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Søren Eilers, Gunnar Restorff, Efren Ruiz, and Adam P. W. Sørensen

Abstract We introduce filtered algebraic K-theory of a ring R relative to a sublattice
of ideals. This is done in such a way that filtered algebraic K-theory of a Leavitt
path algebra relative to the graded ideals is parallel to the gauge invariant filtered K-
theory for graph algebras. We apply this to verify the Abrams-Tomforde conjecture
for a large class of finite graphs.

1 Introduction

Since the inception of Leavitt path algebras in [1, 4] it has been known that there
is a strong connection between Leavitt path algebras and graph C∗-algebras. In par-
ticular many results for both graph C∗-algebras and Leavitt path algebras have the
same hypotheses when framed in terms of the underlying graph and the conclusions
about the structure of the algebras are analogous. For instance, by [13, Theorem 4.1]
and [5, Theorem 4.5] the following are equivalent for a graph E.

1. E satisfies Condition (K) (no vertex is the base point of exactly one return path).
2. C∗(E) has real rank 0.
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3. LC(E) is an exchange ring.

That real rank 0 is the analytic analogue of the algebraic property of being an ex-
change ring is justified in [3, Theorem 7.2].

One of the most direct connections we could possibly have between Leavitt path
algebras and graph C∗-algebras would be: If E,F are graphs then

LC(E)∼= LC(F) ⇐⇒ C∗(E)∼=C∗(F).

This is called the isomorphism question and it is unknown if it is true. As currently
stated the question is very imprecise, while it is clear what is meant by isomorphism
of C∗-algebras, we could consider isomorphisms of Leavitt path algebras both as
rings, algebras, and ∗-algebras. In the last case the forward implication of the iso-
morphism question holds. In [2] Abrams and Tomforde take a systematic look at
the isomorphism question and many related questions, for instance whether or not
the above holds with Morita equivalence in place of isomorphism. They provide ev-
idence in favor of a positive answer to the Morita equivalence question and elevate
one direction to a conjecture.

Conjecture 1 (The Abrams-Tomforde Conjecture). Let E and F be graphs. If LC(E)
is Morita equivalent to LC(F), then C∗(E) is (strongly) Morita equivalent to C∗(F).

In [17] the third named author and Tomforde use ideal related algebraic K-theory
to verify the Abrams-Tomforde conjecture of large classes of graphs. They introduce
ideal related algebraic K-theory as a Leavitt path algebra analogue for filtered K-
theory for graph C∗-algebras. This then allows them to prove the Abrams-Tomforde
conjecture for all classes of graphs where the associated C∗-algebras are classified
by filtered K-theory.

The authors have shown in [10] that when classifying graph C∗-algebras that
do not have real rank 0, it can be useful to replace the full filtered K-theory with
a version that only looks at gauge invariant ideals. Motivated by this, we develop
a version of ideal related algebraic K-theory relative to a sublattice of ideals. Our
goal is to get an ideal related K-theory for Leavitt path algebras that only consid-
ers graded ideals, but we try to state our result in greater generality. We look at
a sublattice S of ideals in some ring R and consider the spectrum of these ide-
als, that is the set of S -prime ideals. This set is equipped with the Jacobson (or
hull-kernel) topology. In nice cases there exists a lattice isomorphism from the open
sets in the spectrum to the ideals in S . Specializing to the case of a Leavitt path
algebra Lk(E), we show that the spectrum associated to the graded ideals is home-
omorphic to the spectrum of gauge invariant ideals in C∗(E). Using this we define
filtered algebraic K-theory of Lk(E) relative to the graded ideals in complete anal-
ogy to the C∗-algebra definition. We then follow the work of [17] and establish the
Abrams-Tomforde conjecture for all graphs where the C∗-algebras are classified by
filtered K-theory of gauge invariant ideals. By [10] this includes a large class of
finite graphs.
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2 Preliminaries

In this section we set up the notation we will use throughout the paper and we recall
the needed definitions. We begin with the definitions of graphs, graph C∗-algebras
and Leavitt path algebras.

Definition 1. A graph E is a quadruple E = (E0,E1,r,s) where E0 is the set of
vertices, E1 is the set of edges, and r and s are maps from E1 to E0 giving the range
and source of an edge.

Standing Assumption. Unless explicitly stated otherwise, all graphs are as-
sumed to be countable, i.e., the set of vertices and the set of edges are count-
able sets.

We follow the notation and definition for graph C∗-algebras in [11] and warn the
reader that this is not the convention used in the monograph by Raeburn ([15]).

Definition 2. Let E = (E0,E1,r,s) be a graph. The graph C∗-algebra C∗(E) is the
universal C∗-algebra generated by mutually orthogonal projections

{
pv : v ∈ E0

}
and partial isometries

{
se : e ∈ E1

}
satisfying the relations

• s∗es f = 0 if e, f ∈ E1 and e ̸= f ,
• s∗ese = pr(e) for all e ∈ E1,
• ses∗e ≤ ps(e) for all e ∈ E1, and,
• pv = ∑e∈s−1(v) ses∗e for all v ∈ E0 with 0 < |s−1(v)|< ∞.

We get our definition of Leavitt path algebras from [1, 4].

Definition 3. Let k be a field and let E be a graph. The Leavitt path algebra Lk(E) is
the universal k-algebra generated by pairwise orthogonal idempotents {v | v ∈ E0}
and elements {e,e∗ | e ∈ E1} satisfying

• e∗ f = 0, if e ̸= f ,
• e∗e = r(e),
• s(e)e = e = er(e),
• e∗s(e) = e∗ = r(e)e∗, and,
• v = ∑e∈s−1(v) ee∗, if s−1(v) is finite and nonempty.

Recall that graph C∗-algebras come with a natural gauge action and that Leavitt
path algebras come with a natural grading. We now turn to the ideal structure of
Leavitt path algebras and graph C∗-algebras, where we are particularly interested in
graded ideals and gauge invariant ideals.

