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Abstract The present article is a summary of joint work of the author and Phillip
Wesolek on the normal subgroup structure of totally disconnected locally compact
second-countable (t.d.l.c.s.c.) groups. The general strategy is as follows: We obtain
normal series for a t.d.l.c.s.c. group in which each factor is ‘small’ or a non-abelian
chief factor; we show that up to a certain equivalence relation (called association),
a given non-abelian chief factor can be inserted into any finite normal series; and
we obtain restrictions on the structure of chief factors, such that the restrictions are
invariant under association. Some limitations of this strategy and ideas for future
work are also discussed.

1 Introduction

A common theme throughout group theory is the reduction of problems concern-
ing a group G to those concerning the normal subgroup N and the quotient G/N,
where both N and G/N have some better-understood structure; more generally, one
can consider a decomposition of G via normal series. This approach has been espe-
cially successful for the following classes of groups: finite groups, profinite groups,
algebraic groups, connected Lie groups and connected locally compact groups. To
summarise the situation for these classes, let us recall the notion of chief factors and
chief series.

Definition 1. Let G be a Hausdorff topological group. A chief factor K/L of G
is a pair of closed normal subgroups L < K such that there are no closed normal
subgroups of G lying strictly between K and L. A descending chief series for G is a
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(finite or transfinite) series of closed normal subgroups (Gα)α≤β such that G = G0,
{1}= Gβ , Gλ =

⋂
α<λ Gα for each limit ordinal and each factor Gα/Gα+1 is chief.

First, on the existence of chief series (or a good approximation thereof):

• Every finite group G has a finite chief series.
• Every profinite group has a descending chief series with finite chief factors.
• Every algebraic group has a finite normal series in which the factors are Zariski-

closed and either abelian or a semisimple chief factor.
• Every connected Lie group has a finite normal series in which the factors are in

the following list:
connected centreless semisimple Lie groups; finite groups of prime order; Rn, Zn

or (R/Z)n for some n.
We can also choose the series so that all factors are chief factors, except possibly
for some occurrences of Zn or (R/Z)n.

• Every connected locally compact group G has a descending series in which the
factors come from connected Lie groups. G has a unique largest compact nor-
mal subgroup K, and all but finitely many factors of the series occur below K.
(This can be generalised to the class of pro-Lie groups; see for example [7]. The
fact that connected locally compact groups are pro-Lie is a consequence of the
Gleason–Yamabe theorem.)

Second, on the structure of the factors occurring in such a series:

• A finite chief factor is a direct product of copies of a simple group.
• A chief factor that is a semisimple algebraic group is a direct product of finitely

many copies of a simple algebraic group.
• A chief factor that is a semisimple Lie group is a direct product of finitely many

copies of an abstractly simple connected Lie group.
• Finite simple groups, simple connected Lie groups and simple algebraic groups

have been classified.

So given a group G in the above well-behaved classes, there exists a decompo-
sition of G into ‘known’ groups. Moreover, it turns out that the non-abelian chief
factors we see up to isomorphism are an invariant of G (not dependent on how we
constructed the series).

Given the success of this approach to studying connected locally compact groups,
one would hope to obtain analogous results for totally disconnected, locally compact
(t.d.l.c.) groups. The ambition is expressed in the title of a paper of Pierre-Emmanuel
Caprace and Nicolas Monod: ‘Decomposing locally compact groups into simple
pieces’ ([4]); similar approaches can also be seen in previous work of Marc Burger
and Shahar Mozes ([3]) and of Vladimir Trofimov (see for instance [16]). We will
not attempt to summarise these articles here; instead, we will note some key insights
in [4] that are relevant to the project at hand.

(1) It is advantageous to work with compactly generated t.d.l.c. groups, i.e.
groups G such that G = 〈X〉 for some compact subset G. The advantage will
be explained in Section 2 below. In this context, and more generally, it is no
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great loss to restrict attention to the second-countable (t.d.l.c.s.c.) case, that is,
t.d.l.c. groups that have a countable base for the topology.

(2) The class of t.d.l.c.s.c. groups includes all countable discrete groups. We can-
not expect to develop a general theory of chief series for all such groups, and
in any case, such a theory would lie beyond the tools of topological group
theory. So instead, it is useful to have methods to ignore or exclude discrete
factors.

(3) Although compact groups are relatively well-behaved, in a given t.d.l.c.s.c.
group there are likely to be many compact normal factors, and the tools for
analysing them are of a different nature than those for studying the ‘large-
scale’ structure of t.d.l.c. groups. Thus, as with the discrete factors, it is useful
to find ways to ignore or exclude compact factors.

(4) Given closed normal subgroups K and L of a locally compact group G, their
product KL is not necessarily closed. In particular, KL/L need not be isomor-
phic to K/(K∩L).

(5) To accommodate the previous point, the authors introduce a generalisation
of the direct product, called a quasi-product (see §4.1 below). They show that
compactly generated chief factors (as long as they are not compact, discrete or
abelian) are quasi-products of finitely many copies of a topologically simple
group.

(6) A topologically simple group S can have dense normal subgroups; this fact
turns out to be closely related to the existence of quasi-products of topologi-
cally simple groups that are not direct products.

Points (2) and (3) above immediately suggest a modification to the definition of
chief series. We will restrict attention here to finite series; this will turn out to be
sufficient for the analysis of compactly generated t.d.l.c.s.c. groups.

Definition 2. Let G be a t.d.l.c. group. An essentially chief series is a series

{1}= G0 < G1 < · · ·< Gn = G

of closed normal subgroups of G, such that for 1≤ i≤ n, the factor Gi+1/Gi is either
compact, discrete, or a chief factor of G.

With point (5), there are two important caveats:

(a) A chief factor of a compactly generated t.d.l.c.s.c. group need not be itself
compactly generated.

(b) Non-compactly generated chief factors can be quasi-products of finitely or
infinitely many topologically simple groups, but they are not necessarily of
this form.

These caveats are an important contrast with the situation of connected locally com-
pact groups and account for much of the difficulty in developing a complete theory
of normal subgroup structure for t.d.l.c. groups. In particular, we see that an essen-
tially chief series does not by itself lead to a decomposition into simple factors, even
if one is prepared to ignore all compact, discrete and abelian factors.



4 Colin D. Reid

Based on the observations and results of Caprace–Monod, Burger–Mozes and
Trofimov, the author and Phillip Wesolek have started a project to analyse the normal
subgroup structure of t.d.l.c.s.c. groups by means of chief factors. Our proposed
programme is as follows:

(1) Obtain an essentially chief series for compactly generated t.d.l.c.s.c. groups.
(2) Find a way to handle non-abelian chief factors that is independent of the

choice of normal series, in other words, obtain ‘uniqueness’ or ‘invariance’
results.

(3) Analyse (recursively) the chief factor structure of chief factors of t.d.l.c.s.c.
groups. Try to ‘reduce’ to simple groups and low-complexity characteristi-
cally simple groups. Here ‘low-complexity’ means elementary with decom-
position rank ξ (G) ≤ α , where α is some specified countable ordinal; it will
turn out that a natural threshold to take here is α = ω + 1. (See Section 5
below for a brief discussion of decomposition rank.)

(4) Develop a structure theory for the low-complexity characteristically simple
t.d.l.c. groups and how these are built out of compactly generated and discrete
groups. The most important case here appears to be the class of elementary
t.d.l.c.s.c. groups of decomposition rank 2.

(5) Find general properties of classes of topologically simple t.d.l.c. groups. Some
general results have been obtained for compactly generated topologically sim-
ple groups: see [5]. In generalising from the compactly generated case, it is
likely that some kind of non-degeneracy assumption must be made at the level
of compactly generated subgroups to obtain useful structural results.

The goal of the rest of this article is to give an overview of progress made in this
project to date. In this summary, some arguments will be sketched out for illustra-
tion, but for the full details it will be necessary to consult the articles [12], [11] and
[13]. We focus for the most part on points (1)-(3) above; in the last section, some
ideas for further work will be presented.

2 Compactly Generated Groups

2.1 The Cayley–Abels Graph

A finitely generated group G has a Cayley graph: this is a connected, locally finite
graph Γ on which G acts vertex-transitively with trivial vertex stabilisers. Moreover,
Γ is unique up to quasi-isometry.

Herbert Abels [1] showed that something similar is true for compactly generated
t.d.l.c. groups G. Our strategy for obtaining an essentially chief series for G will be
to use induction on the degree of the corresponding graph; to obtain the right notion
of degree for this induction, we must be careful with the definition of graph we use
(especially for the quotient graph; see Definition 4 below).
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Definition 3. A graph Γ is a pair of sets VΓ (vertices) and EΓ (edges) together
with functions o : EΓ →VΓ and r : EΓ → EΓ such that r2 = idEΓ . (Given e ∈ EΓ ,
we do not require r(e) 6= e.) An automorphism α is a pair of bijections αV and αE
on VΓ and EΓ such that o◦αE = αV ◦o and r ◦αE = αE ◦ r. (When clear from the
context, we will omit the subscripts V and E.) Define t(e) := o(r(e)).

Given v ∈ VΓ , the degree deg(v) of v is defined to be |o−1(v)|; Γ is locally
finite if every vertex has finite degree. The degree of the graph Γ is deg(Γ ) :=
supv∈VΓ deg(v).

Γ is simple if t(e) 6= o(e) for all e ∈ EΓ and the map e 7→ (o(e), t(e)) is injective
on EΓ . In this case, we can simply regard EΓ as a symmetric binary relation on
VΓ , identifying each edge with the pair (o(e), t(e)).

Let G be a compactly generated t.d.l.c. group. A Cayley–Abels graph for G is a
graph Γ equipped with an action of G by automorphisms such that:

(i) Γ is connected and locally finite;
(ii) G acts transitively on VΓ ;
(iii) For each x ∈VΓ ∪EΓ , the stabiliser Gx is a compact open subgroup of G.

Theorem 1 (Abels [1]). Let G be a compactly generated t.d.l.c. group.

(i) For every compact open subgroup U of G, there is a simple Cayley–Abels
graph with vertex set G/U;

(ii) Any two Cayley–Abels graphs are quasi-isometric.

Recall that by Van Dantzig’s theorem, every t.d.l.c. group has a base of identity
neighbourhoods consisting of compact open subgroups, so Theorem 1(i) in particu-
lar ensures the existence of a Cayley–Abels graph for G.

The following lemma is a more detailed version of Theorem 1(i); we give a proof
here as an illustration of the advantages of working with compact open subgroups.
(The proof of Theorem 1(ii) is entirely analogous to that for Cayley graphs of finitely
generated groups.)

Lemma 1. Let G be a compactly generated t.d.l.c. group, let U be a compact open
subgroup of G and let A be a compact symmetric subset of G such that G = 〈U,A〉.

(i) There exists a finite symmetric subset B of G such that
BU =UB =UBU =UAU.

(ii) For any subset B satisfying part (i), then G = 〈B〉U and the coset space
G/U carries the structure of a simple locally finite connected graph, invari-
ant under the natural G-action, where gU is adjacent to hU if and only if
(gU)−1hU ⊆UBU \U.

Proof. (i) The product of compact sets is compact, by continuity of multiplication.
Thus UAU is a compact set. On the other hand, U is an open subgroup of G; thus G
is covered by left cosets of U and finitely many suffice to cover UAU . That is, we
have UAU ⊆

⋃
b∈B1

bU such that B1 is a finite subset of G. Moreover, we see that
UAU is itself a union of left cosets of U ; since the cosets partition G, we can in fact
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ensure UAU =
⋃

b∈B1
bU . Now take B = B1∪B−1

1 ; it is easily verified that B satisfies
the required equations.

