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Polyhedral functions

A function

f (x) = max
i∈I

{⟨ai , x⟩ + bi}, ai ∈ Rn, bi ∈ R, i ∈ I = 1, . . . ,m,

is called a polyhedral function.
The subdifferential of a polyhedral function is a convex polyhedron,
namely,

𝜕f (x) = co

⎧⎨⎩ ⋃︁
i∈R(x)

ai

⎫⎬⎭ ,

where

R(x) = {i ∈ I |fi (x) = f (x)} , fi (x) = ⟨ai , x⟩ + bi , i ∈ I .

Note, that the subdifferential mapping 𝜕f : Rn −→ 2R
n

is not
continuous in the Hausdorff metric.
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For the function f at each point x ∈ Rn for any 𝜀 ≥ 0 there exists
the 𝜀-subdifferential, and the 𝜀-subdifferential mapping

𝜕𝜀f : Rn × (0,+∞) −→ 2R
n

is already continuous in the Hausdorff metric.
For the polyhedral function, the formula of the 𝜀-subdifferential at
each point x ∈ Rn is

𝜕𝜀f (x) =

⎧⎪⎪⎨⎪⎪⎩v =
m∑︁
i=1

𝜆iai ∈ Rn

⃒⃒⃒⃒ m∑︀
i=1

𝜆i (f (x) − ⟨ai , x⟩ − bi ) ≤ 𝜀,

m∑︀
i=1

𝜆i = 1, 𝜆i ≥ 0, i ∈ I

⎫⎪⎪⎬⎪⎪⎭ .
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Thus, the 𝜀-subdifferential of a polyhedral function f at each point
x ∈ Rn is a convex polyhedron.
Remark. It is necessary to note that the points ai , i ∈ I , belong to
the set 𝜕𝜀f (x) for all 𝜀 ≥ f (x) − ⟨ai , x⟩ − bi .
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Using the conjugate function, it is possible to give another
definition of the 𝜀-subdifferential of a convex closed function f at a
point x ∈ domf :

𝜕𝜀f (x) = {v ∈ Rn
⃒⃒
f (x) + f *(v) − ⟨x , v⟩ ≤ 𝜀}.

The effective domain of the conjugate function f * is the convex
hull of the vectors ai , i ∈ I , i.e.,

domf * = co

{︃⋃︁
i∈I

ai

}︃
.

Thus, the conjugate function is finite only at points of this
polyhedron. Outside of it the function f * takes the value +∞.
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Hypodifferentiable functions

V.F. Demyanov introduced the notions of hypodifferentiable
functions and hypodifferentials
A function f is called a hypodifferentable function at a point
x ∈ Rn if there exists a convex compact set df (x) ⊂ Rn+1 such
that

f (x + ∆) = f (x) + max
[a,v ]∈df (x)

[a+ ⟨v ,∆⟩] + o(x ,∆), a ∈ R, v ∈ Rn,

where
o(x , 𝛼∆)

𝛼
−→ 0 if 𝛼 → 0 ∀∆ ∈ Rn.

The set df (x) is called a hypodifferential of the function f at a
point x ∈ Rn.
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The hypodifferential of a functions f at a point x ∈ Rn is not
uniquely defined.
A function f is called continuously hypodifferentiable at a point
x ∈ Rn, if it is hypodifferentiable at x and in some neighborhood of
this point there exists a continuous (in the Hausdorff metric)
hypodifferentiable mapping df (x). A polyhedral function is
continuously hypodifferentiable in Rn.
For example, the set

df (x) = co

{︃⋃︁
i∈I

(︂
ai

⟨ai , x⟩ + bi − f (x)

)︂}︃
⊂ Rn × R. (1)

can be used as a hypodifferential of the polyhedral function f .
On global unconstrained minimization



Definition and elementary properties
On global unconstrained minimization of the difference of polyhedral functions
The relation between the hypodifferential and 𝜀-subdifferential of a polyhedral function
A geometrical interpretation of the 𝜀-subdifferential of polyhedral functions.
Necessary and sufficient conditions for the global minimum and maximum of the difference of polyhedral functions.

Hypodifferentiable functions
Necessary condition for a minimum of hypodifferential functions on Rn

Continuous methods of hypodifferentiable descent
Finding of hypodifferentiable descent directions

The method for finding the distance between two ellipsoids
Direction of hypodifferential descent

The given hypodifferentiable mapping

df : Rn −→ 2R
n+1

is continuous in the Hausdorff metric.
The set df (x) ⊂ Rn+1 is also a convex polyhedron contained in the
half-space

H = {z = (z1..., zn, zn+1)T ∈ Rn × R
⃒⃒
zn+1 ≤ 0}.

where T denotes transposition.
For a polyhedral function f at a point x ∈ Rn we shall define the
number 𝜀*(x) ≥ 0 by the formula

𝜀*(x) = max
i∈I

{f (x) − fi (x)}. (2)
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Fix any 𝜀, satisfying the condition 0 ≤ 𝜀 ≤ 𝜀*. Put

d𝜀f (x) =

{︂
z ∈ Rn+1| z ∈ df (x), z =

(︂
v
t

)︂
, v ∈ Rn, t ∈ R, −𝜀 ≤ t ≤ 0

}︂
.