Standing Assumption. Unless explicitly stated otherwise, all ideals in rings
are two-sided ideals and all ideals in a C∗-algebra are closed two-sided ideals.
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Definition 4. For any ring R we denote by I(R) the lattice of ideals in R.

As per usual we write v ≥ w if there is a path from the vertex v to the vertex w.
We call a subset H ⊆ E0 hereditary if v ∈ H and v ≥ w imply that w ∈ H, and we
say that H is saturated if for every v ∈ E0 with 0 < |s−1(v)|< ∞ and r(s−1(v))⊆ H
we have v ∈ H. If H is saturated and hereditary we define

BH =
{

v ∈ E0 \H : |s−1(v)|= ∞ and 0 < |s−1(v)∩ r−1(E0 \H)|< ∞
}
.

In other words, BH consists of infinite emitters that are not in H and emit a non-zero
finite number of edges to vertices not in H. We say that those vertices are breaking
for H.

Definition 5 ([19, Definition 5.4]). An admissible pair (H,S) consists of a saturated
hereditary subset H and a subset S of BH . We put an order on the set of admissible
pairs by letting (H,S) ≤ (H ′,S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′. This is in
fact a lattice order.

Theorem 1 ([6, Theorem 3.6] and [19, Theorem 5.7]). Let E be a graph and let k
be a field.

• There is a canonical lattice isomorphism from the set of admissible pairs to the
set of gauge invariant ideals of C∗(E). We write Itop

(H,S) for the image of an admis-
sible pair.

• There is a canonical lattice isomorphism from the set of admissible pairs to the
set of graded ideals of Lk(E). We write Ialg

(H,S) for the image of an admissible pair.

One of the main reasons the sublattice of graded ideals can be used to study
the Morita equivalence classes of Leavitt path algebras is that the graded ideals are
preserved by (not necessarily graded) ring isomorphisms.

Lemma 1. Let E be a graph and let k be a field. Suppose I is an ideal in Lk(E).
Then I is graded if and only if I is generated by idempotents.

Proof. Suppose I is graded. Then I = Ialg
(H,S) for some admissible pair (H,S). By

definition (see for instance [19, Definition 5.5]) Ialg
(H,S) is generated by {v : v ∈ H}

and
{v− ∑

s(e)=v
r(e)/∈H

ee∗ : v ∈ S}.

Hence I is generated by idempotents.
Suppose instead I is generated by idempotents. Let e ∈ I be an idempotent in

the generating set S of idempotents for I. By [12, Theorem 3.4], e is equivalent in
M∞(Lk(G)) to a finite sum of the idempotents of the form v ∈ E0 and w−∑n

i=1 eie∗i
where s(e) = w ∈ E0, |s−1(w)| = ∞, and each ei is an element of s−1(w). Then Se
where e is replaced by these new idempotents in the generating set S will generate
the ideal I. Thus, I is generated by idempotents in the vertex set and idempotents of
the form v−∑n

i=1 eie∗i , where s(e) = v ∈ E0, |s−1(v)|= ∞, and each ei is an element
of s−1(v). Therefore, I is a graded ideal.
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Finally we briefly recall from [10, Section 3] the definition of Primeγ(C∗(E))
and FKtop,+(Primeγ(C∗(E));C∗(E)).

Definition 6. Let E = (E0,E1,r,s) be a graph. Let Primeγ(C∗(E)) denote the set of
all proper ideals that are prime within the set of proper gauge invariant ideals.

We give Primeγ(C∗(E)) the Jacobson topology and can then show that C∗(E)
has a canonical structure as a Primeγ(C∗(E))-algebra. So when E has finitely many
vertices — or, more generally, Primeγ(C∗(E)) is finite — we can consider the re-
duced filtered ordered K-theory of C∗(E): FKtop,+(Primeγ(C∗(E));C∗(E)). Loosely
speaking this is the collection of the K-groups associated to certain subquotients I/J
of gauge invariant ideals I,J in C∗(E) together with certain maps of the associated
six-term exact sequences.

3 S -Prime spectrum for a ring

We will now introduce the Prime-spectrum of a ring relative to a sublattice of ideals.
Our primary motivation is to look at prime graded ideals in Leavitt path algebras.

Definition 7. Let R be a ring and let S be a sublattice of I(R) containing the trivial
ideals {0} and R. An ideal P ∈ S is called S -prime if P ̸= R and for any ideals
I,J ∈ S ,

IJ ⊆ P =⇒ I ⊆ P or J ⊆ P.

We denote by SpecS (R) the set of all S -prime ideals of R.

We note that if P is S -prime and I,J are in S then IJ ⊆ I ∩ J so we have

I ∩ J ⊆ P =⇒ I ⊆ P or J ⊆ P.

We will equip SpecS (R) with the Jacobson (or hull-kernel) topology. For each sub-
set T ⊆ SpecS (R) we define the kernel of T as

ker(T ) =
∩
p∈T

p

and the closure of T as

T = {p ∈ SpecS (R) : p⊇ ker(T )} . (1)

Note that if R is a commutative ring and S = I(R), then SpecS (R) is the spectrum
of R with the Zariski topology.

Lemma 2. Let R be a ring and let S be a sublattice of I(R) closed under arbitrary
intersections and containing the trivial ideals {0} and R. The closure operation
defined in (1) satisfies the Kuratowski closure axioms, that is
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1. /0 = /0,
2. T ⊆ T , for all T ⊆ SpecS (R),
3. T = T , for all T ⊆ SpecS (R), and,
4. T1 ∪T2 = T1 ∪T2, for all T1,T2 ⊆ SpecS (R).

Proof. Once we recall that by definition ker( /0) = R it is clear that 1. holds and since
we have p ⊇ ker(T ) for all p ∈ T , 2. also holds. For 3. we observe that ker(T ) =
ker(T ), and then clearly T = T .