(ii) Since BU =UAU , we have A ∈ 〈U,B〉; since G = 〈U,A〉, it follows that G =
〈U,B〉. Since BU = UB and B is symmetric, we have 〈U,B〉 = 〈B〉U . Now define
a simple graph Γ with vertex set G/U and edges specified by the given adjacency
relation. Note that gU is adjacent to hU if and only if g−1h∈UBU \U ; in particular,
we see that no vertex is adjacent to itself. Since UBU \U is a symmetric set, we
have g−1h ∈UBU \U if and only if h−1g ∈UBU \U , so the adjacency relation is
symmetric.

We let G act on G/U by left translation. To show that G acts on the graph, it
is enough to see that it preserves adjacency: given distinct vertices gU and hU , we
note that (xgU)−1xhU = Ug−1x−1xhU = Ug−1hU , so (gU,hU) is an edge if and
only if (xgU,xhU) is. The action of G is clearly also vertex-transitive. The graph is
connected because xbU is either equal or adjacent to xU for all b ∈ B, and we have
G = 〈B〉U . To show that Γ is locally finite, it suffices to see that o−1(U) is finite:
specifically, we see that o−1(U) = {(bU,U) | b∈ B}, and hence |o−1(U)| ≤ |B|. ut

Define the degree deg(G) of a compactly generated t.d.l.c. group G to be the
smallest degree of a Cayley–Abels graph of G. We can imagine the degree as anal-
ogous to ‘dimension’ or ‘number of generators’, depending on context.

The key difference between Cayley–Abels graphs and Cayley graphs is that ver-
tex stabilisers are not necessarily trivial. In particular, it is useful to consider the
action of a vertex stabiliser on the edges incident with that vertex.

Definition 4. Let G be a group acting on a graph Γ . Define the local action of G at
v to be the permutation group induced by the action of Gv on o−1(v).

The quotient graph Γ /G is the graph with vertex set V = {Gv | v ∈VΓ }, edge
set E = {Ge | e ∈ EΓ }, such that o(Ge) = G(o(e)) and r(Ge) = G(r(e)).

If the action of G is vertex-transitive, we can refer to ‘the’ local action on Γ

without reference to a specific vertex, since the action of Gv on o−1(v) will be
permutation-isomorphic to the action of Gw on o−1(w).

Cayley–Abels graphs are well-behaved on passing to quotients. Moreover, we
have good control of the degree.

Proposition 1 (See [12, Proposition 2.16]). Let G be a compactly generated t.d.l.c.
group, let Γ be a Cayley–Abels graph for G and let K be the kernel of the action of
G on Γ . Let H be a closed normal subgroup of G.

(i) Γ /H is a Cayley–Abels graph for G/H.
(ii) We have deg(Γ /H)≤ deg(Γ ), with equality if and only if the local action of

H is trivial. In particular, deg(G/H)≤ deg(G).
(iii) Suppose that the local action of H on Γ is trivial. Then H ∩K is a compact

normal subgroup of G and H/(H ∩K) is a discrete normal factor of G.

Proof (sketch). For (i), one can show that the vertex Hv of Γ /H has stabiliser
GvH/H, which is a compact open subgroup of G, and that the graph is locally finite
(see proof of part (ii)). The other conditions are clear.
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For (ii), given v ∈ VΓ , we have a surjection φ from o−1(v) to o−1(Hv), since
o−1(Hv) = Ho−1(v). Thus deg(Hv) ≤ deg(v), with equality if and only if φ is in-
jective. We see that φ is injective if and only if different edges incident with v lie in
different H-orbits, which occurs if and only if H has trivial local action.

For (iii), we observe that for all v ∈VΓ , then Hv fixes every edge incident with v,
and hence every vertex adjacent to v. Since Γ is connected, it follows by induction
on the distance from v that Hv fixes every w ∈ VΓ and hence also every edge of
Γ . Thus H ∩Gv = Hv = H ∩K. Clearly H ∩K is normal; it is compact since K
is compact; the equality H ∩K = H ∩Gv shows that H ∩K is open in H. Thus
H/(H ∩K) is discrete. ut

Remark 1. It remains an outstanding problem to classify non-discrete t.d.l.c. groups
G with deg(G) = 3, that is, non-discrete groups that act vertex-transitively with
compact open stabilisers on a graph of degree 3. One can show (see for instance
[6, Theorem 8.A.20]) that all such groups arise as G = G̃/D, where G̃ is a group
acting on a regular tree T of degree 3 with the same local action, D is a discrete
normal subgroup with trivial local action, and Γ arises as the quotient graph T/D.
Moreover, it can be seen that there is a group G̃≤ H ≤ Aut(T ), such that H has the
same orbits on directed edges as G̃ does and H is in the following list:

U(C2), U(Sym(3))δ , U(Sym(3)),

where C2 is a point stabiliser in Sym(3), U(F) denotes the Burger-Mozes universal
group with local action F (see [3]), and U(F)δ is the stabiliser of an end in U(F).
(Note that U(Sym(3))δ has local action C2.) So the structure of t.d.l.c. groups of
degree 3 in principle reduces to understanding the subgroup structure of these three
specific groups. At present, the least well-understood of these is U(C2).

2.2 Existence of Essentially Chief Series

We now reach our first goal, to show the existence of essentially chief series for
compactly generated t.d.l.c.s.c. groups. In fact, given what is already known in the
connected case, the result holds for all compactly generated locally compact groups.

Theorem 2 (See [12, Theorem 1.3]). For every compactly generated locally com-
pact group G, there is a finite series

{1}= G0 < G1 < G2 < · · ·< Gn = G

of closed normal subgroups of G, such that each Gi+1/Gi is compact, discrete or a
chief factor of G.

Cayley–Abels graphs are used via the following lemma.
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Lemma 2 (See [12, Lemma 3.1]). Let G be a compactly generated t.d.l.c. group and
Γ be a Cayley–Abels graph for G. Let C be a chain of closed normal subgroups of
G.

(i) Let A =
⋃

H∈C H. Then deg(Γ /A) = min{deg(Γ /H) | H ∈ C }.
(ii) Let D =

⋂
H∈C H. Then deg(Γ /D) = max{deg(Γ /H) | H ∈ C }.

Proof. For (i), it is enough to show that there exists H ∈ C such that A has trivial
local action on Γ /H. This amounts to showing that there is some H ∈ C such that
Hv and Av have the same orbits on o−1(v), in other words Av = Av,1Hv, where Av,1
is the subgroup of A fixing every edge in o−1(v). The existence of a suitable H ∈ C
follows from the finiteness of the quotient A/Av,1.

For (ii), given Proposition 1, we can assume D = {1} without loss of generality.
It is then enough to show that there exists H ∈ C that has trivial local action on Γ ,
in other words, such that H ∩Gv ≤ Gv,1. We see that Gv,1 is an open subgroup of
the compact group Gv; since C is a chain of subgroups with trivial intersection, it
follows by a compactness argument that indeed H∩Gv ≤Gv,1 for some H ∈ C . ut

Proof (sketch proof of Theorem 2). We will only consider the case when G is totally
disconnected. Proceed by induction on deg(G); let Γ be a Cayley–Abels graph of
smallest degree.

By Lemma 2(i) plus Zorn’s lemma, there is a closed normal subgroup A that
is maximal amongst closed normal subgroups such that deg(Γ /A) = deg(Γ ). By
Proposition 1, there is a compact normal subgroup K of G such that K ≤ A and A/K
is discrete, and Γ /A is a Cayley–Abels graph for G/A.

By the maximality of A, we see that any closed normal subgroup of G that
properly contains A will produce a quotient graph of Γ /A of smaller degree.
By Lemma 2(ii), every chain of non-trivial closed normal subgroups of G/A has
non-trivial intersection. By Zorn’s lemma, there is a minimal closed normal sub-
group D/A of G/A; in other words, D/A is a chief factor of G. We then have
deg(Γ /D) < deg(Γ /A), so deg(G/D) < deg(G). By induction, G/D has an essen-
tially chief series. We form an essentially chief series for G by combining the series
for G/D with the G-invariant series 1≤ K ≤ A < D we have obtained for D. ut

Lemma 2 and Proposition 1 also easily lead to chain conditions on closed nor-
mal subgroups, which are independently useful for understanding normal subgroup
structure in t.d.l.c. groups.

Theorem 3 (See [12, Theorem 3.2]). Let G be a compactly generated locally com-
pact group and let (Gi)i∈I be a chain of closed normal subgroups of G.

(i) For K =
⋃

i Gi, there exists i such that K/Gi has a compact open G-invariant
subgroup.

(ii) For L =
⋂

i Gi, there exists i such that Gi/L has a compact open G-invariant
subgroup.
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3 Equivalence Classes of Chief Factors

We have just seen that a compactly generated t.d.l.c.s.c. group G has an essentially
chief series. However, the proof is non-constructive, and in general there could be
many different essentially chief series without any natural choice of series. To obtain
canonical structural properties of G, we wish to establish properties of essentially
chief series that do not depend on the choices involved. In particular, we would like
to say that the same factors always appear up to equivalence. In the process, we will
obtain tools that are valid in a much more general setting; in particular, compact
generation will not play a large role in this section.

In fact, many of the results in this section are naturally proved in the context of
Polish groups, that is, topological groups G such that as a topological space, G is
completely metrizable and has a countable dense set. A locally compact group is
Polish if and only if it is second-countable; here we see the main technical motiva-
tion for our focus on t.d.l.c.s.c. groups as opposed to more general t.d.l.c. groups.

Let K and L be closed normal subgroups of a t.d.l.c.s.c. (more generally, Polish)
group G. Consider the following normal series for G:

{1} ≤ (K∩L)≤ K ≤ KL≤ G;

{1} ≤ (K∩L)≤ L≤ KL≤ G.

We want to think of these two series as having the same factors up to reordering.
Specifically, K/(K∩L) corresponds to KL/L and L/(K∩L) to KL/K.

In a discrete group, in fact K/(K ∩L) is isomorphic to KL/L and L/(K ∩L) is
isomorphic to KL/K, by the second isomorphism theorem. This is not true in the
locally compact context.

Example 1. Let G = Z[ 1
2 ]×Z2, let K = {(x,0) | x ∈ Z[ 1

2 ]} and let L = {(−y,y) |
y ∈ Z}. Then K ∩ L is trivial and KL = G. We see that K ∼= Z[ 1

2 ] and L ∼= Z, but
KL/L∼=Q2 and KL/K ∼= Z2.

We must therefore relax the notion of isomorphism to obtain a suitable equiva-
lence relation on the chief factors.

On the other hand, there is a similarity between K/(K∩L) and KL/L that is not
captured by group isomorphism, namely that the map

ϕ : K/(K∩L)→ KL/L; k(K∩L) 7→ kL

is a G-equivariant map with respect to the natural actions. In particular, we can
exploit the fact that the image KL/L is a normal subgroup of G/L.
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3.1 Normal Compressions

Definition 5. A normal compression of topological groups is a continuous ho-
momorphism ψ : A → B, such that ψ is injective and ψ(A) is a dense normal
subgroup of B. For example, there are natural normal compressions Z→ Z2 and⊕

Sym(n)→∏Sym(n).
An internal compression in a topological group G is a map

ϕ : K1/L1→ K2/L2; kL1 7→ kL2,

where K1/L1 and K2/L2 are normal factors of G such that K2 = K1L2 and L1 =
K1∩L2.

Given the ambient group G, we can also just say that K2/L2 is an internal com-
pression of K1/L1, as the map ϕ is uniquely determined; given a normal compres-
sion ψ : A→ B, we will also simply say that B is a normal compression of A when
the choice of ψ is clear from the context or not important.