(3)
The set d𝜀f (x) is closed and convex for any 𝜀 : 0 ≤ 𝜀 ≤ 𝜀*. It is
not difficult to see, that

d𝜀1f (x) ⊂ d𝜀2f (x), 0 ≤ 𝜀1 ≤ 𝜀2 ≤ 𝜀*.
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Lemma.
For any 0 ≤ 𝜀 ≤ 𝜀*(x) the equality

𝜕𝜀f (x) =

{︂
v ∈ Rn |

(︂
v
t

)︂
∈ d𝜀f (x)

}︂
(4)

is valid.
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Thus, the projection the set d𝜀f (x) onto Rn × 0 is the set
𝜕𝜀f (x) × 0.

Corollary.

For each 𝜀 ≥ 𝜀*(x) the equality

𝜕𝜀f (x) = 𝜕𝜀*(x)f (x) = co

{︃⋃︁
i∈I

ai

}︃
= domf *.

holds.

Corollary .

If v ̸∈ 𝜕𝜀f (x), then the point zt =

(︂
v
t

)︂
̸∈ d𝜀f (x) for every

t ∈ [−𝜀, 0].
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Example 4

Let
f (x) = |x | = max{ x ,−x }, x ∈ R.

Then
dom f * = co {−1, 1} ⊂ R.

Calculate a hypodifferential of f at x ∈ R

df (x) = co
{︂(︂

1
x − |x |

)︂
,

(︂
−1

−x − |x |

)︂}︂
⊂ R2.

On global unconstrained minimization



Definition and elementary properties
On global unconstrained minimization of the difference of polyhedral functions
The relation between the hypodifferential and 𝜀-subdifferential of a polyhedral function
A geometrical interpretation of the 𝜀-subdifferential of polyhedral functions.
Necessary and sufficient conditions for the global minimum and maximum of the difference of polyhedral functions.

Hypodifferentiable functions
Necessary condition for a minimum of hypodifferential functions on Rn

Continuous methods of hypodifferentiable descent
Finding of hypodifferentiable descent directions

The method for finding the distance between two ellipsoids
Direction of hypodifferential descent

Example 4

If x = 0 then

df (0) = co
{︂(︂

1
0

)︂
,

(︂
−1
0

)︂}︂
⊂ R2.

In this case we have from (2) 𝜀*(0) = 0. Hence,

𝜕𝜀f (0) = 𝜕𝜀*(0)f (0) = 𝜕f (0) ∀𝜀 ≥ 0.
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Example 4

If x = 1, then

df (1) = co
{︂(︂

1
0

)︂
,

(︂
−1
−2

)︂}︂
⊂ R2,

and 𝜀*(1) = 2. Thus,

𝜕𝜀f (1) = co{1 − 𝜀, 1} ⊂ R, 0 ≤ 𝜀 < 𝜀*(1),

𝜕𝜀f (1) = 𝜕𝜀*(1)f (1) = 𝜕f (0) = dom f * ∀𝜀 ≥ 𝜀*(1).
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Example 4.

If x = −1, then

df (−1) = co
{︂(︂

1
−2

)︂
,

(︂
−1

0

)︂}︂
⊂ R2,

and 𝜀*(−1) = 2. Thus,

𝜕𝜀f (−1) = co{−1,−1 + 𝜀} ⊂ R, 0 ≤ 𝜀 < 𝜀*(−1),

𝜕𝜀f (−1) = 𝜕𝜀*(−1)f (−1) = 𝜕f (0) = dom f * ∀𝜀 ≥ 𝜀*(−1).
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Example 5.

Let
f (x) = max{x + 1, 2x}, x ∈ R.

For the given function dom f * = co{1, 2} ⊂ R. We have

df (x) = co
{︂(︂

1
x + 1 − f (x)

)︂
,

(︂
2

2x − f (x)

)︂}︂
⊂ R2.

If x = 1, then

df (1) = co
{︂(︂

1
0

)︂
,

(︂
2
0

)︂}︂
⊂ R2,

and 𝜀*(1) = 0. Hence,

𝜕𝜀f (1) = 𝜕𝜀*(1)f (1) = 𝜕f (1) = co{1, 2} ∀𝜀 ≥ 0.
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Example 5.