Finally suppose that T1,T2 ⊆ SpecS (R). Since ker(T1 ∪T2) = ker(T1)∩ ker(T2)
we have that

T1 ∪T2 = {p ∈ SpecS (R) : p⊇ ker(T1 ∪T2)}
= {p ∈ SpecS (R) : p⊇ ker(T1)∩ker(T2)}
= {p ∈ SpecS (R) : p⊇ ker(T1) or p⊇ ker(T2)}
= T1 ∪T2.

So 4. holds.

We now describe the open sets in the Jacobson topology. To this end we define
for each I ∈ S the set

W (I) =
{
p ∈ SpecS (R) : p⊉ I

}
.

Lemma 3. Let R be a ring and let S be a sublattice of I(R) closed under ar-
bitrary intersections and containing the trivial ideals {0} and R. Then for all
U ⊆ SpecS (R), U is open if and only if

U =W (ker(Uc)).

Furthermore, if I ∈ S is such that

I = ker({p ∈ SpecS (R) : p⊇ I}),

then W (I) is open.

Proof. Let U be a subset of SpecS (R). Then U is open if and only if Uc = Uc if
and only if

Uc = {p ∈ SpecS (R) : p⊇ ker(Uc)}

if and only if

U =
{
p ∈ SpecS (R) : p⊉ ker(Uc)

}
=W (ker(Uc)).

Let now I ∈ S be such that

I = ker({p ∈ SpecS (R) : p⊇ I}).

To ease notation we let H = {p ∈ SpecS (R) : p⊇ I}, so that I = ker(H). Then
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W (I)c =
{
p ∈ SpecS (R) : p⊉ I

}c
=
{
p ∈ SpecS (R) : p⊉ ker(H)

}c

= {p ∈ SpecS (R) : p⊇ ker(H)}= H.

Hence W (I) is open.

We now define a lattice isomorphism between the open sets of SpecS (R) and the
elements of S .

Theorem 2. Let R be a ring and let S be a sublattice of I(R) closed under arbitrary
intersections and containing the trivial ideals {0} and R. Suppose that for each
I ∈ S we have that

I = ker({p ∈ SpecS (R) : p⊇ I}).

Define ϕ : O(SpecS (R))→ S by

ϕ(U) = ker(Uc).

Then ϕ is a lattice isomorphism.

Proof. To show that ϕ is bijective we define γ : S →O(SpecS (R)) by γ(I) =W (I)
and check that it is an inverse. Note that by Lemma 3 the set W (I) is in fact open.
For each I ∈ S we have

ϕ(γ(I)) = ϕ(W (I)) = ker(W (I)c) = ker({p ∈ SpecS (R) : p⊇ I}) = I,

by the assumption on I. On the other hand, if U ⊆ SpecS (R) is open we can use
Lemma 3 to get

γ(ϕ(U)) = γ(ker(Uc)) =W (ker(Uc)) =U.

Hence ϕ is bijective. To show that ϕ is a lattice isomorphism it only remains to
verify that both ϕ and γ preserves order. Let U,V be open subsets of SpecS (R) with
U ⊆V . Then V c ⊆Uc so

ϕ(U) = ker(Uc)⊆ ker(V c) = ϕ(V ),

and hence ϕ is order preserving. Let now I,J ∈ S be such that I ⊆ J. Then

W (I)c = {p ∈ SpecS (R) : p⊇ I} ⊇ {p ∈ SpecS (R) : p⊇ J}=W (J)c,

which implies that γ(I) =W (I)⊆W (J) = γ(J), i.e., γ is order preserving.

In keeping with the notation from C∗-algebras we define

R[U ] = ϕ(U)

for every U ∈ O(SpecS (R)). Whenever we have open sets V ⊆ U we can form
the quotient R[U ]/R[V ]. The next lemma shows that the quotient R[U ]/R[V ] only
depends on the set difference U \V up to canonical isomorphism.
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Lemma 4. Let R be a ring and let S be a sublattice of I(R) closed under arbitrary
intersections and containing the trivial ideals {0} and R. Suppose that for each
I ∈ S we have that

I = ker({p ∈ SpecS (R) : p⊇ I}).

Then for all U,V ∈O(SpecS (R)) we have

R[U ∪V ] = R[U ]+R[V ] and R[U ∩V ] = R[U ]∩R[V ].

Consequently, if V1,V2,U1,U2 ∈O(SpecS (R)) are such that V1 ⊆U1, V2 ⊆U2, and
U1 \V1 =U2 \V2, then there exits an isomorphism from R[U1]/R[V1] to R[U2]/R[V2]
and this isomorphism is natural, i.e., if also V3,U3 ∈ O(SpecS (R)) with V3 ⊆ U3
and U3 \V3 = U1 \V1, then the composition of the isomorphisms from R[U1]/R[V1]
to R[U2]/R[V2] and from R[U2]/R[V2] to R[U3]/R[V3] is equal to the isomorphism
from R[U1]/R[V1] to R[U3]/R[V3].

Proof. The first part of the theorem follows from the fact that ϕ is a lattice isomor-
phism (Theorem 2) and that S is a sublattice.

Suppose now V1,V2,U1,U2 ∈ O(X) are as in the statement of the Lemma. Then
V1 ∪U2 =U1 ∪U2 =U1 ∪V2 and therefore

R[U2]+R[V1] = R[V1 ∪U2] = R[U1 ∪V2] = R[U1]+R[V2].

Since U2 ∩ (V1 ∪V2) =V2 we get

(R[U2]+R[V1])/(R[V1]+R[V2])∼= R[U2]/(R[U2]∩R[V1 ∪V2])

= R[U2]/R[U2 ∩ (V1 ∪V2)]

= R[U2]/R[V2].