The equations K2 = K1L2 and L1 = K1∩L2 are exactly what is needed to ensure
ϕ is well-defined and injective with dense image; in other words, every internal
compression is a normal compression. Conversely, in the class of t.d.l.c.s.c. groups
(more generally, Polish groups), it turns out that every normal compression can be
realised as an internal compression.

Let ψ : A→ B be a normal compression. Then there is a natural action θ of B on
A, which is specified by the equation

ψ(θ(b)(a)) = bψ(a)b−1; a ∈ A,b ∈ B.

Write Aoψ B for the semidirect product formed by this action. It is easily seen that
Aoψ B is a group; what is less clear is that the action of B on A is jointly continuous,
so that the product topology on Aoψ B is a group topology. The joint continuity in
this case follows from classical results on the continuity of maps between Polish
spaces; see for example [8, (9.16)].

Proposition 2 ([11, Proposition 3.5]). Let ψ : A → B be a normal compression
where A and B are t.d.l.c.s.c. groups (Polish groups). Then Aoψ B with the product
topology is a t.d.l.c.s.c. group (respectively, a Polish group).

Here is an easy application.

Corollary 1. Let ψ : A→ B be a normal compression where A and B are Polish
groups. Let K be a closed normal subgroup of A. Then ψ(K) is normal in B.

Proof. We can identify K with the closed subgroup K×{1} of the semidirect prod-
uct G = Aoψ B. By Proposition 2, G is a Hausdorff topological group; in partic-
ular, the normaliser of any closed subgroup is closed. Thus NG(K) is closed in G.
Moreover, NG(K) contains both A and ψ(B), so NG(K) is dense in G and hence
NG(K) = G. In particular, K is preserved by the action of B on A, so that ψ(K) is
normal in B. ut
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We can use the semidirect product to factorise the normal compression map.
We also see that the normal compression is realised as an internal compression of
normal factors of the semidirect product.

Theorem 4 ([11, Theorem 3.6]). Let ψ : A→ B be a normal compression where A
and B are Polish groups. Let ι : A→Aoψ B be given by a 7→ (a,1) and π : Aoψ B→
B be given by (a,b) 7→ ψ(a)b.

(i) ψ = π ◦ ι;
(ii) ι is a closed embedding;
(iii) π is a quotient homomorphism and A→ kerπ; a 7→ (a−1,ψ(a)) is an iso-

morphism of topological groups.

Corollary 2. Let ψ : A→ B be a normal compression where A and B are Polish
groups. Then ψ is realised as an internal compression

γ : A/{1}→ (Aoψ B)/kerπ .

In the context of t.d.l.c.s.c. groups, instead of factorising the normal compression
through AoB, we can factorise through (AoU)/∆ , where U is a compact open sub-
group of B and ∆ = {(w−1,ψ(w)) | w ∈W}, where W is a compact open subgroup
of A such that ψ(W ) is normal in U . This allows us to be obtain tighter control over
the relationship between A and B.

Theorem 5 ([13, Theorem 4.4]; see also [5, Proposition 5.17]). Let ψ : A→ B
be a normal compression where A and B are t.d.l.c.s.c. groups. Let U be a compact
open subgroup of B. Then there is a t.d.l.c. group C and continuous homomorphisms
α : A→C and β : C→ B with the following properties:

(i) ψ = β ◦α;
(ii) α is a closed embedding and C = α(A)Ũ with Ũ ∼=U;
(iii) β is a quotient homomorphism, kerβ is discrete, and every element of kerβ

lies in a finite conjugacy class of C.

As an example application, the following can be deduced from Theorem 5 to-
gether with standard properties of amenable groups.

Corollary 3 (See also [13, Proposition 5.6]). Let ψ : A→ B be a normal compres-
sion where A and B are t.d.l.c.s.c. groups. Then A is amenable if and only if B is
amenable.

3.2 The Association Relation and Chief Blocks

We now define a relation that will provide the promised equivalence relation on
chief factors.

Definition 6. Say K1/L1 is associated to K2/L2 (write K1/L1 ∼ K2/L2) if the fol-
lowing conditions are satisfied:



12 Colin D. Reid

(i) K1L2 = K2L1;
(ii) Ki∩L1L2 = Li for i = 1,2.

Note that if K1/L1 and K2/L2 are associated, then K/L is an internal compression
of both of them, where K = K1K2 and L = L1L2.

The centraliser CG(K/L) of a normal factor K/L is

CG(K/L) := {g ∈ G | ∀k ∈ K : [g,k] ∈ L}.

In particular, CG(K/L) is a closed normal subgroup of G such that L≤ CG(K/L).
Using the fact that centralisers of (not necessarily closed) subsets of Hausdorff

groups are closed, it is easy to see that the association relation preserves centralisers.
For non-abelian chief factors, the converse holds.

Proposition 3 ([11, Proposition 6.8]). Let K1/L1 and K2/L2 be normal factors of
the topological group G.

(i) If K1/L1 ∼ K2/L2, then CG(K1/L1) = CG(K2/L2).
(ii) If CG(K1/L1) = CG(K2/L2) and if K1/L1 and K2/L2 are non-abelian chief

factors of G, then they are associated.

Corollary 4. Association defines an equivalence relation on the non-abelian chief
factors of a topological group.

Given a non-abelian chief factor K/L, define the (chief) block a := [K/L] to
be the class of non-abelian chief factors associated to K/L. Define also CG(a) =
CG(K/L).

At this point, the benefit of the additional abstraction of chief blocks is not clear.
However, we will see in the rest of the article that chief blocks, and more generally
sets of chief blocks, can usefully be manipulated in a way that would be awkward
to do directly at the level of chief factors.

Association exactly characterises the uniqueness of occurrences of chief factors
in normal series:

Theorem 6 ([11, Proposition 7.8]). Let G be a Polish group, let

{1}= G0 ≤ G1 ≤ ·· · ≤ Gn = G

be a finite normal series for G, and let a be a chief block of G. Then there is exactly
one i∈{1, . . . ,n} for which there exist Gi−1≤B<A≤Gi with A/B∈ a. Specifically,
Gi is the lowest term in the series such that Gi � CG(a).

We write BG for the set of chief blocks of G. Note that BG comes equipped with
a partial order: we say a ≤ b if CG(a) ≤ CG(b). Equivalently, we have a < b if in
every finite normal series (Gi) that includes representatives Gi/Gi−1 and G j/G j−1
of a and b respectively, then G j > Gi.
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3.3 Robust Blocks

Given a compactly generated t.d.l.c.s.c. group, it would be tempting to infer that
every possible chief block is represented as a factor in every essentially chief series.
However, this is not true: there can be infinitely many compact and discrete chief
factors up to association, yet only finitely many of them will be represented in any
given essentially chief series. We need to exclude compact and discrete factors in a
way that is invariant under association.

Compactness and discreteness themselves are not invariant under association,
even amongst non-abelian chief factors. However, there is a related property that is
invariant.

Definition 7. The quasi-centre QZ(G) of a topological group G is the set of all
elements x ∈G such that CG(x) is open in G. A t.d.l.c.s.c. group G is quasi-discrete
if its quasi-centre is dense.

Discrete factors of a t.d.l.c.s.c. group are certainly quasi-discrete. Profinite chief
factors are direct products of finite simple groups, so they are also quasi-discrete
(see for instance [15, Lemma 8.2.3]).

In a t.d.l.c.s.c. group (more generally, in any Polish group), a closed subgroup
has countable index if and only if it is open; in particular, an element is quasi-
central if and only if its conjugacy class is countable. It also follows from second-
countability that every dense subgroup contains a countable dense subgroup. Con-
sequently, a t.d.l.c.s.c. group is quasi-discrete if and only if it has a countable dense
normal subgroup. Given a normal compression ψ : A→ B, if A has a countable
dense normal subgroup D, then ψ(D) is a countable dense subnormal subgroup of
B, which does not allow us to conclude directly that B is quasi-discrete. However,
quasi-discreteness is sufficiently well-behaved under normal compressions that the
following holds.

Theorem 7 (See [13, Theorem 7.15]). Let a be a chief block of a t.d.l.c.s.c. group
G. Then either all representatives of a are quasi-discrete, or none of them are.

It now makes sense to define a class of chief blocks that excludes quasi-discrete
chief factors.

Definition 8. A chief factor K/L of a t.d.l.c.s.c. group is robust if it is not quasi-
discrete; equivalently, QZ(K/L) = {1}. We say a chief block a is robust if all
(equivalently, some) of its representatives are robust.

Because robust chief factors cannot be associated to compact or discrete chief
factors, we obtain the following corollary of Theorems 6 and 7.

Corollary 5. Let G be a compactly generated t.d.l.c.s.c. group and let

{1}= A0 ≤ A1 ≤ ·· · ≤ Am = G and{1}= B0 ≤ B1 ≤ ·· · ≤ Bn = G
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be essentially chief series for G. Then the association relation induces a bijection
between {Ai/Ai−1 robust | 1 ≤ i ≤ m} and {B j/B j−1 robust | 1 ≤ j ≤ n}. Conse-
quently, the set Br

G of robust blocks of G is finite, and each robust block is repre-
sented exactly once in the factors of any given essentially chief series.

3.4 Canonical Representatives of Chief Blocks

We now obtain canonical representatives for the chief blocks. To discuss the rela-
tionship between normal subgroups and chief blocks, it will be useful to define what
it means for a normal subgroup or factor to cover a block:

Definition 9. Let G be a t.d.l.c.s.c. group, let a be a chief block and let K ≥ L be a
closed normal subgroup of G. Say K/L covers a if there exists L≤ B < A≤ K such
that A/B ∈ a. We say K covers a if K/{1} does.

Note that by Theorem 6, given any chief block a and normal factor K/L, there
are three mutually exclusive possibilities:

• L covers a, which occurs if and only if L� CG(a);
• G/K covers a, which occurs if and only if K ≤ CG(a);
• K/L covers a, which occurs if and only if L≤ CG(a) and K � CG(a).

In particular, CG(a) is the unique largest normal subgroup of G that does not
cover a. Thus we obtain a canonical representative for a, the uppermost represen-
tative:

Proposition 4 ([11, Proposition 7.4]). Let a be a chief block of a Polish group G.
Then G/CG(a) has a unique smallest closed normal subgroup Ga/CG(a). Given
any A/B ∈ a, then Ga/CG(a) is an internal compression of A/B.

For the existence of an analogous lowermost representative, there would need to
be a smallest closed normal subgroup K of G such that K covers a, in other words,
K � CG(a). An easy commutator argument shows that the set K of closed normal
subgroups K such that K � CG(a) is closed under finite intersections. However, in
general we cannot expect K to be closed under arbitrary intersections. Consider for
instance the situation when G is a finitely generated non-abelian discrete free group
and G/N is an infinite simple group. Then a = [G/N] is covered by every finite
index normal subgroup and G is residually finite, so K has trivial intersection; yet
the trivial group clearly does not cover a.

We say a is minimally covered if there is in fact a least element Ga of K , in
other words, K is closed under arbitrary intersections. The normal factor Ga/CGa(a)
is then the lowermost representative of a.

Proposition 5 ([11, Proposition 7.13]). Let a be a minimally covered block of a
Polish group G. Then Ga has a unique largest closed G-invariant subgroup CGa(a).
Given any A/B ∈ a, then A/B is an internal compression of Ga/CGa(a).
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One can picture a minimally covered block a as a kind of bottleneck in the lat-
tice L of closed normal subgroups of G. More precisely, L is partitioned into a
principal filter and a principal ideal: every closed normal subgroup K of G satisfies
exactly one of the inclusions K ≥ Ga or K ≤ CG(a).

