr 〉,pi ∈ X}

where

〈p1, . . . ,pr 〉 = P({λ1v1 + . . .+ λr vr : λi ∈ C})

is the linear span of the points pi = [vi ]’s.

Clearly, X−rk(p) = 1 if and only if p ∈ X .
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X-rank

Veronese varieties
Let S = C[x0, . . . , xn] and consider the map,

P(S1) −→ P(Sd)

[L] 7→ [Ld ]

this is usually denoted as

νd : Pn −→ PN

and its image
X = νd(Pn)

is an algebraic variety called the d-uple n-dimensional
Veronese variety.
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X-rank

Veronese varieties
Since the Veronese variety X = νd(Pn) parameterizes pure
powers of degree d in n + 1 variables, it is clear that

X−rk([F ]) = min{r : [F ] ∈ 〈[Ld
1 ], . . . , [L

d
r ]〉}

and thus the X -rank with respect to the Veronese variety is just
the Waring rank.
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X-rank

Segre varieties

Given vector spaces V1, . . . ,Vt , we consider the map

s : P(V1)× . . .× P(Vt) −→ P(V1 ⊗ . . .⊗ Vt)

[v1], . . . , [vt ] 7→ [v1 ⊗ . . .⊗ vt ]

this is called the Segre map and its image X is called the Segre
product of the varieties P(Vi).
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X-rank

Segre varieties

Since the Segre variety X = s(P(V1)× . . .× P(Vt))
parameterizes elementary tensors in V1 ⊗ . . .⊗ Vt , it is clear
that

X−rk([T ]) = min{r : [T ] ∈ 〈[E1], . . . , [Er ]〉}

and thus the X -rank with respect to the Segre variety is just the
(tensor) rank.
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X-rank

To study general tensor we can use Segre varieties and to
study symmetric tensor we can use Veronese varieties.
However, intermediate situations can be of interest. For
example,

x ⊗ y ⊗ z ⊗ t + y ⊗ x ⊗ z ⊗ t + x ⊗ y ⊗ t ⊗ z + y ⊗ x ⊗ t ⊗ z

is a partially symmetric.

Segre-Veronese varieties

Segre-Veronese varieties parameterizes tensors with
prescribed symmetry, for example the variety

s(ν2P(〈x , y〉), ν2P(〈z, t〉))

parameterizes elementary objects of the form

x ⊗ x ⊗ z ⊗ z.
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Secant varieties

It is a common process to start from an algebraic variety
X ⊆ PN and to produce a new one.

Secant varieties
For any non-negative integer i we define the i-th secant variety
of X

σi(X ) =
⋃

P1,...,Pi∈X

〈P1, . . . ,Pi〉

where the bar denotes the Zariski closure.

We note that

there is an open dense subset of σi(X ) formed by points of the
type

λ1P1 + . . .+ λiPi ,

for points Pj ’s in X and scalars λj ’s.
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Secant varieties

For example

σ1(X ) = X ,

and

σ2(X ) is the variety of secant lines to X and it is formed by true
secant lines and tangent lines to X .
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Secant varieties

Linear spaces

If X is a linear space, that is X ' Pm for some m, then

σi(X ) = X

for all i > 0.

Hypersurfaces

If X ⊆ PN is a hypersurface, not a hyperplane, then

σi(X ) = PN

for all i > 0.
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Secant varieties

It is clear that, for X ⊂ PN , we have

Chain of inclusion

X = σ1(X ) ⊆ σ2(X ) ⊆ . . . ⊆ PN .

and also

σi(X ) = σi+1(X ) =⇒ σi(X ) is a linear space

For example, for i = 1, we note that there is an open dense
subset of σ2(X ) made by points of the form

λ1P1 + λ2P2

for P1,P2 ∈ X and λ1, λ2 ∈ C. Since

σ2(X ) = σ1(X ) = X

we conclude that all lines joining pairs of points in X completely
lie in X . Thus X is a linear space.
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Secant varieties

If X ⊆ PN is non-degenerate, that is X is not contained in any
hyperplane, then

X = σ1(X ) ⊂ σ2(X ) ⊂ . . . ⊂ σr (X ) = PN

and all inclusions are strict

Thus the natural question to find

min{r : σr (X ) = PN}.

Note that Veronese and Segre varieties are non-degenerate.
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Secant varieties

Expected dimension

If X ⊆ PN and dim X = n, then the expected dimension of σi(X )
is

expdimσi(X ) = in + i − 1 = i(n + 1)− 1

this value comes from a parameter count and it is such that

dimσi(X ) ≤ expdimσi(X ).

Note that equality does not always hold.
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X -rank and Secant varieties

Let’s explore the connection between rank and secant varieties

If X -rank(P)=r
then

P ∈ 〈P1, . . . ,Pr 〉

where the points Pi ’s are in X . Thus

P ∈ σr (X ).

In particular, knowing some elements of the ideal

I(σr (X )) = (G1, . . . ,Gl)

gives an effective test to check whether

X−rank(P) 6= r .
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X -rank and Secant varieties

If P ∈ σr (X )

then
P ∈

⋃
P1,...,Pr∈X

〈P1, . . . ,Pr 〉

but we can have
X−rank(P) < r

or
X−rank(P) > r .