If x = 2, then

df (x) = co
{︂(︂

1
1

)︂
,

(︂
2
0

)︂}︂
⊂ R2,

and 𝜀*(2) = 1. Thus,

𝜕𝜀f (2) = co{2 − 𝜀, 2} ⊂ R, 0 ≤ 𝜀 < 𝜀*(2),

𝜕𝜀f (2) = 𝜕𝜀*(2)f (2) = 𝜕f (1) = dom f * ∀𝜀 ≥ 𝜀*(2).
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Example 5.

If x = 0 then

df (0) = co
{︂(︂

1
0

)︂
,

(︂
2
−1

)︂}︂
⊂ R2.

Then we have 𝜀*(0) = 1. Therefore

𝜕𝜀f (0) = co{1, 1 + 𝜀} ⊂ R, 0 ≤ 𝜀 < 𝜀*(0),

𝜕𝜀f (0) = 𝜕𝜀*(0)f (0) = 𝜕f (1) = dom f * ∀𝜀 ≥ 𝜀*(0).

On global unconstrained minimization



Definition and elementary properties
On global unconstrained minimization of the difference of polyhedral functions
The relation between the hypodifferential and 𝜀-subdifferential of a polyhedral function
A geometrical interpretation of the 𝜀-subdifferential of polyhedral functions.
Necessary and sufficient conditions for the global minimum and maximum of the difference of polyhedral functions.

Hypodifferentiable functions
Necessary condition for a minimum of hypodifferential functions on Rn

Continuous methods of hypodifferentiable descent
Finding of hypodifferentiable descent directions

The method for finding the distance between two ellipsoids
Direction of hypodifferential descent

A geometrical interpretation

Let’s denote

T (f , x) = df (x) + K , T𝜀(f , x) = T (f , x) ∩ H(𝜀),

where

K = {g ∈ Rn+1
⃒⃒
g = 𝜆e, e = (0...0⏟ ⏞ 

n

,−1)T , 𝜆 ≥ 0},

H(𝜀) = {z = (z1..., zn, zn+1)T ∈ Rn+1
⃒⃒
zn+1 = −𝜀}.
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Lemma
For any fixed 𝜀 ≥ 0 at each point x ∈ Rn the equality

𝜕𝜀f (x) =

{︂
v ∈ Rn

⃒⃒ (︂
v
t

)︂
∈ T𝜀(f , x)

}︂
(5)

holds.
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Let’s consider the optimization problem: find

inf
x∈Rn

f (x).
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Necessary and sufficient conditions

Let f1 and f2 be the polyhedral functions defined on Rn, i.e.

f1(x) = max
i∈I

f1i (x), f1i = {⟨ai , x⟩ + bi}, I = {1, . . . ,m},

f2(x) = max
j∈J

f2j(x), f2j(x) = {⟨cj , x⟩ + dj}, J = {1, . . . , p},

Where ai , cj ∈ Rn, bi , dj ∈ R, i ∈ I , j ∈ J.
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Consider the function f (x) = f1(x) − f2(x). Then

f (x) = max
i∈I

{⟨ai , x⟩ + bi} − max
j∈J

{⟨cj , x⟩ + dj}.
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Consider some optimization properties of the function f .
Reduce conditions of the unboundedness of the function f on Rn.

Theorem.
For the function f to be unbounded from below in Rn, it is
necessary and sufficient that there exist j* ∈ J and a vector cj* ,
such that the condition

cj* ̸∈ co

{︃⋃︁
i∈I

ai

}︃
(6)

holds.
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Corollary
For the function f to be unbounded from below in Rn, it is
necessary and sufficient that the condition

dom f *2 ̸⊂ dom f *1

hold.
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Let the function f be bounded from below in Rn.

Theorem
For the point x* ∈ Rn be a global minimizer of the function f on
Rn, it is necessary and sufficient, that the condition

df1(x*)
⋂︁

co
{︂(︂

cj
f2j(x

*) − f2(x*)

)︂
,

(︂
cj
0

)︂}︂
̸= ∅ ∀j ∈ J, (7)

hold.
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Corollary

The condition (7) is equivalent to the following condition

0n+1 ∈
[︂
df1(x*) − co

{︂(︂
cj*

f2j*(x*) − f2(x*)

)︂
,

(︂
cj*

0

)︂}︂]︂
∀j ∈ J.

Corollary.