In contrast to the situation for discrete groups, we find that as soon as we restrict
to robust blocks of compactly generated groups, we do in fact obtain a lowermost
representative. This is not so surprising when one considers that the minimally cov-
ered property is essentially a chain condition on closed normal subgroups, and that
just such a chain condition is provided by Theorem 3.

Proposition 6 ([12, Proposition 4.10]). Let a be a robust block of a compactly gen-
erated t.d.l.c.s.c. group G. Then a is minimally covered.

To summarise the situation for compactly generated t.d.l.c.s.c. groups: to any
t.d.l.c.s.c. group G we have associated two canonical finite sets of chief factors,
namely the uppermost representatives and the lowermost representatives of the ro-
bust blocks. Moreover, given an arbitrary chief factor K/L of G, then either K/L is
quasi-discrete, or else K/L interpolates between the lowermost and uppermost rep-
resentatives of the corresponding block a= [K/L], in the sense that we have internal
compressions

Ga/CGa(a)→ K/L→ Ga/CG(a).

The minimally covered property will also be important later, when studying
blocks of characteristically simple groups (in particular, those groups that arise as
chief factors of some larger group).

Normal compressions respect several of the properties of non-abelian chief fac-
tors discussed so far.

Theorem 8 (See [11, §8]). Let ψ : A→ B be a normal compression of t.d.l.c.s.c.
groups. Then there is a canonical bijection ψ̃ : BA→BB such that, for a,b ∈BA:

(i) a≤ b if and only if ψ̃(a)≤ ψ̃(b);
(ii) a is robust if and only if ψ̃(a) is robust;
(iii) a is minimally covered if and only if ψ̃(a) is minimally covered.

Corollary 6. Let K1/L1 and K2/L2 be associated non-abelian chief factors of a
t.d.l.c.s.c. group G. Then BK1/L1 and BK2/L2 are canonically isomorphic as par-
tially ordered sets, in a way that preserves the robust blocks and the minimally
covered blocks.

4 The Structure of Chief Factors

We now turn our attention from the existence and uniqueness of chief factors, to the
structure of a chief factor H = K/L as a topological group in its own right. Alter-
natively, we are interested in the structure of t.d.l.c.s.c. groups H that are (topologi-
cally) characteristically simple, meaning that a non-trivial subgroup N of H that is
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preserved by every automorphism of H as a topological group is necessarily dense
in H.

Recall that our ambition in this article is “decomposing groups into simple
pieces”. Accordingly, we will not attempt to decompose further a t.d.l.c.s.c. group
H that is topologically simple, that is, such that every normal subgroup is dense. If
H is a chief factor of a t.d.l.c.s.c. group G that is not topologically simple, then H
has a non-trivial lattice of closed normal subgroups and we can investigate the ac-
tion of G on this lattice. (Analogously, if H is a characteristically simple group, we
can investigate the action of Aut(H) on the lattice of closed normal subgroups.) Of
course, we can take advantage of the fact that canonical structures arising from the
collection of normal subgroups, such as the partially ordered set BH of chief blocks
of H, or the subset Bmin

H of minimally covered blocks, must also be preserved by au-
tomorphisms of H. However, here we run into the difficulty that the strong existence
results we have so far for (minimally covered) chief factors only apply to compactly
generated t.d.l.c.s.c. groups, and there is no reason for H to be compactly generated,
even if G is.

In this section, we will focus attention on the situation where H has at least one
minimally covered block. In Section 6 we will see that in fact, we can ensure the
existence of minimally covered blocks of H quite generally, even without compact
generation, as long as H has sufficient ‘topological group complexity’.

4.1 Quasi-Products

Apart from being topologically simple, the tamest normal subgroup structure we can
hope for in H is that H resembles a direct product of topologically simple groups, in
that it has a (finite or countable) collection {Si | i ∈ I} of closed normal subgroups,
each a copy of a topologically simple group S, such that H contains the direct sum of
the Si as a dense subgroup. However, even in this situation, the copies of Si may be
combined in a more complicated way than a direct product. (For one thing, the direct
product of infinitely many non-compact groups is not even locally compact.) We
now introduce a definition of quasi-product, generalising the definition of Caprace–
Monod in order to account for possibly infinite sets of quasi-factors.

Definition 10. Let G be a topological group and let S be a set of non-trivial closed
normal subgroups of G. Given I ⊆S , define GI := 〈N ∈ I〉.

(G,S ) is a quasi-product (or that G is a quasi-product of S ) if GS = G and
the map

d : G 7→ ∏
N∈S

G
GS \N

; g 7→ (gGS \N)N∈S

is injective. We then say S is a set of quasi-factors of G.

We have already seen a general situation in which quasi-products occur. The
following is an easy consequence of the way normal compressions factor through
the semidirect product:
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Corollary 7. Let ψ : A→ B be a normal compression of Polish groups and let G =
Aoψ B. Then G is a quasi-product of two copies of A, namely A1 = {(a,1) | a ∈ A}
and A2 = {(a−1,ψ(a)) | a ∈ A}. We have G = A1×A2 abstractly if and only if ψ is
surjective.

Quasi-products are straightforward to identify in the case of centreless groups.

Lemma 3 (See [11, Proposition 4.4]). Let G be a topological group and let S be a
set of closed normal subgroups of G. Suppose the centre Z(G) is trivial. Then G is a
quasi-product if and only if GS = G and any two distinct elements of S commute.

We can now state the Caprace–Monod structure theorem for compactly generated
characteristically simple t.d.l.c. groups.

Theorem 9 ([4, Corollary D]). Let G be a topologically characteristically simple
locally compact group. Suppose that G is compactly generated and neither compact,
nor discrete, nor abelian. Then G is a quasi-product of finitely many copies of a
compactly generated topologically simple group S.

Remark 2. It is unknown if the conclusion of this theorem can be improved to say
that G is a direct product of copies of S. It would be enough to show that there
is no normal compression ψ : S → T into a t.d.l.c.s.c. group where Z(T ) = {1}
and ψ(S) 6= T . Note that given any such normal compression, T would itself be
compactly generated and topologically simple, but clearly not abstractly simple. So
the question of whether such characteristically simple groups are necessarily direct
products of simple groups is closely related to the open question of whether every
compactly generated topologically simple t.d.l.c.s.c. group is abstractly simple.

Away from the case of compactly generated characteristically simple groups,
there are many more possibilities for quasi-products; examples are given in [4, Ap-
pendix II]. If we allow infinitely many quasi-factors, there is a general construction.
Notice that if (Gi)i∈N is a sequence of non-compact t.d.l.c.s.c. groups, then ∏i∈NGi
cannot be locally compact. However, given a choice of compact open subgroups of
Gi, there is a natural way to obtain a locally compact quasi-product of (Gi)i∈N.

Definition 11. Let (Gi)i∈N be a sequence of t.d.l.c.s.c. groups, and for each i let Ui
be a compact open subgroup of Gi. The local direct product P :=

⊕
i∈N(Gi,Ui)

is the set of functions from N to tGi (with pointwise multiplication) such that
f (i) ∈ Gi for all i and f (i) ∈Ui for all but finitely many i. There is a natural inclu-
sion ι : ∏i∈NUi→ P; we give P the unique group topology that makes ι continuous
and open.

It is easily seen that the local direct product is a t.d.l.c.s.c. group, and that it
is a quasi-product with the obvious factors. In general, the isomorphism type of⊕

i∈N(Gi,Ui) is sensitive to the choice of Ui as well as Gi. So there will be many
different local direct products of copies of a given group. Nevertheless, all local
direct products of copies of a given t.d.l.c.s.c. group occur as chief factors:
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Proposition 7. Let (Si)i∈N be a sequence of copies of a fixed topologically simple
t.d.l.c.s.c. group S, and for each i let Ui be a compact open subgroup of Si (no
consistency is required in the choice of Ui). Then

⊕
i∈N(Si,Ui) occurs as a chief

factor of a t.d.l.c.s.c. group.

Proof (sketch). Let F be the group of permutations of N of finite support, equipped
with the discrete topology. It is easily verified that F admits an action on P =⊕

i∈N(Si,Ui) given by setting ( f .g)(i) = g( f−1(i)) for f ∈ F , g ∈ P and i ∈ N.
(Here we exploit the fact that P is not sensitive to the choice of any finite subset of
the compact open subgroups Ui.) Moreover, the semidirect product G := PoF with
this action of F is a t.d.l.c.s.c. group with the product topology. We see that the inter-
section

⋂
i∈NCG(Si) is trivial, where Si is regarded as a subgroup of P in the natural

way. Thus given a non-trivial closed normal subgroup K of G, then [K,Si] 6= {1} for
some i, which implies that K ≥ Si for that i and hence K ≥ P. Thus P is the smallest
non-trivial closed normal subgroup of G; in particular, P/{1} is a chief factor of
G. ut

To some extent, the local direct product can also be used as a model of an arbi-
trary t.d.l.c.s.c. quasi-product.

Theorem 10 ([11, Proposition 4.8] and [13, Corollary 6.20]). Let (G,S ) be a
quasi-product such that G is a t.d.l.c.s.c. group and let U be a compact open sub-
group of G. Then S is countable. Moreover, there is a canonical normal compres-
sion

ψ :
⊕

N∈S
(N,N∩U)→ G

such that ψ restricts to the identity on each N ∈S .

4.2 Extension of Chief Blocks

If H has a closed normal subgroup S that is non-abelian and topologically simple,
then in particular H has a chief factor, namely S/{1}. Clearly S/{1} is the lower-
most representative of its block, so the corresponding block is minimally covered.

If H is a chief factor of some larger group G, say H = K/L, we can think of it
as the chief factor of G ‘generated’ by a chief block of K (namely, the block of K
corresponding to S). This situation can be generalised to talk about how chief blocks
of a closed subgroup K of G form chief blocks of G.

Definition 12. Let G be a Polish group, let H be a closed subgroup of G and let
a ∈BH . Say that b ∈BG is the extension of a to G, and write b= aG, if for every
normal factor K/L of G, then K/L covers b if and only if (K∩H)/(L∩H) covers a.

Extensions of blocks are unique, when they exist. Extensions are also transitive:
given H ≤ R ≤ G, and a ∈BH , we have aG = (aR)G whenever either side of this
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equation makes sense. It is not clear in general which blocks extend from which
subgroups. However, extensions of minimally covered blocks are better-behaved.
Write Bmin

G for the set of minimally covered blocks of G.
The following extendability criterion will be useful later.

Lemma 4. Let G be a Polish group, let K be a closed subgroup of G and let a ∈
Bmin

K . Then a extends to G if and only if there is b = aG ∈Bmin
G such that Gb ∩K

covers a and CG(b)∩K does not cover a.

Proof. Suppose a extends to G, with b = aG. Let K be the set of closed normal
subgroups of G that cover b. Then L∩K covers a for all L ∈K ; since a is mini-
mally covered,

⋂
L∈K L∩K covers a; hence

⋂
L∈K L covers b. Thus b is minimally

covered. Certainly Gb∩K covers b and CG(b)∩K does not cover a.
Conversely, suppose there exists b∈Bmin

G such that Gb∩K covers a and CG(b)∩
K does not cover a. Let L be a closed normal subgroup of K. If L covers b, then
L ≥ Gb, so L∩K ≥ Gb ∩K, and hence L∩K covers a. If L does not cover b, then
L≤ CG(b), so L∩K ≤ CG(b)∩K, and hence L∩K does not cover a. Thus b is the
extension of a to G. ut

If H is normal in G, the extendability criterion is always satisfied.