Similarly

(R[U1]+R[V2])/(R[V1]+R[V2])∼= R[U1]/R[V1].

Hence

R[U1]/R[V1]∼= (R[U1]+R[V2])/(R[V1]+R[V2])

= (R[U2]+R[V1])/(R[V1]+R[V2])
∼= R[U2]/R[V2].

Suppose that we also have V3,U3 ∈ O(SpecS (R)) with V3 ⊆ U3 and U3 \V3 =
U1 \V1. Then

V1 ∪U2 =U1 ∪U2 =U1 ∪V2,

V2 ∪U3 =U2 ∪U3 =U2 ∪V3,

V1 ∪U3 =U1 ∪U3 =U1 ∪V3,
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V1 =U1 ∩ (V1 ∪V2) =U1 ∩ (V1 ∪V3) =U1 ∩ (V1 ∪V2 ∪V3),

V2 =U2 ∩ (V1 ∪V2) =U2 ∩ (V2 ∪V3) =U2 ∩ (V1 ∪V2 ∪V3), and
V3 =U3 ∩ (V1 ∪V3) =U3 ∩ (V2 ∪V3) =U3 ∩ (V1 ∪V2 ∪V3).

Now, by considering the isomorphism constructed above, one then gets that the
isomorphism is natural from Noether’s isomorphism theorem.

Definition 8. Let X be a topological space and let Y be a subset of X . We call Y
locally closed if Y = U \V where U,V ∈ O(X) with V ⊆ U . We let LC(X) be the
set of locally closed subsets of X .

Definition 9. Let R be a ring and let S be a sublattice of I(R) closed under arbitrary
intersections and containing the trivial ideals {0} and R. Suppose that for each I ∈S
we have that

I = ker({p ∈ SpecS (R) : p⊇ I}).

For Y =U \V ∈ LC(SpecS (R)), define

R[Y ] := R[U ]/R[V ].

By Lemma 4, R[Y ] does not depend on U and V up to a canonical choice of isomor-
phism.

4 Specγ(Lk(E)) and Primeγ(C∗(E))

Having set up our notion of prime ideal spectrum relative to a sublattice, we will
now apply it to the graded ideals of Leavitt path algebras.

Definition 10. Let E be a graph and let k be a field. We denote by Iγ(Lk(E)) the
sublattice of I(Lk(E)) consisting of all graded ideals of Lk(E) and for brevity we let
Specγ(Lk(E)) = SpecIγ (Lk(E))(Lk(E)).

Similarly we let Iγ(C∗(E)) be the sublattice of I(C∗(E)) consisting of all gauge
invariant ideals of C∗(E).

Recall from [10, Section 3] that Primeγ(C∗(E)) denotes the collection of prime
gauge invariant ideals of C∗(E). We first prove that the lattice of graded ideals and
the lattice of gauge invariant ideals are isomorphic in a canonical way.

Lemma 5. Let E be a graph. The map β : Iγ(Lk(E)) → Iγ(C∗(E)) that is given
by β (Ialg

(H,S)) = Itop
(H,S) is a lattice isomorphism. Furthermore β maps Specγ(Lk(E))

bijectively onto Primeγ(C∗(E)).

Proof. By Theorem 1 there is a lattice isomorphism βalg from the set of admissible
pairs to Iγ(Lk(E)) given by βalg((H,S))= Ialg

(H,S), and a lattice isomorphism βtop from
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the set of admissible pairs to Iγ(C∗(E)) given by βtop((H,S))= Itop
(H,S). Consequently,

β = βtop ◦β−1
alg is a lattice isomorphism.

Let S = Iγ(Lk(E)). It follows from [14, Proposition II.1.4] that a graded ideal
I of Lk(E) is S -prime if and only if I is a prime ideal of Lk(E). Thus, by [16,
Theorem 3.12], every S -prime ideal I of Lk(E) is of the form

• I = Ialg
(H,S), where E0 \H is a maximal tail and S = BH , or

• I = Ialg
(H,S) where E0 \H = M(u) and S = BH \{u} for some breaking vertex,

and that these ideals are distinct. In [10, Section 3] it is shown that every ideal I in
Primeγ(C∗(E)) is of the form

• I= Itop
(H,S), where E0 \H is a maximal tail and S = BH , or

• I= Itop
(H,S) where E0 \H = M(u) and S = BH \{u} for some breaking vertex,

and that these ideals are distinct. Hence Itop
(H,S) is in Primeγ(C∗(E)) if and only if

Ialg
(H,S) is in Specγ(Lk(E)). In other words β maps Specγ(Lk(E)) bijectively onto

Primeγ(C∗(E)).

We can now prove that the collection of graded ideals satisfies the kernel assump-
tion we used in Section 3.

Proposition 1. Let E be a graph. If I is a proper graded ideal of Lk(E), then

I = ker
({

p ∈ Specγ(Lk(E)) : p⊇ I
})

.

Proof. Let β be the lattice isomorphism from Lemma 5 and let I ∈ Iγ(Lk(E)) be a
proper ideal.

By [10, Lemma 3.5] we have that

β (I) =
∩

q∈Primeγ (C∗(E))
q⊇β (I)

q.

Since I is a graded ideal I = Ialg
(H,S) for some admissible pair (H,S). As the intersec-

tion of graded ideals is again graded we also have∩
p∈Specγ (Lk(E))

p⊇I

p= Ialg
(H ′,S′),

for some admissible pair (H ′,S′). We will now show that Itop
(H,S) = Itop

(H ′,S′).

Since Ialg
(H ′,S′) is an intersection of ideals that all contain Ialg

(H,S), Ialg
(H,S) ⊆ Ialg

(H ′,S′)

which implies that Itop
(H,S) ⊆ Itop

(H ′,S′) as β is order preserving. If q ∈ Primeγ(C∗(E))
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is such that Itop
(H,S) ⊆ q, then Ialg

(H,S) ⊆ β−1(q). Therefore β−1(q) is one of the ideals

whose intersection define Ialg
(H ′,S′) so

Itop
(H ′,S′) = β (Ialg

(H ′,S′))⊆ β (β−1(q)) = q.