The condition (7) is equivalent to the condition

0n+1 ∈
⋂︁
j∈J

[︂
df1(x*) − co

{︂(︂
cj*

f2j*(x*) − f2(x*)

)︂
,

(︂
cj*

0

)︂}︂]︂
.
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Corollary

(The sufficient condition for a global minimum of the function f on
Rn.) If at a point x* ∈ Rn the inclusion

df2(x*) ⊂ df1(x*)

holds then the point x* is a global minimizer of the function f on
Rn.
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Example 6.

Consider the function

f (x) = f1(x) − f2(x),

where

f1(x) = max {|6x + 23|, |2x + 25|} , f2(x) = max {|4x + 9|, |2x + 9|} , x ∈ R.

We have

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−14 − 2x , if −∞ < x ≤ −6,

34 − 6x , if − 6 < x ≤ −3,

16, if − 3 < x ≤ 0,

16 − 2x , if 0 < x ≤ 1

2
,

2x + 14, if
1

2
< x < +∞.
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On fig. 1 the function f is represented.

Fig. 1.
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It is easy to see, that

domf *1 = co{−6, 6}, domf *2 = co{−4, 4}.

Thus, this function is bounded from below (domf *2 ⊂ domf *1 ) and
unbounded from above. The point x* = −6 is a global minimizer of
the function f on R. At this point f (−6) = −2 and

𝜕f1(−6) = co {−6, 2} , df1(−6) = co
{︂(︂

6
−26

)︂
,

(︂
−2
−26

)︂
,

(︂
−6
0

)︂
,

(︂
2
0

)︂}︂
,

𝜕f2(−6) = −4, df2(−6) = co
{︂(︂

4
−30

)︂
,

(︂
2

−18

)︂
,

(︂
−4

0

)︂
,

(︂
−2
12

)︂}︂
.
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It is obvious, that the condition (??) holds. See fig.2.
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Any point from the interval (−3, 0) is a stationary point of the
function f . The functions f1 and f2 are differentiable on this interval
and f ′1(x) = 2, f ′2(x) = 2 for any x ∈ (−3, 0).
Consider the point x1 = −2. We have

df1(−2) = co
{︂(︂

6
−10

)︂
,

(︂
−2
−42

)︂
,

(︂
−6
−32

)︂
,

(︂
2
0

)︂}︂
,

df2(−2) = co
{︂(︂

4
−4

)︂
,

(︂
2
0

)︂
,

(︂
−4
−6

)︂
,

(︂
−2
−10

)︂}︂
.

The condition (??) holds, but the condition (7) does not. See fig 3.
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Take the point x2 =
1

2
. This is a strict local minimizer of the

function f . Then f

(︂
1

2

)︂
= 15 and

𝜕f1

(︂
1

2

)︂
= co {2, 6} , df1(−6) = co

{︂(︂
6
0

)︂
,

(︂
−2
−52

)︂
,

(︂
−6
−52

)︂
,

(︂
2
0

)︂}︂
,

𝜕f2

(︂
1

2

)︂
= 4, df2(−6) = co

{︂(︂
4
0

)︂
,

(︂
2
−1

)︂
,

(︂
−4
−22

)︂
,

(︂
−2
−21

)︂}︂
.

Observe, that 𝜕f2

(︂
1

2

)︂
⊂ int 𝜕f2

(︂
1

2

)︂
, i.e., the sufficient condition

for a strict local minimum is satisfied. The condition (7) does not
hold.
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Examples of continuously hypodifferential functions.

Hypodifferentiable functions

Class of hypodifferentiable functions has been allocated by V.F.
Demyanov among the nonsmooth functions.
Let X ⊂ Rn be an open set, x ∈ X and a function f be defined on
X . We say that f is hypodifferentiable at the point x if there exist
a convex compact set df (x) ⊂ Rn+1 such that
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Examples of continuously hypodifferential functions.

f (x + ∆) = f (x) + max
(v ,a)T∈df (x)

[⟨v ,∆⟩ + a] + o(x ,∆),

where
o(x , 𝛼∆)

𝛼
→ 0 if 𝛼 ↓ 0 ∀∆ ∈ Rn,

a ∈ R, v ∈ Rn, co {x , x + ∆} ∈ X ,

max
(v ,a)T∈df (x)

a = 0.

The set df (x) is called a hypodifferential at x .
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Examples of continuously hypodifferential functions.

A function f is called continuously hypodifferentiable at a point x if
it is hypodifferentiable in some neighbourhood of the point x and
there exists a hypodifferential mapping

df : Rn → 2R
n
,

which is Hausdorff continuous at x . A hypodifferential is not
uniquely defined. Using continuous hypodifferentials allows to
construct numerical optimization methods with continuous descent
directions, similar to gradient methods in the smooth case.
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Examples of continuously hypodifferential functions.