Proposition 8 ([11, Proposition 9.8]). Let G be a Polish group, let K be a closed
normal subgroup and let a ∈ Bmin

K . Then a extends to a minimally covered block
b := aG of G. The lowermost representative Gb/CGb

(b) of b is formed from the
following subgroups of K:

Gb = 〈gKag−1 | g ∈ G〉; CGb
(b) = Gb∩

⋂
g∈G

gCK(a)g−1.

Corollary 8. Given a Polish group G and a closed normal subgroup K, there is a
well-defined map θ : Bmin

K →Bmin
G given by a 7→ aG.

Since K is normal in G, we have an action of G on Bmin
K by conjugation. We can

describe the structure of θ using the partial order on Bmin
K together with conjugation

action of G.

Theorem 11 ([13, Theorem 9.13]). Let G be a Polish group, let K be a closed
normal subgroup and let a,b ∈Bmin

K . Then aG ≤ bG if and only if there exists g ∈G
such that g.a≤ b.

4.3 Three Types of Chief Factor

Let G be a Polish group with K a closed normal subgroup of G, let θ : Bmin
K →Bmin

G
be the extension map and fix c ∈Bmin

G . There are three possibilities for θ−1(c):

(1) θ−1(c) is empty;
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(2) θ−1(c) is a non-empty antichain (in other words a 6< b for all a,b ∈ θ−1(c)):
then ∀a,b ∈ θ−1(c) ∃g : g.a= b.

(3) θ−1(c) is non-empty and not an antichain: then ∀a,b ∈ θ−1(c) ∃g : g.a< b.

Now let K/L be a non-abelian chief factor of the Polish group G. We may as
well pass to G/L, in other words we may assume L = {1} and K is a minimal closed
normal subgroup of G. Then c= [K/{1}] ∈Bmin

G .
We still have a map θ : Bmin

K →Bmin
G . But now, since K is itself a chief factor,

we have aG = c for every a ∈Bmin
K . So θ−1(c) =Bmin

K , and hence Bmin
K has one of

the forms (1), (2), (3) described above.

Definition 13. Let H (= K/L) be a topologically characteristically simple Polish
group (for instance, a chief factor of some Polish group). We say H is of:

(1) weak type if Bmin
H = /0;

(2) semisimple type if Bmin
H is a non-empty antichain;

(3) stacking type if Bmin
H has a non-trivial partial order.

Note that the types are completely determined by the internal structure of H: we
no longer need to refer to the ambient group.

We recall moreover that if K1/L1 and K2/L2 are associated non-abelian chief
factors, then Bmin

K1/L1
∼=Bmin

K2/L2
as partially ordered sets. So all representatives of a

chief factor are of the same type, and it makes sense to talk about the type of a chief
block.

To justify the terminology, we note that ‘semisimple type’ chief factors do indeed
break up into topologically simple pieces:

Proposition 9. Let H be a Polish chief factor of semisimple type. Then H is a quasi-
product of copies of a topologically simple group.

Proof. Without loss of generality we may suppose H is a minimal non-trivial closed
normal subgroup of some ambient group G. Let a ∈Bmin

H and let K = Ha. Note that
[K,K] also covers a, so we must have K = [K,K].

Let g ∈ G and suppose that K covers g.a. Then the lowermost representative L
of g.a is a subgroup of K. It follows that every subgroup that covers a, also cov-
ers g.a; this is only possible if g.a ≤ a. Since Bmin

H is an antichain, we must have
a = g.a. In particular, we see that M = CK(a) does not cover g.a for any g ∈ G, so
M ≤

⋂
g∈G CH(g.a). On the other hand

⋂
g∈G CH(g.a) is a proper G-invariant sub-

group of H; by minimality we conclude that M is trivial. Thus K/{1} ∈ a, in other
words K is a minimal non-trivial closed normal subgroup of H.

The minimality of K ensures that, whenever g ∈ G is such that gKg−1 6= K, then
K ∩ gKg−1 = {1}. Since both K and gKg−1 are normal in H, it follows that in
fact [K,gKg−1] = {1}. Moreover, since H is a minimal non-trivial closed normal
subgroup of G, we must have H = 〈S 〉 where S = {gKg−1 | g ∈ G}. Since H is
non-abelian and characteristically simple, Z(H) = {1}. Since distinct elements of
S commute, we conclude by Lemma 3 that (H,S ) is a quasi-product. In particular
H is a quasi-product of copies of K and there is an internal compression from K to
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H/C, where C = 〈S \K〉. We see that H/C is a representative of a, so H/C has no
proper non-trivial closed normal (equivalently, H-invariant) subgroups and hence is
topologically simple. By Corollary 1, every non-trivial closed normal subgroup of
K has dense image in H/C. It can then be seen ([11, Proposition 3.8]) that every
non-trivial closed normal subgroup of K contains the derived group of K; since K is
topologically perfect, we conclude that K is topologically simple. ut

At this level of generality, weak type does not give us much to work with. As far
as we know, a characteristically simple Polish group could be very complicated, but
nevertheless not have any minimally covered blocks. The situation is different in the
class of t.d.l.c.s.c. groups, as we will see in Section 6: here we have a precise notion
of complexity, and we can control the structure of high-complexity chief factors via
essentially chief series of compactly generated open subgroups.

The most interesting of the three types (and in some sense the generic type, at
least in t.d.l.c.s.c. groups) is stacking type. If K is a minimal closed normal subgroup
of G of stacking type, then K has a characteristic collection

N = {Ka | a ∈Bmin
K }

of closed normal subgroups, such that for all A,B ∈N (including the case A = B),
there exists g∈G such that A< gBg−1. To put this another way, we have a character-
istic collection C of chief factors of K (specifically, the lowermost representatives of
elements of Bmin

K ), such that for every pair A1/B1,A2/B2 ∈ C , then a G-conjugate
of A1/B1 appears as a normal factor of the outer automorphism group of A2/B2
induced by K.

4.4 Examples of Chief Factors of Stacking Type

To see that stacking type chief factors occur naturally in the class of t.d.l.c. groups,
we consider a construction of groups that act on trees, fixing an end. This construc-
tion and generalisations will be discussed in detail in the forthcoming article [14].

Let T→ be a tree (not necessarily locally finite) in which every vertex has degree
at least 3, with a distinguished end δ . We define Aut(T→) to be the group of graph
automorphisms that fix δ , equipped with the usual permutation topology (equiva-
lently, the compact-open topology). Then there is a function f from V T→ to Z with
the following properties:

(a) For every edge e of the tree, we have | f (o(e))− f (t(e))|= 1;
(b) We have f (t(e))> f (o(e)) if and only if e lies on a directed ray towards δ .

Thus f (v) increases as we approach δ . The function f is unique up to an additive
constant; its set { f−1(i) | i ∈ Z} of fibres is therefore uniquely determined. The
fibres are the horospheres centred at δ , and the sets {v ∈V T→ | f (v)≥ i} for i ∈ Z
are the horoballs centred at δ .
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We also have an associated partial order on V T→: say v ≤ w if there is a path
from v to w in the direction of δ , in other words, a path v0v1 . . .vn, with v = v0 and
w = vn, such that f (vi−1)< f (vi) for 1≤ i≤ n.

Now let G be a topological group acting faithfully and continuously on T→, such
that G fixes δ . For each vertex v ∈ V T→, define the rigid stabiliser ristG(v) of v
to be the subgroup of G that fixes every vertex w such that w 6< v (including v
itself). Let Gi = 〈ristG(v) | v ∈ f−1(i)〉. Note that given w ∈V T→ such that f (w)<
i, then there exists v ∈ f−1(i) such that w < v and hence ristG(w) ≤ ristG(v). In
particular, we have Gi ≤Gi+1 for all i∈Z. Since G preserves the set of horospheres,
for every g ∈G, there exists j such that f (gv) = f (v)+ j for all v ∈V T→, and hence
gGig−1 = Gi+ j for all i ∈ Z. Thus E =

⋃
i∈ZGi is a closed normal subgroup of G.

Under some fairly mild assumptions, E is actually a minimal non-trivial normal
subgroup of G; in particular, E is a chief factor of G.

Proposition 10. Let G and E be as described above. Suppose that:

(a) For all v ∈ f−1(0), the group ristG(v) is topologically perfect and does not fix
any end of T→ other than δ ;

(b) There exists h ∈ G and v ∈V T→ such that f (hv) 6= f (v).

Then E is a minimal non-trivial normal subgroup of G.

Proof. Condition (a) ensures that E is non-trivial. Let K be a non-trivial closed
subgroup of E, such that K is normal in G. We must show that K = E.

Condition (b) in fact ensures that h has hyperbolic action on T , with δ as one of
the ends of the axis of h. Without loss of generality f (hv) = f (v)+ j for all v∈V T→,
where j > 0. Consequently G0 is not normal in G, and indeed E =

⋃
n≥0 hnGih−n

for any given i ∈ Z. Note also that f (gv) = f (v) for all g ∈ E.
Let v ∈ V T→ be such that v is not fixed by K. There is then n ∈ Z such that

f (hn−1v) < 0 but f (hnv) ≥ 0. Let w ∈ V T→ be such that hn−1v < w ≤ hnv and
f (w) = 0. Then hnv is not fixed by K, say khnv 6= hnv. We see that kw 6= w but
f (kw) = f (w), and hence ristG(w) and ristG(kw) have disjoint support. In particular,
y and kzk−1 commute for all y,z ∈ ristG(w). Given y,z ∈ ristG(w), we therefore have

[y,z] = [y,z(kz−1k−1)] = [y, [z,k]] ∈ K.

Since ristG(w) is topologically perfect, we conclude that ristG(w) ≤ K. Since
hn−1v < w, we see that ristG(hn−1v) ≤ ristG(w) ≤ K; by conjugating by powers
of h, it follows that ristG(hmv)≤ K for all m ∈ Z.

Since ristG(w) does not fix any end of T→, we see that K does not preserve the
axis of h. In particular, we could have chosen v to lie on the axis of h. Let us assume
we have done so.

Now let w′ ∈ V T→ be arbitrary. Then for n sufficiently large (depending on w′)
we have w′ ≤ hnv, and hence ristG(w′)≤ ristG(hnv)≤K. So ristG(w′)≤K for every
vertex w′, and hence K = E. ut

It is clear that E is not of semisimple type, so to obtain a chief factor of stacking
type, it suffices to impose conditions to ensure the existence of a minimally covered
block of E. We leave the details to the interested reader.
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Example 2. Let T→ be a regular locally finite tree of degree d ≥ 6 with a distin-
guished end δ . Let G be the subgroup of Aut(T), such that the local action at every
vertex is the alternating group Alt(d) of degree d. Then for each v ∈ V T , the rigid
stabiliser ristG(v) is an iterated wreath product of copies of Alt(d− 1). The sub-
group E described in Proposition 10, which in this case is actually the set of all
elliptic elements of G, is then a chief factor of G of stacking type.

Considering the above example, one might still imagine that stacking type chief
factors, by virtue of being characteristically simple, are ‘built out of topologically
simple groups’ in an easily-understood way. The following much more general con-
struction, which is inspired by the construction of Adrien Le Boudec in [9], should
strike a cautionary note for any attempt to reduce the classification of chief factors
to the topologically simple case.

Example 3. Let T→ be a tree with a distinguished end δ , such that every vertex has
a countably infinite set of neighbours. We set a colouring function σ : ET→ → N,
such that σ ◦ r = σ , there is a ray towards δ in which every edge has the colour 1,
and at every vertex v, σ restricts to a bijection cv between the set t−1(v) of in-edges
and N. Given h ∈Aut(T→), the local action of h at v is a permutation of N given by
σ(h,v) = c−1

hv ◦h◦ cv.
Let P be a transitive t.d.l.c.s.c. subgroup of Sym(N) in the permutation topology,

and let U be a compact open subgroup of P. Define E(P,U) to consist of all elements
h of Aut(T→) such that σ(h,v)∈G for all v∈V T→ and σ(h,v)∈U for all but finitely
many vertices. We see that E(P,U) is a subgroup of Aut(T→). At the moment it is
not locally compact, but we can rectify this by choosing a new topology.