We now have the following inclusions

Itop
(H,S) ⊆ Itop

(H ′,S′) ⊆
∩

q∈Primeγ (C∗(E))
q⊇Itop

(H,S)

q= β (I) = Itop
(H,S).

Therefore, Itop
(H,S) = Itop

(H ′,S′). Hence (H,S) = (H ′,S′) so

I = Ialg
(H,S) = Ialg

(H ′,S′) =
∩

p∈Specγ (Lk(E))
p⊇I

p= ker
({

p ∈ Specγ(Lk(E)) : p⊇ I
})

.

Corollary 1. The map

U 7→
∩

p∈Specγ (Lk(E))\U

p

is a lattice isomorphism from O(Specγ(Lk(E))) to Iγ(Lk(E)).

Proof. This follows from Theorem 2 which is applicable by Proposition 1 and the
fact that the intersection of graded ideals is again a graded ideal.

As the final result in this section we prove that β restricts to a homeomorphism
between the graded prime ideals and the gauge prime ideals.

Theorem 3. Let E be a graph. Then ϕ = β |Specγ (Lk(E)) is a homeomorphism from
Specγ(Lk(E)) to Primeγ(C∗(E)), where β is the lattice isomorphism from Lemma 5.

Proof. We first observe that Lemma 3 and Proposition 1 combine to show that the
open sets of Specγ(Lk(E)) are precisely the sets of the form W (I) for some proper
ideal I ∈ Iγ(Lk(E)).

Let a proper ideal I ∈ Iγ(Lk(E)) be given. Then

β (W (I)) = β
({

p ∈ Specγ(Lk(E)) : p⊉ I
})

=
{

β (p) : p ∈ Specγ(Lk(E)) and p⊉ I
}

=
{

β (p) : p ∈ Specγ(Lk(E)) and β (p)⊉ β (I)
}

=
{
q ∈ Primeγ(C∗(E)) : q⊉ β (I)

}
.

By [10, Lemma 3.6] the last set is open, and hence ϕ−1 is continuous.
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The above computation used that β was a lattice isomorphism and that we had
complete, and similar looking, descriptions of the open sets in Specγ(Lk(E)) and
Primeγ(C∗(E)). Hence a completely parallel computation will show that ϕ is also
continuous. Therefore ϕ is a homeomorphism.

5 Filtered algebraic K-theory

In this section we define filtered algebraic K-theory for rings and show that if two
Leavitt path algebras over C have isomorphic filtered algebraic K-theory then the
associated graph C∗-algebras have isomorphic filtered K-theory. We then use this
result to answer the Abrams-Tomforde conjecture for a large class of finite graphs.

Let R be a unital ring and let BGL(R)+ be Quillen’s +-construction (see [20,
Chapter IV, Definition 1.1]). Consider K0(R) as a topological space with the discrete
topology. Let K(R) = K0(R)×BGL(R)+ with the product topology. Define Kalg

n (R)
to be

Kalg
n (R) =

{
πn(K(R)) if n ≥ 0
K0(∑−n R) if n < 0,

where ∑A denotes the suspension of a ring A. For a non-unital ring R, define Kalg
n (R)

to be

Kalg
n (R) =

{
πn(fiber(K(R+)→ K(Z))) if n ≥ 0
ker(Kn(R+)→ Kn(Z)) if n < 0

where R+ is the ring obtained from R by adjoining a unit. Therefore, Kalg
0 (R) agrees

with the usual definition of K0(R) using idempotents and Kalg
1 (R) agrees with the

usual definition of K1(R) using invertible matrices.
Suppose R is a ring and S is a sublattice of ideals. Moreover, assume that every

I ∈ S has a countable approximate unit consisting of idempotents, i.e., for every
I ∈ S , there exists a sequence {en}∞

n=1 in I such that

• en is an idempotent for all n ∈ N,
• enen+1 = en for all n ∈ N, and
• for all r ∈ I, there exists n ∈ N such that ren = enr = r.

Then for any locally closed subset Y =U \V of SpecS (R), we have a collection of
abelian groups {Kalg

n (R[Y ])}n∈Z. Moreover, for all U1,U2,U3 ∈O(SpecS (R)) with
U1 ⊆ U2 ⊆ U3, by [17, Lemma 3.10], we have a long exact sequence in algebraic
K-theory

Kalg
n (R[U2 \U1])

ι∗ // Kalg
n (R[U3 \U1])

π∗ // Kalg
n (R[U3 \U2])

∂∗ // Kalg
n−1(R[U2 \U1]).

Definition 11. Let R be a ring and let S be a sublattice of I(R) closed under arbi-
trary intersections and containing the trivial ideals {0} and R. Suppose that for each
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I ∈ S we have that

I = ker({p ∈ SpecS (R) : p⊇ I}).

Moreover, assume that every I ∈ S has a countable approximate unit consisting of
idempotents.

1. For k,m ∈ Z∪{±∞} with k ≤ m, we define FKalg
k,m(SpecS (R);R) to be the col-

lection
{Kalg

n (R[Y ])}k≤n≤m,Y∈LC(SpecS (R)),

equipped with the natural transformations {ι∗,π∗,∂∗}.
2. For k,m ∈ Z∪{±∞} with k ≤ 0 ≤ m, we define FKalg,+

k,m (SpecS (R),R) to be the

collection FKalg
k,m(SpecS (R);R) together with the positive cone of Kalg

0 (R[Y ]) for
all Y ∈ LC(SpecS (R)).

Set

FKalg(SpecS (R);R) = FKalg
−∞,∞(SpecS (R);R) and

FKalg,+(SpecS (R);R) = FKalg,+
−∞,∞(SpecS (R);R).