Border X -rank
The border X -rank of P is the smallest i such that

P ∈ σi(X ).
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X -rank and Secant varieties

If the border X -rank of P is r
then P is a limit of X -rank r elements.

Knowing f the ideal

I(σr (X )) = (G1, . . . ,Gl)

gives an necessary and sufficient condition for

the border X -rank(P) to be r .

32/43 E. Carlini Algebra, Geometry and Ranks



X -rank and Secant varieties

Example x2y ∈ C[x , y ]

Let X = ν3(P1), and thus the X -rank is just the Waring rank.
Since

x2y = lim
λ→0

1
λ

[
(x + λy)3 − x3

]
we have that [x2y ] ∈ σ2(X ), that is x2y has border rank two.
However, the equation

x2y = (ax + by)3 + (cx + dy)3

has no solutions in C and thus

rk(x2y) ≥ 3

and actually equality holds.
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X -rank and Secant varieties

If X ⊆ PN is such that

σr (X ) = PN ,

then there is an open and dense subset of PN made of
elements such that X−rank = r .

Generic X -rank
We say that the generic X -rank is r and we write X−grank = r if

σr (X ) = PN

and σr−1(X ) 6= PN .

Generic element vs random element.
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X -rank and Secant varieties

Example generic Waring rank for n = 1 and d = 3

In this case X = ν3(P1) ⊂ P3 and it can be easily checked that

σ2(X ) = P3

and thus
X−grank = 2.

This means that the generic degree 3 element of C[x , y ] has
Waring rank 2. But there are elements having Waring rank 3,
such as

x2y .

Since expdimσi(X ) = i(dim X + 1)− 1, we get

X−expgrank =

⌈
N + 1

dim X + 1

⌉
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Waring rank: what do we know

We now consider X to be a Veronese variety and then the
X -rank is just the Waring rank of a homogeneous polynomial.
We know the generic Waring rank:

Alexander and Hirschowitz results ' 1990
For degree d forms in n + 1 variables we have that

X − grank(n,d) =

⌈(n+d
d

)
n + 1

⌉

unless (n,d) =

(n,2), (2,4), (3,4), (4,3), (4,4).
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Waring rank: what do we know

The defective case (n,d) = (2,4)

Let F ∈ S4 where S = C[x , y , z] and consider the equation

F =
5∑

i=1

(aix + biy + ciz)5.

Since dim S4 = 15 and since we have 15 variables, we expect
to be able to solve for ai ,bi and ci . However, it is not difficult to
see that, for any choice of ai ,bi and ci there exists a partial
differential operator ∂ of order 2 such that

∂ ◦
5∑

i=1

(aix + biy + ciz)5 = 0.
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Waring rank: what do we know

The defective case (n,d) = (2,4)

But for a generic F ∈ S4 there is no order 2 operator
annihilating F , thus

rk(F ) ≥ 6

and actually equality holds.
In other words,

expdimσ5(X ) = 14

but is is actually 13 and

σ5(X ) ⊂ P(S4) = P14.
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Tensor rank: what do we know

We now consider the Segre variety

X = s(P(V1)× . . .× P(Vt)) ⊂ PN

and then the X -rank is just the tensor rank.
We can easily write down a formula for

X − expgrank =

⌈
1 + N

1− t +
∑

i dim Vi

⌉
but, in general, we do no know whether the formula gives the
actual value.
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Tensor rank: what do we know

We know the exact value of the X -grank in the following cases:

dim Vi = 2 for 1 ≤ i ≤ t
t = 2, that is only two factors
t = 3, that is only three factors

There are several conjecture giving a list of defective cases and
claiming that the list is exhaustive.

40/43 E. Carlini Algebra, Geometry and Ranks



Maximal X -rank

Even when we know X -grank, we do not know how big the rank
can be for special elements.

For example, consider X = ν3(P1), that is we study the Waring
rank of bivariate cubic forms.
By A-H result, we know that

X−grank = 2

but we also know that rk(x2y) = 3, and actually this is the
largest possible value.

Maximal rank of binary forms

For degree d binary forms, that is X = νd(P1), we have

X−mrank = d + 1.
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Maximal X -rank

For X ⊂ PN , we define:

X -mrank

X−mrank = max
{

X−rank(p) : p ∈ PN
}

Blekherman-Teitler 2015

X−mrank =≤ 2(X−grank).
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Maximal X -rank

Not sharp
Note that the B-T bound is not sharp, even for binary forms,
e.g. for binary cubic forms the generic rank is 2 and the
maximal rank is 3.

Plane curves
We know the maximal Waring rank for n = 2 and d = 3,4,5
and it is exactly one more than the generic rank, that is 5,7,8.

Form of high rank

We only know few cases of forms having Waring rank larger
than the generic rank, for example monomials in 3 variables
have this property (2012). But we do not have an answer for
almost all pairs (n,d).
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