Let v ∈ V T and consider the stabiliser E(U,U)v of v in E(U,U). It is straight-
forward to see that E(U,U)v is a closed profinite subgroup of Aut(T→). Moreover,
there is a unique group topology on E(P,U) so that the inclusion of E(U,U)v is
continuous and open; this topology does not depend on the choice of v. We now
equip G = E(P,U) with this topology, and see that G is a t.d.l.c.s.c. group.

Regardless of the choice of P and U , the group G acts transitively on the vertices
of v, and for each horosphere f−1(i), the fixator f−1(i) is a closed subgroup of Gi
of G that is quasi-product of the rigid stabilisers of vertices in f−1(i). In particular,
we see that for all i ∈ Z, we have Gi/Gi−1 ∼=

⊕
j∈N(P,U). In turn, every element of

G with elliptic action on T→ can be approximated in the topology of G by elements
of

⋃
i∈ZGi. Thus E =

⋃
i∈ZGi is a closed subgroup of G consisting of all elliptic

elements of G. We see that E(U,U)v ≤ E, so E is open, and in fact G∼= EoZ as a
topological group.

Suppose now that P is topologically perfect. It then follows that ristG(v) is topo-
logically perfect, and hence E is a chief factor of G by Proposition 10.

Given a t.d.l.c.s.c. group P, then P occurs as a transitive subgroup of Sym(N)
provided that P does not have arbitrarily small compact normal subgroups. There
are also many examples of topologically perfect t.d.l.c.s.c. groups; a general con-
struction is to take the normal closure of Alt(5) in G oAlt(5), where G is some given
t.d.l.c.s.c. group. So the conditions on P for Example 3 to produce a chief factor
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are quite weak, and by no means ensure that P has a well-understood (sub-)normal
subgroup lattice. At the same time, a local direct product of copies of P appears as
a normal factor of the chief factor E. So we have effectively buried the subnormal
subgroup structure of P inside a chief factor E of another t.d.l.c.s.c. group. One can
also take the resulting group E, set P2 = E, and repeat the construction, iterating to
produce increasingly complex chief factors.

5 Interlude: Elementary Groups

To introduce the right notion of topological group complexity for the next section,
we briefly recall the class of elementary t.d.l.c.s.c. groups and their decomposition
rank, as introduced by Wesolek. For a detailed account, see [17]; a more streamlined
version is also given by Wesolek in these proceedings.

We will write G = lim−→Oi as a shorthand to mean that G is a t.d.l.c.s.c. group,
formed as an increasing union of compactly generated open subgroups Oi.

Definition 14. The class E of elementary t.d.l.c.s.c. groups is the smallest class of
t.d.l.c.s.c. groups such that

(i) E contains all countable discrete groups and second-countable profinite
groups;

(ii) Given a t.d.l.c.s.c. group G and K EG such that K,G/K ∈ E , then G ∈ E ;
(iii) Given G = lim−→Oi such that Oi ∈ E , then G ∈ E .

Notice that if G is in the class S of compactly generated, non-discrete, topo-
logically simple t.d.l.c.s.c. groups, then G is not elementary. More generally, an
elementary group cannot involve a group from S , meaning that if G is elementary,
then we cannot have closed subgroups K EH ≤ G closed such that H/K ∈S . It is
presently unknown if the converse holds. A candidate for a counterexample is the
Burger–Mozes universal group U(C2) acting on the 3-regular tree mentioned in Re-
mark 1; one can show that U(C2) is non-elementary, but it is not clear if it involves
any groups in S .

Elementary groups admit a canonical rank function, taking values in the count-
able successor ordinals, called the decomposition rank ξ (G) of G. It will suffice
for our purposes to recall some properties of how this rank behaves.

Write ω1 for the set of countable ordinals; for convenience, if G is not elementary
we will define ξ (G) = ω1. We also define the discrete residual Res(G) of a t.d.l.c.
group G to be the intersection of all open normal subgroups of G.

Theorem 12 (See [17, §4.3]). There is a unique mapping ξ : E → ω1 with the fol-
lowing properties:

(i) ξ (1) = 1;
(ii) If G 6= 1 and G = lim−→Oi, then ξ (G) = sup{ξ (Res(Oi))}+1.

Theorem 13. Let G be a t.d.l.c.s.c. group.
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(i) If ψ : H → G is a continuous injective homomorphism, then ξ (H) ≤ ξ (G).
([17, Corollary 4.10])

(ii) If K is a closed normal subgroup of G, then ξ (G/K) ≤ ξ (G) ≤ ξ (K) +
ξ (G/K). ([10, Lemma 6.4])

(iii) If K is a closed normal cocompact subgroup of G, then ξ (K) = ξ (G).
([13, Lemma 3.8])

Of particular interest is the class {G ∈ E | ξ (G) = 2}. These are the non-trivial
t.d.l.c.s.c. groups G such that, for every compactly generated open subgroup O of G,
then O is residually discrete. In fact, in this situation O is a SIN group, that is, O has a
basis of identity neighbourhoods consisting of compact open normal subgroups; this
was shown in [4, Corollary 4.1]. Clearly both profinite groups and discrete groups
have rank 2; we also note that this class includes the quasi-discrete groups.

Lemma 5. If G is a non-trivial t.d.l.c.s.c. group such that QZ(G) is dense, then
ξ (G) = 2.

Proof. Let O be a compactly generated open subgroup of G and let U be a compact
open subgroup of O. Since QZ(O) = QZ(G)∩O is dense in O and O is compactly
generated, we can choose a finite subset A of QZ(O) such that O= 〈A,U〉. The group
V =

⋂
a∈A CU (a) is then an open subgroup of U . Since U is a profinite group, there

is a base of identity neighbourhoods consisting of open normal subgroups W of U .
Given W ≤ V such that W is U-invariant, we see that W is centralised by 〈A〉 and
hence W is normal in O. Thus O has a base of identity neighbourhoods consisting
of open normal subgroups. In particular, Res(O) = {1} and hence ξ (Res(O)) = 1.
Since O was an arbitrary compactly generated open subgroup of G, it follows that
ξ (G) = 2 as claimed. ut

It follows from Theorems 5 and 13 that normal compressions preserve the rank.

Proposition 11 ([13, Proposition 5.4]). Let ψ : A→ B be a normal compression
where A and B are t.d.l.c.s.c. groups. Then ξ (A) = ξ (B).

Proof. By Theorem 13, we have ξ (A) ≤ ξ (B). On the other hand, by Theorem 5
we have a closed embedding α : A→ C and a quotient map β : C→ B, such that
α(A) is a cocompact normal subgroup of C. It then follows by Theorem 13 that
ξ (B)≤ ξ (C) = ξ (A), so in fact ξ (A) = ξ (B). ut

In particular, given a chief block a, the rank of any representative of a is the same
as the rank of its uppermost representative. So given a block a ∈BG, one can define
ξ (a) := ξ (K/L) for some/any representative K/L of a.

Corollary 9. Let G be a compactly generated t.d.l.c.s.c. group.

(i) Let a be a chief block of G such that ξ (a) > 2. Then a is robust, and hence
minimally covered.

(ii) Suppose that ξ (G) is infinite. Then there exist n ∈ N and robust blocks
a1, . . . ,ak of G satisfying

ξ (G)≤ ξ (a1)+ξ (a2)+ · · ·+ξ (ak)+n.
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Proof. Part (i) follows from Lemma 5; part (ii) follows from Theorem 13 together
with the existence of essentially chief series, noting that every factor of such a series
that is not a robust chief factor has rank 2, and also that n+α = α whenever n ∈ N
and α is an infinite ordinal. ut

6 Building Chief Factors from Compactly Generated Subgroups

6.1 Regional Properties

Unlike connected locally compact groups, t.d.l.c.s.c. groups are not necessarily
compactly generated. However, we can always write a t.d.l.c.s.c. group G as G =
lim−→Oi, where the groups Oi are open and compactly generated. In some situations
we can hope to extract features of G from properties that hold for a sufficiently
large compactly generated open subgroup. Such properties will then appear in any
increasing exhaustion of G by compactly generated open subgroups Oi, indepen-
dently of the choice of sequence (Oi), and we can potentially use the structure of
compactly generated groups to describe that of non-compactly generated groups. In
this section, our aim is to use this approach to obtain chief factors of G.

Definition 15. A property P of t.d.l.c.s.c. groups holds locally in G if every suffi-
ciently small compact open subgroup of G has the property. The property is a local
property if, whenever G has the property, then every open subgroup of G also has
it. For example, compactness is a local property.

A property P of t.d.l.c.s.c. groups holds regionally in G if every sufficiently
large compactly generated open subgroup has the property; that is, there is a com-
pact subset X such that, whenever X ⊆O≤G and O is a compactly generated open
subgroup of G, then O has P . The property is a regional property if the following
happens: given G and H are compactly generated t.d.l.c.s.c. groups such that G is
open in H, if G has the property, then so does H.

Some remarks on possibly controversial terminology are in order.

Remark 3. In topology, it is usual to use ‘local’ to refer to (small) open sets. In clas-
sical group theory, ‘local’ more often refers to finitely generated subgroups. Both
notions are important in the theory of t.d.l.c. groups (with ‘compactly generated’
instead of ‘finitely generated’). To avoid overloading the word ‘local’, we have cho-
sen ‘regional(ly)’ to have the meaning ‘pertaining to compactly generated (open)
subgroups’. For example, the property that every compactly generated subgroup is
compact, which is unfortunately rendered as ‘locally elliptic’ in the literature, would
instead be ‘regionally compact’ or ‘regionally elliptic’.

Remark 4. Many authors define local properties to be such that G has the property if
and only if some open subgroup or subspace has it. However, it is useful here to dis-
tinguish between properties that are inherited ‘downwards’ (if G has it, then so does
an open subgroup) from those that are inherited ‘upwards’ (regional properties).
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The distinction between local and regional properties is neatly illustrated by el-
ementary decomposition rank: given a countable ordinal α , then ‘ξ (G) ≤ α’ is a
local property whereas ‘ξ (G) ≥ α’ is a regional property. We also see by Theo-
rem 12 that for any ordinal α , we have ξ (G) ≤ α + 1 if and only if ξ (H) ≤ α + 1
for all compactly generated open subgroups H of G.

The following is a surprisingly powerful example of a regional property.

Definition 16. Say a compactly generated t.d.l.c.s.c. group G has property RF if
there exists a Cayley–Abels graph Γ for G such that the action of G on Γ is faithful.

Lemma 6. RF is a regional property.

Proof. We see that G has RF if and only if there is a compact open subgroup U of
G such that

⋂
g∈G gUg−1 = {1}. Suppose that this is the case and that G occurs as an

open subgroup of the compactly generated t.d.l.c.s.c. group H. Then U is a compact
open subgroup of H, and we have

⋂
h∈H hUh−1 ≤

⋂
g∈G gUg−1 = {1}. Thus H has

RF . ut

We define a t.d.l.c.s.c. group G to be regionally faithful if some (and hence any
sufficiently large) compactly generated open subgroup has RF . Note that this al-
lows, for example, G to be any discrete group, so the class of all regionally faithful
groups is not so well-behaved. However, as long as the quasi-centre is not too large,
we can use the regionally faithful property to obtain minimal non-trivial closed nor-
mal subgroups.