Definition 12. Let R,R′ be rings, let S be a sublattice of I(R) closed under arbitrary
intersections and containing the trivial ideals {0} and R, and let S ′ be a sublattice
of I(R′) closed under arbitrary intersections and containing the trivial ideals {0} and
R′. Suppose that for each I ∈ S we have that

I = ker({p ∈ SpecS (R) : p⊇ I}),

and that for each I′ ∈ S ′ we have that

I′ = ker(
{
p ∈ SpecS ′(R′) : p⊇ I′

}
).

Moreover, assume that every I ∈S and every I′ ∈S ′ have a countable approximate
unit consisting of idempotents.

For all k,m ∈ Z∪{±∞} with k ≤ m, an isomorphism from FKalg
k,m(SpecS (R);R)

to FKalg
k,m(SpecS ′(R′);R′) consists of a homeomorphism ϕ : SpecS (R)→SpecS ′(R′)

and an isomorphism αY,n from Kn(R[Y ]) to Kn(R′[ϕ(Y )]) for each n with k ≤ n ≤ m
and for each Y ∈ LC(SpecS (R)) such the diagrams involving the natural transfor-
mations commute.

Let k,m∈Z∪{±∞} with k≤ 0≤m. If the isomorphism from FKalg
k,m(SpecS (R);R)

to FKalg
k,m(SpecS ′(R′);R′) restricts to an order isomorphism on K0(R[Y ]) for all

Y ∈ LC(SpecS (R)), we write

FKalg,+
k,m (SpecS (R);R)∼= FKalg,+

k,m (SpecS ′(R′);R′).
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Lemma 6. Let E be a graph and let k be a field. Then every graded-ideal of Lk(E)
has a countable approximate unit consisting of idempotents. Consequently, for all
k,m ∈ Z∪{±∞} with k ≤ 0 ≤ m, FKalg,+

k,m (Specγ(Lk(E));Lk(E)) is defined.

Proof. Let F be a graph and set F0 = {v1,v2, . . .}. Then {∑n
k=1 vk}∞

n=1 is a countable
approximate unit consisting of idempotents for Lk(F). Thus, every Leavitt path al-
gebra has a countable approximate unit consisting of idempotents. The lemma now
follows since by [18, Corollary 6.2] every graded-ideal of Lk(E) is isomorphic to a
Leavitt path algebra.

Lemma 7. Let E be a directed graph and let ϕ : Specγ(LC(E))→ Primeγ(C∗(E)) be
the homeomorphism given in Theorem 3. Then for all U ∈O(Specγ(LC(E))), there

exists an admissible pair (H,S) such that LC(E)[U ] = Ialg
(H,S) and C∗(E)[ϕ(U)] =

Itop
(H,S), where LC(E)[U ] is the graded ideal corresponding to the open set U under

the lattice isomorphism from O(Specγ(LC(E))) to Iγ(LC(E)) given in Theorem 2.

Proof. This follows from the construction of ϕ in Theorem 3 as the restriction of
the lattice isomorphism β that sends Ialg

(H,S) to Itop
(H,S).

Let A be a C∗-algebra and let A be a ∗-algebra. Suppose ιA is a ∗-homomorphism
from A to A. Denote the composition

Kalg
n (A)

Kn(ιA) // Kalg
n (A) // Ktop

n (A)

by γn,A, where Ktop
n (A) is the (usual) topological K-theory of the C∗-algebra A.

Theorem 4. Let E be a directed graph and let

ϕ : Specγ(LC(E))→ Primeγ(C∗(E))

be the homeomorphism given in Theorem 3. For all U1,U2,U3 ∈O(Specγ(LC(E)))
with U1 ⊆U2 ⊆U3, the diagrams

Kalg
1 (LC(E)[U2 \U1]) //

γ1,C∗(E)[V2\V1 ]

��

Kalg
1 (LC(E)[U3 \U1]) //

γ1,C∗(E)[V3\V1 ]

��

Kalg
1 (LC(E)[U3 \U2]) //

γ1,C∗(E)[V3\V2]

��

Kalg
0 (LC(E)[U2 \U1])

γ0,C∗(E)[V2\V1 ]

��
Ktop

1 (C∗(E)[V2 \V1]) // Ktop
1 (C∗(E)[V3 \V1]) // Ktop

1 (C∗(E)[V3 \V2]) // Ktop
0 (C∗(E)[V2 \V1])

and
Kalg

0 (LC(E)[U2 \U1]) //

γ0,C∗(E)[V2\V1 ]

��

Kalg
0 (LC(E)[U3 \U1]) //

γ0,C∗(E)[V3\V1 ]

��

Kalg
0 (LC(E)[U3 \U2])

γ0,C∗(E)[V3\V2 ]

��
Ktop

0 (C∗(E)[V2 \V1]) // Ktop
0 (C∗(E)[V3 \V1]) // Ktop

0 (C∗(E)[V3 \V2])

are commutative, where Vi = ϕ(Ui).