1) Let f be continuously differentiable function on Rn. Then f is
continuously hypodifferentiable. As a continuous hypo differential
can be chosen the set
df (x) = (f ′(x), 0)T ∈ Rn × R , where f ′(x) is the gradient of f at
x .
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Examples of continuously hypodifferential functions.

2) Let f be convex on Rn. Then f is continuously
hypodifferentiable. As a continuous hypodifferential can be chosen
the set

df (x) = co

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⋃︁

v(z) ∈ 𝜕f (z), z ∈ Rn,
a = f (z) − f (x) + ⟨v(z), x − z⟩,

(v(z), a)T

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

where 𝜕f (z) is the subdifferential of the convex function f at
z ∈ Rn.
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Examples of continuously hypodifferential functions.

3) Let
f (x) = max

i∈I
fi (x), I = 1, . . . ,m,

where functions fi (x), i ∈ I , are continuously differentiable at x on
Rn. Then f is continuously hypodifferentiable. As a continuous
hypodifferential can be chosen the set

df (x) = co

{︃⋃︁
i∈I

(f ′i (x), fi (x) − f (x))T

}︃
⊂ Rn × R.
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Examples of continuously hypodifferential functions.

Example 1.
Consider function

f (x) = max
i∈I

fi (x), I = 1, 2, 3, x ∈ R,

where

f1(x) = x2, f2(x) = (x + 1)2, x3(x) = 5x2 − 5.
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Examples of continuously hypodifferential functions.

Functions fi
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Examples of continuously hypodifferential functions.

Function f
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Examples of continuously hypodifferential functions.

Consider points

x1 = −
√

5

2
, x2 = −1

2
, x3 =

3

2
.

At these points the function f is not differentiable. We have

f1(x1) =
5

4
, f2(x1) =

9

4
−
√

5, f3(x1) =
5

4
, f (x1) =

5

4
,

f1(x2) =
1

4
, f2(x2) =

1

4
, f3(x2) = −15

4
, f (x2) =

1

4
,

f1(x3) =
9

4
, f2(x3) =

25

4
, f3(x3) =

25

4
, f (x3) =

25

4
.
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Examples of continuously hypodifferential functions.

The sets
𝜕f (x1) = co {−

√
5; 2 −

√
5} ⊂ R,

𝜕f (x2) = co {−1; 1} ⊂ R, 𝜕f (x3) = co {5; 15} ⊂ R

are the subdifferentials of f at each points.
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Examples of continuously hypodifferential functions.

The set

df (x) = co
{︂(︂

f ′1(x)
f1(x) − f (x)

)︂
,

(︂
f ′2(x)

f2(x) − f (x)

)︂
,

(︂
f ′3(x)

f3(x) − f (x)

)︂}︂
⊂ R×R.

is a hypodifferential of f at x .
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Examples of continuously hypodifferential functions.

We have

df (x1) = co
{︂(︂

−
√

5
0

)︂
,

(︂
2 −

√
5

1 −
√

5

)︂
,

(︂
−5

√
5

0

)︂}︂
⊂ R × R.
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Examples of continuously hypodifferential functions.

df (x2) = co
{︂(︂

−1
0

)︂
,

(︂
1
0

)︂
,

(︂
−5
−4

)︂}︂
⊂ R × R.
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Examples of continuously hypodifferential functions.

df (x3) = co
{︂(︂

3
−4

)︂
,

(︂
5
0

)︂
,

(︂
15
0

)︂}︂
⊂ R × R.

df (x3)
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Necessary condition for a minimum of hypodifferential
functions

Let a function f be continuously hypodifferential on Rn and df (x)
be a continuously hypodifferential of f at a point x ∈ Rn. As the
class of hypodifferential functions coincides with the class of
subdifferential functions then at every point x ∈ Rn then

𝜕f (x) =

{︂
v ∈ Rn

⃒⃒⃒⃒
(v , 0)T ∈ df (x) ⊂ Rn × R

}︂
, (8)
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where 𝜕f (x) ⊂ Rn is the subdifferential and df (x) ⊂ Rn+1 is a
hypodifferential of f at x ∈ Rn and the directional derivative
f ′(x , g) of f at x ∈ Rn along a given vector g ∈ Rn can be
represented in the form

f ′(x , g) = max
v∈𝜕f (x)

⟨v , g⟩ ∀g ∈ Rn.
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Theorem 1.
For the point x* ∈ Rn to be a minimum point of f on Rn it is
necessary that

0n+1 ∈ df (x*). (9)
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A point x* ∈ Rn is called a stationary point of f on Rn, if (9) holds.
If condition (9) does not hold at x then we project the point 0n+1

onto df (x), i.e. solve the optimization problem

min
z∈df (x)

‖z‖ = ‖z(x)‖, z(x) = (w(x), t(x))T ∈ Rn × R.