Definition 17. Say a t.d.l.c.s.c. group G has property M if QZ(G) is discrete (equiv-
alently: G has a unique largest discrete normal subgroup) and every chain of non-
trivial closed normal subgroups of G/QZ(G) has non-trivial intersection.

Lemma 7. M is regional property, and regionally M groups have M . In a group G
with M , every non-trivial closed normal subgroup of G/QZ(G) contains a minimal
one.

Proof. Let G be a t.d.l.c.s.c. group, such that some compactly generated open sub-
group O of G has M . We must show that G has M .

We note first that QZ(G)∩O = QZ(O); since O is open, this ensures that QZ(G)
is discrete. Moreover, the group G/QZ(G) has a compactly generated open sub-
group isomorphic to O/QZ(O). So we may assume QZ(G) = QZ(O) = {1}.

Let C be a chain of non-trivial closed normal subgroups of G. For each K ∈
C , we see that K is non-discrete, since any discrete normal subgroup of G would
be contained in QZ(G). In particular, K ∩O 6= {1}. Thus {K ∩O | K ∈ C } is a
chain of non-trivial closed normal subgroups of O; since O has M , the intersection⋂

K∈C K∩O is non-trivial, and hence L =
⋂

K∈C K is non-trivial. Thus G has M .
The last conclusion follows by Zorn’s lemma. ut

Proposition 12. Let G be a t.d.l.c.s.c. group. Suppose that QZ(G) = {1} and G is
regionally faithful. Then G has M ; in particular, G has a minimal non-trivial closed
normal subgroup.
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Proof. Let O be a compactly generated open subgroup of G; choose O sufficiently
large that O acts faithfully on some Cayley–Abels graph Γ . Then QZ(O) = {1},
so O has no non-trivial discrete normal subgroups. Let C be a chain of non-trivial
closed normal subgroups of G. Then for each K ∈ C , we see that K is not discrete,
and therefore has non-trivial local action on Γ . By Lemma 2, the intersection L =⋂

K∈C K also has non-trivial local action on Γ ; in particular, L 6= {1}. Thus O has
M , showing that G is a regionally M group. Hence G has M by Lemma 7. ut

Here we have a situation where we first obtain minimal normal subgroups re-
gionally, and then conclude that we have minimal normal subgroups globally. More
work is required to obtain an analogous result for chief factors that are not neces-
sarily associated to minimal normal subgroups. The key ingredients are robustness
(recall §3.3) and extension of chief blocks (recall §4.2), and the use of the decompo-
sition rank (as described in §5) to ensure the existence of robust blocks of compactly
generated open subgroups.

6.2 Regionally Robust Blocks

As we saw in §4.2, we can always extend minimally covered blocks from normal
subgroups. Remarkably, many blocks extend from open subgroups, and moreover
can be detected from compactly generated open subgroups.

Definition 18. Let G be a t.d.l.c.s.c. group and let a ∈ BG. Say a is a regional
block if there exists H ≤ G and b ∈ BH such that H is compactly generated and
open, and a = bG. If b is robust, we say a is regionally robust. Write Brr

G for the
set of regionally robust blocks of G.

Note that regional blocks manifest ‘regionally’, because if a ∈ H extends to G,
then it certainly extends to any H ≤ O ≤ G, including when O is compactly gener-
ated and open. If G itself is compactly generated, then every block is regional and
‘regionally robust’ just means ‘robust’.

Here is the main theorem of this section.

Theorem 14 (See [13, §8]). Let G be a t.d.l.c.s.c. group.

(i) Every regionally robust block of G is minimally covered and robust, and there
are at most countably many regionally robust blocks of G.

(ii) Let H ≤ G, such that H is either open in G or closed and normal in G, and
let a ∈Brr

H . Then a extends to a regionally robust block of G.
(iii) Let N be a closed normal subgroup of G. Then every regionally robust block

G/N lifts to a regionally robust block of G.
(iv) Let K/L be a chief factor of G such that Brr

K/L 6= /0. Then [K/L] is a regionally
robust block of G.
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As a corollary, we observe that in any t.d.l.c.s.c. group G, a sufficiently complex
normal factor (in the sense of elementary decomposition rank) covers a regionally
robust block, and that sufficiently complex chief factors cannot be of weak type.

Corollary 10. Let G be a t.d.l.c.s.c. group. Let K/L be a normal factor of G such
that ξ (K/L)> ω +1.

(i) There exists L≤ B < A≤ K such that A/B is a chief factor of G and [A/B] is
regionally robust. If K/L is non-elementary, then A/B can also be chosen to
be non-elementary.

(ii) Suppose K/L is a chief factor of G. Then K/L is of semisimple or stacking
type.

Proof. Since ξ (K/L)> ω +1, there must be a compactly generated open subgroup
H of K/L such that ξ (H) is infinite. It follows by Corollary 9 that H has a robust
block a. By Theorem 14, a extends to a regionally robust block of K/L and then to
a regionally robust block of G/L; this block in turn lifts to a regionally robust block
b of G. We see that b is covered by K/L, in other words, there exists L≤ B < A≤ K
such that A/B is a chief factor of G and [A/B] is regionally robust.

If K/L is non-elementary, we can choose H to be non-elementary; by Corollary 9,
a can be chosen to be non-elementary; it then follows that ξ (b) =ω1, so A/B is non-
elementary.

Now suppose K/L is a chief factor of G. We have seen that K/L has a regionally
robust block, that is, Brr

K/L is non-empty; since regionally robust blocks are mini-
mally covered, it follows that K/L is not of weak type. Thus K/L must be of one of
the remaining two types, that is, semisimple type or stacking type. ut

We will now sketch the core part of the proof of Theorem 14, which is to prove
the following statement:

(∗) Let G be a t.d.l.c.s.c. group, let O be a compactly generated open subgroup
of G and let a be a robust block of O. Then a extends to G.

Lemma 8. Let H be a quasi-discrete t.d.l.c.s.c. group and let A/B be a non-trivial
normal factor of H. Then QZ(A/B)> 1.

Proof. We see that H/B is quasi-discrete, so we may assume B = {1}. Suppose
QZ(A) = {1}. We see that QZ(H)∩A is quasi-central in A, so QZ(H)∩A = {1}.
Thus QZ(H) and A commute. But QZ(H) is dense in H, so A is central in H. In
particular A is abelian, so QZ(A) = A, a contradiction. ut

Proof (sketch proof of (∗)). For brevity we will write HO := H ∩O.
Case 1: G is compactly generated.
Let (Gi)

n
i=0 be an essentially chief series for G. There must be some i such that

GO
i+1/GO

i covers a. By Lemma 8, GO
i+1/GO

i cannot be quasi-discrete, so Gi+1/Gi
cannot be quasi-discrete. Thus Gi+1/Gi is a robust, hence minimally covered, chief
factor of G. Set b= [Gi+1/Gi].
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Let N/C be the uppermost representative of b. Since N ≥ Gi+1, we see that NO

covers a. On the other hand C centralises Gi+1/Gi, so in particular CO centralises
GO

i+1/GO
i , and hence CO cannot cover a.

Let I/J be the lowermost representative of b. Both I/J and NO/CO map injec-
tively to N/C; moreover QZ(N/C) = {1}= QZ(I/J) since b is robust. In particular,
I/J is not discrete.

The subgroup IOJ/J is non-trivial, so IOC/C is non-trivial. Since QZ(N/C) =
{1}, it follows that IOC/C does not commute with the open subgroup NOC/C of
N/C. One can deduce that IO � CO(a). Apply Lemma 4 to conclude b= aG.

Case 2: G is not compactly generated.
We can write G as G = lim−→Oi where O1 = O. By Case 1, ai extends to some

block ai := aOi of Oi. Set D :=
⋃

n≥1
⋂

i≥n COi(ai). (In other words, D is the ‘limit
inferior’ of the centralisers COi(ai).)

Observe that D∩On =
⋂

i≥n COi(ai) for all n. It follows that D is a closed normal
subgroup of G, and that DO does not cover a. In fact, one sees that D is the unique
largest closed normal subgroup of G such that DO does not cover a.

Letting N range over the closed normal subgroups of G, the property ‘NO covers
a’ is closed under arbitrary intersections (since a minimally covered). So there is a
smallest closed normal subgroup M such that MO covers a.

We deduce that MD/D is the unique smallest non-trivial closed normal subgroup
of G/D. Set b := [MD/D] and observe that M is the least closed normal subgroup
that covers b, whilst D = CG(b). We conclude by Lemma 4 that b= aG. ut

7 Some Ideas and Open Questions

In this last section, we discuss some possible further directions for research into the
normal subgroup structure of t.d.l.c.s.c. groups, in particular focusing on the gaps
left by the results presented in the previous sections.

7.1 Elementary Groups of Small Rank

We have seen that G is a t.d.l.c.s.c. group and K/L is a normal factor such that
ξ (K/L) > ω + 1, then K/L covers a (regionally robust) chief factor of G. As a
complement to such a result, we would like to be able to say something about normal
or characteristic subgroups of G when ξ (G)≤ ω +1.

For certain ranks ξ (G), we can always produce a proper characteristic subgroup
of G. We will use the following fact:
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Lemma 9 ([13, Proposition 3.10]). Let G be a t.d.l.c.s.c. group and let (Ri) be an
increasing sequence of closed subgroups of G. Suppose NG(Ri) is open for all i.
Then

ξ (
⋃

Ri) = supξ (Ri)+ ε ,
where ε = 1 if supξ (Ri) is a limit ordinal and ε = 0 otherwise.

Proposition 13 (See also [13, Proposition 3.18]). Let G be an elementary t.d.l.c.s.c.
group, G = lim−→Oi. Then exactly one of the following occurs:

(i) ξ (G) = λ +1 where λ is a limit ordinal;
(ii) R =

⋃
Res(Oi) is a closed characteristic subgroup of G, which does not de-

pend on the choice of (Oi), such that ξ (G) = ξ (R)+1 and ξ (G/R) = 2.

Proof. Note that given K ≤H ≤G, then Res(K)≤Res(H). In particular,
⋃

Res(Oi)
is an increasing union of subgroups, so R is a closed subgroup of G. Moreover,
given a compactly generated open subgroup O of G, then Oi ≥ O eventually, so
Res(Oi) ≥ Res(O). Thus R is the closure of the union of all discrete residuals of
compactly generated open subgroups of G; in particular, R is characteristic and does
not depend on the choice of (Oi).

We now have

ξ (G) = sup{ξ (Res(Oi))}+1 and ξ (R) = sup{ξ (Res(Oi))}+ ε,

the latter by Lemma 9, where ε = 0 unless supξ (Res(Oi)) is a limit ordinal. If (i)
holds, then sup{ξ (Res(Oi))}= λ is a limit ordinal, so ξ (R)≥ ξ (G) and (ii) does not
hold. So from now on we may assume (i) fails, that is, ξ (G)=α+2 for some ordinal
α , and aim to show that (ii) holds. In this case, we see that sup{ξ (Res(Oi))}=α+1
is not a limit ordinal, so ξ (R) = α +1, in other words, ξ (G) = ξ (R)+1.

Certainly R < G, so ξ (G/R) > 1. To show ξ (G/R) = 2, it is enough to see that
every compactly generated open subgroup of G/R is a SIN group. Let O/R be a
compactly generated open subgroup of G/R. Then for i sufficiently large, O≤OiR,
so O/R is isomorphic to a subgroup of a quotient of Oi/Res(Oi). By [4, Corol-
lary 4.1], Oi/Res(Oi) is a SIN group; subgroups and quotients of SIN groups have
SIN, so O/R is a SIN group. This completes the proof of (ii). ut

The following corollary follows easily.