Proof. This follows Lemma 7 and from [7, Theorems 2.4.1 and 3.1.9] .
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Lemma 8. Let E be a graph. Then for all (H1,S1),(H2,S2) admissible pairs with
(H1,S1)≤ (H2,S2), we have that

γ0,Itop
(H2 ,S2)

/Itop
(H1,S1)

: Kalg
0 (Ialg

(H2,S2)
/Ialg

(H1,S1)
)→ Ktop

0 (Itop
(H2,S2)

/Itop
(H1,S1)

)

is an order isomorphism and

γ1,Itop
(H2 ,S2)

/Itop
(H1,S1)

: Kalg
1 (Ialg

(H2,S2)
/Ialg

(H1,S1)
)→ Ktop

1 (I(H2,S2)/I(H1,S1))

is surjective with kernel a divisible group.
Suppose F is a graph and suppose there exists an order isomorphism

α0 : Kalg
0 (Ialg

(H2,S2)
/Ialg

(H1,S1)
)→ Kalg

0 (Ialg
(H ′

2,S
′
2)
/Ialg

(H ′
1,S

′
1)
)

and there exists an isomorphism

α1 : Kalg
1 (Ialg

(H2,S2)
/Ialg

(H1,S1)
)→ Kalg

1 (Ialg
(H ′

2,S
′
2)
/Ialg

(H ′
1,S

′
1)
),

where (Hi,Si) is an admissible pair of E for i = 1,2 and (H ′
i ,S

′
i) is an admissible

pair of F for i = 1,2 with (H1,S1)≤ (H2,S2) and (H ′
1,S

′
1)≤ (H ′

2,S
′
2). Then α0 and

α1 induce isomorphisms

α̃0 : Ktop
0 (Itop

(H2,S2)
/Itop

(H1,S1)
)→ Ktop

0 (Itop
(H ′

2,S
′
2)
/Itop

(H ′
1,S

′
1)
)

and
α̃1 : Ktop

1 (Itop
(H2,S2)

/Itop
(H1,S1)

)→ Ktop
1 (Itop

(H ′
2,S

′
2)
/Itop

(H ′
1,S

′
1)
)

such that α̃0 is an order isomorphism and

γi,Itop
(H′

2 ,S
′
2)
/Itop
(H′

1 ,S
′
1)
◦αi = α̃i ◦ γi,Itop

(H2 ,S2)
/Itop
(H1 ,S1)

.

Proof. Let ιE : LC(E)→C∗(E) be the ∗-homomorphism sending v to pv and e to se.
Note that for all admissible pairs (H,S), ιE(I

alg
(H,S))⊆ Itop

(H,S). Therefore, for all admis-
sible pairs (H1,S1),(H2,S2) with (H1,S1)≤ (H2,S2), ιE induces a ∗-homomorphism
from Ialg

(H2,S2)
/Ialg

(H1,S1)
to Itop

(H2,S2)
/Itop

(H1,S1)
. We denote this map by ιE,Itop

(H2 ,S2)
/Itop
(H1 ,S1)

.

Thus, the composition of this induced map in K-theory with the homomorphism
from Kalg

n (Itop
(H2,S2)

/Itop
(H1,S1)

) to Ktop
n (Itop

(H2,S2)
/Itop

(H1,S1)
) is γn,Itop

(H2 ,S2)
/Itop
(H1,S1)

.

We will show that it is enough to prove the first part of the lemma for the case
(H2,S2) = ( /0, /0) and (H1,S1) = (E0, /0). Let (H,S) be an admissible pair. Let E(H,S)
be the graph given in [18, Definition 4.1]. By the proofs of [18, Theorems 5.1
and 6.1], there exist ∗-isomorphisms

β(H,S) : LC(E(H,S))→ Ialg
(H,S) and λ(H,S) : C∗(E(H,S))→ Itop

(H,S)
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given by

β(H,S)(v) :=


v if v ∈ H
vH if v ∈ S
αα∗ if v = α ∈ F1(H,S)
αr(α)Hα∗ if v = α ∈ F2(H,S)

β(H,S)(e) :=


e if e ∈ E1

α if e = α ∈ F1(H,S)
αr(α)H if e = α ∈ F2(H,S)

β(H,S)(e
∗) :=


e∗ if e ∈ E1

α∗ if e = α ∈ F1(H,S)
r(α)Hα∗ if e = α ∈ F2(H,S)

and

λ(H,S)(qv) :=


pv if v ∈ H
pH

v if v ∈ S
sα s∗α if v = α ∈ F1(H,S)
sα pH

r(α)s
∗
α if v = α ∈ F2(H,S)

λ(H,S)(te) :=


se if e ∈ E1

sα if e = α ∈ F1(H,S)
sα pH

r(α) if e = α ∈ F2(H,S).

Note that the diagram

LC(E(H,S))
ιE(H,S) //

β(H,S)
��

C∗(E(H,S))

λ(H,S)

��
Ialg
(H,S) ι

E,Itop
(H,S)/0

// Itop
(H,S)

commutes. Therefore, for admissible pairs (H1,S1),(H2,S2) with (H1,S1)≤ (H2,S2),
the diagram

LC(E(H2,S2))/β−1
(H2,S2)

(Ialg
(H1,S1)

)
ιE(H2,S2) //

β (H2,S2)
��

C∗(E(H2,S2))/λ−1
(H2,S2)

(Itop
(H1,S1)

)

λ (H2,S2)

��
Ialg
(H2,S2)

/Ialg
(H1,S1) ι

E,Itop
(H2 ,S2)

/Itop
(H1 ,S1)

// Itop
(H2,S2)

/Itop
(H1,S1)
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where β (H2,S2)
and λ (H2,S2) are the induced ∗-isomorphisms on the quotient, com-

mutes. Therefore, it is enough to prove the lemma for the graph E(H2,S2). Hence, we
may assume that (H2,S2) = (E0, /0).

Set (H1,S1) = (H,S) to simplify the notation. Let E \ (H,S) be the graph de-
fined in [19, Theorem 5.7(2)]. Then by the proof of [19, Theorem 5.7(2)] and the
discussion before [6, Corollary 5.7], there are ∗-isomorphisms

δ(H,S) : LC(E \ (H,S))→ LC(E)/I(H,S)

and
η(H,S) : C∗(E \ (H,S))→C∗(E)/I(H,S)

such that the diagram

LC(E \ (H,S))
δ(H,S) //

ιE\(H,S)

��

LC(E)/I(H,S)

ιE,C∗(E)/I(H,S)

��
C∗(E \ (H,S)) η(H,S)

// C∗(E)/I(H,S)

commutes. Hence, it is enough to prove the lemma for the graph E \ (H,S). Hence,
we may assume that (H,S) = ( /0, /0). Thus, proving the claim.