Note that if 0n+1 ̸∈ df (x), then w(x) ̸= 0n.
A direction −w(x) is called a direction of hypodifferentiable descent
of the function f on Rn at the point x . It is continuous and unique.
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Lemma 1.
If a point x ∈ Rn is not a stationary point for f on Rn then the
following inequality

f ′(x ,−w(x)) ≤ −‖z(x)‖2 (10)

holds.
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Corollary 1.

Let −w(x) be a direction of hypodifferential descent of f at

x ∈ Rn (w(x) ̸= 0n) and g(x) = − w(x)

||w(x)||
, then

f ′(x , g(x)) ≤ −||z(x)|| ≤ −||w(x)||. (11)
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Minimizing of hypodifferentiable functions

Continuous methods

Let a function f be defined, locally Lipschitz and continuously
hypodifferentiable on Rn.
Assume that a point x ∈ Rn is not a stationary point of f on Rn,
i.e. condition (9) does not hold.
Since df (x) is continuous then there exists a direction −w(x)
which is also a continuous descent direction of f at x as follows
from (10).
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Minimizing of hypodifferentiable functions

Most iterative methods generate a minimizing sequence {xk}
according to the rule

xk+1 = xk + 𝛼kg(xk),

where g(xk) is a descent direction (if g(xk) ̸= 0n) at xk and
𝛼k , 𝛼k > 0, is a step size along this direction.
As in smooth cases we consider two variants of choosing of a step
size on each iteration.
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Minimizing of hypodifferentiable functions

1. One dimensional minimization.
A step size 𝛼k is chosen from the condition

𝛼k = arg min
𝛼>0

f (xk − 𝛼w(xk)). (12)

2. The Armijo rule

Fix any parameter 𝜃 ∈ (0, 0.5] and find the first value of
ik = 0, 1, . . . for which will be performed the following inequality

f (xk − (0.5)ikw(xk)) ≤ f (xk) − (0.5)ik𝜃‖w(xk)‖2 (13)

and put 𝛼k = (0.5)ik .
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Minimizing of hypodifferentiable functions

Choose an arbitrary point x0 ∈ Rn. If 0n+1 ∈ df (x0), then x0 is a
stationary point of f on Rn.
Let xk ∈ Rn have already been found. If 0n+1 ∈ df (xk), then xk is
a stationary point of f on Rn.
Otherwise, put

xk+1 = xk − 𝛼kw(xk) = xk − 𝛼kwk ,

where −w(xk) = −wk is a hypodifferentiable descent direction at
xk , and step size 𝛼k is chosen by using the one dimensional
minimization or the Armijo rule (13). If the sequence {xk} is finite,
then the last obtained point will be a stationary point.
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Minimizing of hypodifferentiable functions

Consider the case when the sequence {xk} is infinite. Then the
sequence {f (xk)} is monotonically decreasing, therefore, this
method will be relaxation.
Let the level set

ℒ = ℒ(x0) = {x ∈ Rn | f (x) ≤ f (x0)} (14)

be bounded.
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Minimizing of hypodifferentiable functions

Theorem 2.
Every limit point of the sequence {xk} is a stationary point of the
function f on Rn.
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Minimizing of hypodifferentiable functions

Remark 1.
If the function f is continuously differentiable then the described
methods coincide with respective gradient methods. Consequently,
these hypodifferentiable descent methods also as gradient methods
badly converge near a stationary point.
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Finding of hypodifferentiable descent directions

The problem of finding of a hypodifferentiable descent direction of
a continuous hypodifferentiable function f at the point x reduces to
the solution of the following quadratic programming problem

min
z∈df (x)

⟨z , z⟩ = min
z∈df (x)

‖z‖2 = ‖z(x)‖2,

where

z = (w , t)T ∈ Rn × R, z(x) = (w(x), t(x)) ∈ Rn × R.
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Consider a variant of this algorithm in which continuous
hypodifferential df (x) at the point x is a polyhedron in Rn+1.
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Let
f (x) = max

i∈I
fi (x), I = 1, . . . ,m,

where fi , i ∈ I , are continuously differentiable functions on Rn.
Then the set

df (x) = co

{︃⋃︁
i∈I

(︂
f ′i (x)

fi (x) − f (x)

)︂}︃
⊂ Rn × R

is a continuous hypodifferential of f at x ∈ Rn, because the
mapping df : Rn → 2R

n
is continuous in the Hausdorff metric.
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Let