Corollary 11. Let G be a non-trivial elementary t.d.l.c.s.c. group. Let

L = {α ∈ ω1 | α = 2 or α is a limit ordinal}.

(i) There is a non-trivial closed characteristic subgroup R of G such that ξ (R) ∈
L and ξ (G)< ξ (R)+ω .

(ii) Suppose that G is characteristically simple. Then ξ (G) ∈L .

For t.d.l.c.s.c. groups G with ξ (G)≤ω +1, we can split into three cases: ξ (G) =
2, ξ (G) = ω +1 and 2 < ξ (G)< ω . (Recall that the rank is never a limit ordinal.)
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• If ξ (G) = 2, then G = lim−→Oi where Oi has arbitrarily small open normal sub-
groups. Many characteristically simple groups are of this form, and ξ (G) = 2 is
implied by several natural conditions on t.d.l.c.s.c. groups.

• If 2< ξ (G)<ω then G has finite rank, and we obtain a finite characteristic series

G = R0 > R1 > · · ·> Rn = 1

such that ξ (Ri−1/Ri) = 2.
• If ξ (G) = ω +1, then G = lim−→Oi where each Oi has finite rank (but ξ (Oi)→ ω

as i→ ∞), and so Oi admits a characteristic decomposition as in the previous
point. Perhaps G can be studied by comparing these characteristic series across
different Oi.

Problem 1. Develop a theory of normal/characteristic subgroups for t.d.l.c.s.c. groups
with ξ (G) = 2.

This class includes all profinite and discrete second countable groups, so what
one hopes for are theorems that relate the more general situation to profinite/discrete
groups in an interesting way. The discrete case is too wild to deal with directly, but
at least in the profinite case, we know what the characteristically simple groups are.

Problem 2. Find examples of characteristically simple t.d.l.c.s.c. groups with ξ (G)=
ω +1, without using a ‘stacking’ construction.

There are known examples of non-discrete topologically simple groups of rank
2, but reaching rank ω +1 is more difficult. By a ‘stacking’ construction, we mean
a construction similar to that of §4.4; similar constructions can be used to produce
weak type chief factors of rank ω + 1, but only because one obtains a characteris-
tically simple group in which every chief factor is abelian. More interesting would
be to find an example of a characteristically simple group of rank ω + 1 that has
non-abelian chief factors, but such that none of those chief factors are minimally
covered.

7.2 Well-Foundedness of Stacking Chief Factors

If we have a subnormal chain K0 EK1 E · · ·EKn (n ≥ 1) of closed subgroups of
some ambient t.d.l.c.s.c. group, then any minimally covered block a ∈ Bmin

K0
will

extend to Kn. Let ai = aKi and let θi : Bmin
Ki−1
→Bmin

Ki
be the extension map.

As the following proposition shows, we cannot produce essentially different
semisimple type factors by extending chief blocks from subnormal subgroups; all
we are doing is increasing the number of copies of the simple group and possibly
normally compressing those copies.

Proposition 14 (See [11, Proposition 9.21]). If an is of semisimple type, then so is
a, and θ

−1
i (ai) is an antichain for all i.
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Once we are beyond rank ω+1, we also cannot produce a weak type chief factor.
In other words, beyond this stage, the only way to increase the complexity of the
chief factor via extensions from subnormal subgroups is to produce chief factors of
stacking type, and moreover to ‘stack’ the blocks repeatedly (meaning that θ

−1
i (ai)

has a non-trivial partial order).
Given constructions like §4.4, we can certainly form n-fold stacking factors for

every n. Perhaps this can be continued transfinitely. However, for any given stacking
type chief factor, we might hope that we can reduce it to topologically simple groups
and groups of rank at most ω +1. We thus have a well-foundedness question.

Question 1. Suppose that G=: G0 is a topologically characteristically simple t.d.l.c.s.c.
group. If G0 is abelian, elementary with rank at most ω +1, or of semisimple type,
we stop. Otherwise, we find a chief factor G1 := K/L of G0 that is regionally robust.
Continuing in this fashion produces a sequence G0,G1, . . . of l.c.s.c groups. Is it the
case that any such sequence halts in finitely many steps? What about in the case that
the group G is also elementary?

We do not know the answer even for elementary t.d.l.c.s.c. groups. In this case,
to prove well-foundedness it would be enough (assuming ξ (Gi) > ω +1 and Gi is
of stacking type) for every regionally robust chief factor Gi+1 of Gi to be such that
ξ (Gi+1)< ξ (Gi). All elementary examples we know of have this property.

7.3 Contraction Groups

On ‘large’ stacking type chief factors K/L, the ambient group G has non-trivial local
dynamics, which in particular imply the existence of a non-trivial contraction group.

Definition 19. For α ∈ Aut(G), con(α) := {x ∈ G | αn(x)→ 1 as n→ ∞}.
Given g ∈ G, con(g) := {x ∈ G | gnxg−n→ 1 as n→ ∞}.

Proposition 15. Let G be a t.d.l.c.s.c. group and let K/L be a chief factor of stacking
type, such that ξ (K/L) > ω + 1. Then there exists g ∈ G and L < ACK such that
gAg−1 < A and A/gAg−1 is non-discrete. Moreover, for any such g and A, we have
con(g)∩A� L.

We appeal to the following observation due to George Willis:

Lemma 10 (Willis). Let H be a t.d.l.c. group, let α ∈Aut(H) and let D be a closed
subset of H such that α(D)⊆D and

⋂
n≥0 α(D) = {1}. Then D∩con(α) is a neigh-

bourhood of the identity in D.

Proof. Let U be a compact open subgroup of H, let U− =
⋂

n≥0 α−n(U) and let
U−− =

⋃
n≥0 α−n(U−).

Let V be a compact open identity neighbourhood in H. We see that αm(D)∩U is
a decreasing sequence of closed sets with intersection {1}. By the compactness of U ,
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we have αm(D)∩U ⊆V for m sufficiently large, showing that αm(D)∩U ⊆ con(α).
On the other hand, given x∈D∩U−−, then for n sufficiently large, αn(x)∈U− ≤U ,
and hence αm+n ∈V . Thus D∩U−− ⊆ con(α).

Now let V = α−1(U), write Yi = α i(D)∩U and let m be such that Ym ⊆ V . Let
y ∈ Ym. Then y ∈ V = α−1(U), so α(y) ∈U . But we also have α(y) ∈ αm+1(D) ⊆
αm(D), so in fact α(y)∈Ym. Thus α(Ym) is a subset of Ym; in particular, αn(Ym)⊆U
for all n≥ 0. It follows that Ym ⊆U−, and hence α−m(Ym)⊆U−−. Now α−m(Ym) =
D∩α−m(U) is an identity neighbourhood in D contained in U−−, and hence in
D∩ con(α). ut

Remark 5. It can in fact be shown (Willis, private communication) that in the above
lemma, D∩ con(α) is compact and open in D and that D∩ con(α) = D∩U−− for
any tidy subgroup U .

Proof (of Proposition 15). Since ξ (K/L)>ω+1, there exists a∈Brr
K/L. Let A/L=

(K/L)a. Since K/L is of stacking type, there must exist g ∈G such that gAg−1 < A,
and moreover A/gAg−1 covers a. So A/gAg−1 cannot be discrete.

Now suppose g∈G and L < ACK are such that gAg−1 < A and A/gAg−1 is non-
discrete. Let M =

⋂
n∈Z gnAg−n. Then M is normal in K and A/M is not discrete. Let

D=A/M, let H =K/M and let α be the automorphism of H induced by conjugation
by g. Then α acts on H in the manner of Lemma 10, so conK/M(g) contains an open
(in particular, non-trivial) subgroup of A/M.

By [2, Theorem 3.8], we have conK/M(g) = conK(g)M. So in fact conK(g)∩A�
M and in particular con(g)∩A� L. ut

We observe from the proof that M(con(g)∩A) is an open subgroup of A. Using
the fact that A/L = (K/L)a, we obtain the following.

Corollary 12. Let A, g and M be as in the proof Proposition 15. Then
A = M〈k(con(g)∩A)k−1 | k ∈ K〉.

Note that we are not claiming that the group 〈k(con(g)∩A)k−1 | k ∈K〉 is closed,
but nevertheless the abstract product M〈k(con(g)∩A)k−1 | k ∈K〉 suffices to obtain
every element of A.

It is tempting to speculate that the entirety of a stacking type chief factor is ac-
counted for by contraction groups, as follows:

Question 2. In the situation of Proposition 15, do we in fact have

K = L〈con(h)∩K | h ∈ G〉?

More generally, it would be useful to develop a dynamical approach to stacking
type chief factors, analogous to the theory developed for compactly generated topo-
logically simple groups with micro-supported action. Here is a sketch of how one
might proceed:

Given a stacking type chief factor K/L, let L be the set of upward-closed subsets
of the partially ordered set Bmin

K/L; notice that L is a complete bounded distributive
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lattice under the operations of intersection and union. By Priestley duality, there is
an associated ordered topological space X , which is a profinite space in which Bmin

K/L
is embedded as a dense set of isolated points.

Problem 3. Recall for all a,b ∈Bmin
K/L, there exists g ∈ G such that g.a < b. Rein-

terpret this as a property of (ordered) topological dynamics of the action of G/K on
X \Bmin

K/L, and use these dynamics to obtain further restrictions on the structure of
G or its contraction groups as topological groups.

A t.d.l.c. group G is anisotropic (or pointwise distal) if con(g) = {1} for all
g ∈ G. This is a property that is clearly inherited by closed subgroups; by [2, Theo-
rem 3.8] it is also inherited by quotients. However, as it is a ‘pointwise’ property, it
in no way prevents G from having complicated dynamics globally.

The class of anisotropic t.d.l.c.s.c. groups is mysterious at present. For example,
there are topologically simple anisotropic groups G, but it is unknown if a topologi-
cally simple anisotropic group G can be in S , or more generally, whether G can be
non-elementary.

Nevertheless, the essential role of contraction groups in stacking type shows that
if anisotropic groups can be non-elementary or achieve large decomposition ranks,
then topologically simple groups are the major source of complexity. We have found
a potentially non-trivial situation where we really can break a t.d.l.c.s.c. group into
topologically simple pieces (plus low rank pieces).

Proposition 16. Let G be an anisotropic t.d.l.c.s.c. group.

(i) Every chief factor of G of rank greater than ω +1 is of semisimple type.
(ii) Let K/L be a normal factor of G such that ξ (K/L) > ω2 + 1 (or K/L non-

elementary).
Then there is L ≤ B < A≤ K such that A/B is a chief factor of G, ξ (A/B)≥
ω2 + 1 (respectively, A/B is non-elementary) and A/B is a quasi-product of
copies of a topologically simple group.

Proof. (i) Let K/L be a chief factor of G of rank greater than ω + 1. Then K/L is
not of weak type by Theorem 14, and it is not of stacking type by Proposition 15.
Thus K/L must be of semisimple type.

(ii) Now let K/L be a normal factor of G such that ξ (K/L)> ω2 +1. Then there
is a compactly generated open subgroup H of K/L of rank at least ω2 + 1; if K/L
is non-elementary, we can choose H to be non-elementary. By Corollary 9, H has a
chief factor R/S such that ξ (R/S) ≥ ω2 +1 (respectively, R/S is non-elementary).
The corresponding block of H then lifts via Theorem 14 to a block a of G, with
ξ (a)≥ ξ (R/S)≥ ω2 +1. We see that K/L covers a, so there exists L≤ B < A≤ K
such that A/B such that A/B∈ a. By part (i), A/B is of semisimple type, that is, A/B
a quasi-product of copies of a topologically simple group. ut
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