The fact that γ0,C∗(E)/0 is an isomorphism follows from [12, Corollary 3.5]. To
prove that γ1,C∗(E)/0 is surjective and its kernel is a divisible group we reduce to the
case that E is row-finite. Let F be a Drinen-Tomforde desingularization of E defined
in [8]. Then there are embeddings ω : LC(E)→ LC(F) and ρ : C∗(E)→C∗(F) such
that the diagram

LC(E)
ω //

ιE

��

LC(F)

ιF

��
C∗(E) ρ

// C∗(F)

commutes, ω(LC(E)) is a full corner of LC(F), and ρ(C∗(E)) is a full corner of
C∗(F). Hence, ω and ρ induce isomorphisms in K-theory. Therefore, it is enough
to prove γ1,C∗(E),0 is surjective with kernel a divisible group for the case that E is
row-finite. The row-finite case follows from [17, Lemma 4.7]. The first part of the
lemma now follows.

For the last part of the lemma, since K0(ιE,Itop
(H2 ,S2)

/Itop
(H1 ,S1)

) is an order isomorphism,

it is clear that α0 induces an order isomorphism α̃0 such that

γ0,Itop
(H′

2 ,S
′
2)
/Itop
(H′

1 ,S
′
1)
◦α0 = α̃0 ◦ γ0,Itop

(H2 ,S2)
/Itop
(H1,S1)
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The fact that α1 induces an isomorphism α̃1 such that γ1,Itop
(H′

2 ,S
′
2)
/Itop
(H′

1 ,S
′
1)
◦α1 = α̃1 ◦

γ1,Itop
(H2 ,S2)

/Itop
(H1,S1)

is the result of the kernel of γ1,Itop
(H2 ,S2)

/Itop
(H1,S1)

being a divisible group

and K1(I
top
(H ′

2,S
′
2)
/Itop

(H ′
1,S

′
1)
) being torsion free, thus [17, Lemma 4.8] applies.

Theorem 5. Let E and F be graphs.

1. Suppose FKalg,+
0,1 (Specγ(LC(E));LC(E))∼=FKalg,+

0,1 (Specγ(LC(F));LC(F)). Then
FKtop,+(Primeγ(C∗(E));C∗(E))∼= FKtop,+(Primeγ(C∗(F));C∗(F)).

2. Suppose |E0|, |F0|< ∞. If

θ : FKalg,+
0,1 (Specγ(LC(E));LC(E))→ FKalg,+

0,1 (Specγ(LC(F));LC(F))

is an isomorphism such that θ0 sends [1LC(E)]0 ∈ Kalg
0 (LC(E)) to [1LC(F)]0 ∈

Kalg
0 (LC(F)), then there exists an isomorphism

Θ : FKtop,+(Primeγ(C∗(E));C∗(E))→ FKtop,+(Primeγ(C∗(F));C∗(F))

such that Θ0 sends [1C∗(E)]0 ∈ Ktop
0 (C∗(E)) to [1C∗(F)]0 ∈ Ktop

0 (C∗(F)).

Proof. The theorem follows from Lemmas 7 and 8, and Theorem 4.

Corollary 2. Let E and F be graphs.

1. If LC(E) and LC(F) are isomorphic as rings, then

FKtop,+(Primeγ(C∗(E));C∗(E))∼= FKtop,+(Primeγ(C∗(F));C∗(F)).

If, in addition, |E0|, |F0|< ∞, then there exists an isomorphism

Θ : FKtop,+(Primeγ(C∗(E));C∗(E))→ FKtop,+(Primeγ(C∗(F));C∗(F))

such that Θ0 sends [1C∗(E)]0 ∈ Ktop
0 (C∗(E)) to [1C∗(F)]0 ∈ Ktop

0 (C∗(F)).
2. If LC(E) and LC(F) are Morita equivalent, then

FKtop,+(Primeγ(C∗(E));C∗(E))∼= FKtop,+(Primeγ(C∗(F));C∗(F)).

Proof. 1. follows from Lemma 1 and Theorem 5.
Suppose LC(E) and LC(F) are Morita equivalent. Then by [2, Corollary 9.11],

M∞(LC(E)) ∼= M∞(LC(F)) as rings. By [2, Proposition 9.8(2)], M∞(LC(E)) ∼=
LC(SE) and M∞(LC(F)) ∼= LC(SF) as C-algebras, where SE and SF are the sta-
bilized graphs of E and F respectively (see [2, Definition 9.4]). Note that every
graded ideal LC(SE) is of the from M∞(I) for a unique graded ideal of I of LC(E)
and every graded ideal of LC(SF) is of the from M∞(J) for a unique graded ideal J
of LC(F). We also have that
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FKalg,+
0,1 (Specγ(LC(E));LC(E))∼= FKalg,+

0,1 (Specγ(LC(SE));LC(SE))

∼= FKalg,+
0,1 (Specγ(LC(SF));LC(SF))

∼= FKalg,+
0,1 (Specγ(LC(F));LC(F)).

Therefore, by Theorem 5,

FKtop,+(Primeγ(C∗(E));C∗(E))∼= FKtop,+(Primeγ(C∗(F));C∗(F)).

Corollary 3. The Abrams-Tomforde conjecture holds for the class of finite graphs
that satisfy Condition (H) of [10, Definition 4.19]. In particular the Abrams-
Tomforde conjecture holds for the class of finite graphs that satisfy Condition (K).

Proof. The first part is just a combination of Corollary 2 and [10, Theorem 6.1].
Finally, all graphs that satisfy Condition (K) satisfy Condition (H).

Remark 1. Corollary 2 will be used in [9] to show that the Abrams-Tomforde con-
jecture holds for the class of graphs with finitely many vertices.
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