X =

{︂
x ∈ Rn

⃒⃒ 1

2
⟨A1x , x⟩ + ⟨b1, x⟩ + c1 ≤ 0

}︂
,

Y =

{︂
y ∈ Rn

⃒⃒ 1

2
⟨A2y , y⟩ + ⟨b2, y⟩ + c2 ≤ 0

}︂
,

where matrices A1,A2 of size n × n are positive definite,
b1, b2 ∈ Rn, c1, c2 ∈ R.
Suppose that X and Y are two nonempty sets. It is necessary to
solve the optimization problem

||x − y || → min, x ∈ X , y ∈ Y ,

where || * || is the Euclidean norm.
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Consider this problem in R2n.
It is necessary to solve

1

2
||x − y ||2 → min, x ∈ X , y ∈ Y . (15)

Denote by

f (z) =
1

2
⟨E1z , z⟩ =

1

2
⟨x − y , x − y⟩, z = (x , y) ∈ Rn × Rn.

where

On global unconstrained minimization



Definition and elementary properties
On global unconstrained minimization of the difference of polyhedral functions
The relation between the hypodifferential and 𝜀-subdifferential of a polyhedral function
A geometrical interpretation of the 𝜀-subdifferential of polyhedral functions.
Necessary and sufficient conditions for the global minimum and maximum of the difference of polyhedral functions.

Hypodifferentiable functions
Necessary condition for a minimum of hypodifferential functions on Rn

Continuous methods of hypodifferentiable descent
Finding of hypodifferentiable descent directions

The method for finding the distance between two ellipsoids
Direction of hypodifferential descent

E1 =

(︂
En×n 0n×n

0n×n −En×n

)︂
is the matrix of size 2n × 2n, En×n is the

identity matrix of size n × n , 0n×n is the zero matrix of size n × n,

𝜙1(z) =
1

2
⟨A1x , x⟩ + ⟨b1, x⟩ + c1,

𝜙2(z) =
1

2
⟨A2y , y⟩ + ⟨b2, y⟩ + c2,

𝜙(z) = max{0, 𝜙1(z), 𝜙2(z)},
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Z = {z = (x , y) ∈ Rn × Rn
⃒⃒
𝜙(z) = 0}.

f (z) → min, z ∈ Z .

F (z , c) = f (z) + c𝜙(z), c ≥ 0.

In our case the function F (z , c) is an exact penalty function.
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F (z) =
1

2
⟨x − y , x − y⟩ + c max{0, 𝜙1(z), 𝜙2(z)} =

= max

{︂
1

2
⟨x−y , x−y⟩, 1

2
⟨x−y , x−y⟩+c

[︂
1

2
⟨A1x , x⟩ + ⟨b1, x⟩ + c1

]︂
,

1

2
⟨x − y , x − y⟩ + c

[︂
1

2
⟨A2y , y⟩ + ⟨b2, y⟩ + c2

]︂}︂
,
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For minimizing F (z , c) it is possible to apply the method of
hypodifferential descent.
Using the formula of hypodifferential calculus, we have

dF (z , c) = co {t0(z , c), t1(z , c), t2(z , c)},

t0(z , c) =

⎛⎝ x − y
−(x − y)

f (z) − F (z , c)

⎞⎠ ,
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t1(z , c) =

⎛⎝ x − y + c (A1x + b1)
y − x

c𝜙1(z) − F (z , c)

⎞⎠ ,

t2(z , c) =

⎛⎝ x − y
y − x + c (A2y + b2)
c𝜙2(z) − F (z , c)

⎞⎠ ,

t0(z , c), t1(z , c), t2(z , c) ∈ Rn × Rn × R.
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Projecting of the zero point onto a segment.

Thus, in our problem a continuous hypodifferential is a triangle in
space Rn × Rn × R. Therefore, to find the direction of a steepest
descent it is necessary to project the zero point onto the triangle.
Consider this procedure.
Let X ⊂ Rn is a triangle with vertices a1, a2, a3 ∈ Rn, that is

X = co {a1, a2, a3} ⊂ Rn.
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Projecting of the zero point onto a segment.

Consider a optimization problem

min
x∈X

||x ||2 (16)

This problem can be reduced to a quadratic programming problem.
In fact, as any point x ∈ X can be represented as:

x = 𝜆1a1 + 𝜆2a2 + 𝜆3a3, 𝜆1 + 𝜆2 + 𝜆3 = 1, 𝜆1, 𝜆2, 𝜆3 ≥ 0.
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Projecting of the zero point onto a segment.

Then problem (16) is equivalent to the following optimization
problem

min
𝜆∈Λ

||𝜆1a1 + 𝜆2a2 + 𝜆3a3||2 = min
𝜆∈Λ

⟨A𝜆, 𝜆⟩, (17)

where

Λ =
{︀
𝜆 = (𝜆1, 𝜆2, 𝜆3) ∈ R3

⃒⃒
𝜆1 + 𝜆2 + 𝜆3 = 1, 𝜆1, 𝜆2, 𝜆3 ≥ 0

}︀
,

A =

⎛⎝ ⟨a1, a1⟩ ⟨a1, a2⟩ ⟨a1, a3⟩
⟨a1, a2⟩ ⟨a2, a2⟩ ⟨a2, a3⟩
⟨a1, a3⟩ ⟨a2, a3⟩ ⟨a3, a3⟩

⎞⎠ .
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Projecting of the zero point onto a segment.

But the solution of problem (16) can also be found in the following
way. If the points {a1, a2, a3} are not on the line then the vectors
e1 = a2 − a1, e2 = a3 − a1 are linearly independent. The set

M = a1 + 𝜆1e1 + 𝜆2e2 ⊂ Rn, 𝜆1, 𝜆2 ∈ R

is a linear manifold and X ⊂ M.
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Projecting of the zero point onto a segment.

Project the zero point onto the set of M. Introduce the function

F (𝜆) = ⟨a1 + 𝜆1e1 + 𝜆2e2, a1 + 𝜆1e1 + 𝜆2e2⟩, 𝜆 = (𝜆1, 𝜆2) ∈ R2.

We have

𝜕F (𝜆)

𝜕𝜆1
= 2(⟨a1, e1⟩ + 𝜆1⟨e1, e1⟩ + 𝜆2⟨e1, e2⟩),

𝜕F (𝜆)

𝜕𝜆2
= 2(⟨a1, e2⟩ + 𝜆1⟨e1, e2⟩ + 𝜆2⟨e2, e2⟩).
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Denote by

Â =

(︂
⟨e1, e1⟩ ⟨e1, e2⟩
⟨e1, e2⟩ ⟨e2, e2⟩

)︂
, b̂ =

(︂
⟨a1, e1⟩
⟨a1, e2⟩

.

)︂
Calculate the vector

𝜆* = −Â b̂, 𝜆* = (𝜆*
1, 𝜆

*
2) ∈ R2.
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Then the projection of the zero point onto the linear manifold M is
calculated by the formula

x* = a1 + 𝜆*
1e1 + 𝜆*

2e2.

If x* ∈ X , then we receive a solution of problem (16).
Otherwise, project the zero point onto three segments. Define

x*1 = arg min
x∈X1

||x ||2, x*2 = arg min
x∈X2

||x ||2, x*3 = arg min
x∈X3

||x ||2,

where

X1 = co{a1, a2}, X2 = co{a1, a3}, X3 = co{a2, a3}.
Obviously, the point with the smallest norm is the solution of
problem (16).
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Projecting of the zero point onto a segment.

Describe the procedure of projecting the zero point onto a segment.
The problem is to find the vector of least length
co {a, b}, a, b ∈ Rn, a ̸= b. Any vector of this segment can be
represented in the form

x = 𝜇a + (1 − 𝜇)b, 𝜇 ∈ [0, 1].

Introduce a function

t(𝜇) = (𝜇a+(1−𝜇)b)2 = (𝜇(a−b)+b)2 = ⟨𝜇(a−b)+b, 𝜇(a−b)+b⟩.

Then it is necessary to solve an optimization problem

t(𝜇) → min, 𝜇 ∈ [0, 1].

On global unconstrained minimization



Definition and elementary properties
On global unconstrained minimization of the difference of polyhedral functions
The relation between the hypodifferential and 𝜀-subdifferential of a polyhedral function
A geometrical interpretation of the 𝜀-subdifferential of polyhedral functions.
Necessary and sufficient conditions for the global minimum and maximum of the difference of polyhedral functions.

Hypodifferentiable functions
Necessary condition for a minimum of hypodifferential functions on Rn

Continuous methods of hypodifferentiable descent
Finding of hypodifferentiable descent directions

The method for finding the distance between two ellipsoids
Direction of hypodifferential descent

Projecting of the zero point onto a segment.

Calculate
t ′(𝜇) = 2𝜇⟨a− b, a− b⟩ + 2⟨a− b, b⟩.

Obviously that t ′(𝜇) = 0 under

𝜇* = − ⟨a− b, b⟩
⟨a− b, a− b⟩

.

If 𝜇* > 1, then put 𝜇* = 1. If 𝜇* < 0, then put 𝜇* = 0.
Thus, the vector

x* = 𝜇*(a− b) + b = − ⟨a− b, b⟩
⟨a− b, a− b⟩

(a− b) + b =

⟨a− b, b⟩
⟨a− b, a− b⟩

(b − a) + b.

is our solution.
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