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Abstract In this project, we establish the supercongruences for the 14 families
of rigid hypergeometric Calabi–Yau threefolds conjectured by Roriguez-Villegas
in 2003.

1 Main Result

The talk outlines the proof of the supercongruences for the 14 families of rigid
hypergeometric Calabi–Yau threefolds conjectured by Roriguez-Villegas [9].

Theorem 1. Let d1,d2 ∈ {1/2,1/3,1/4,1/6} or

(d1,d2) = (1/5,2/5),(1/8,3/8),(1/10,3/10),(1/12,5/12).

Then for each prime p > 5, we have

4F3

[
d1 1−d1 d2 1−d2

1 1 1
; 1

]
p−1

≡ ap( fd1,d2) mod p3,

where the hypergeometric series on the left-hand side is truncated after p−1 terms
and ap( fd1,d2) is the pth coefficient of an explicit Hecke eigenform fd1,d2 of weight 4
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associated to the corresponding rigid Calabi–Yau manifold via the modularity the-
orem.

2 Motivation

The term supercongruence refers to a congruence which is stronger than what the
formal group law implies. In [3] Beukers proved
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where A(n) are the Apéry numbers

A(n) :=
n

∑
k=0
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n
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= 4F3
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and ap( f ) is the pth coefficient of the Hecke eigenform η4(2τ)η4(4τ). In [3] Beuk-
ers also conjectured the supercongruence
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≡ ap( f ) mod p2.

This was proved by Ahlgren and Ono [1]. Their key idea is using Green’s hyper-
geometric function over finite fields to perform point counting on the Calabi–Yau
threefold {
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}
,

which is modular. Later, Kilbourn [7] gives an extension of the supercongruence

ap( f )≡
p−1

∑
j=0

(
2 j
j

)4
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]
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mod p3, (1)

which was conjectured by Van Hamme. Kilbourn’s proof is mainly relying on p-adic
tools. Using the techniques similar to the ones given by Ahlgren, Ono and Kilbourn,
McCarthy [8] obtained the supercongruence
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]
p−1

≡ ap
(
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)

mod p3, (2)

where f1/5,2/5 is an explicit Hecke eigenform conjectured by Rodriguez-Villegas.
This supercongruence corresponds to the mirror quintic threefold in P4, whose mod-
ularity was first established by Schoen [10]. The supercongruences given by Kil-
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bourn (1) and McCarthy (2) are particular instances of Rodriguez-Villegas’s conjec-
tures.

In this joint project, our main motivation is to study the arithmetic aspect of rigid
hypergeometric type Calabi–Yau manifolds. The first step is verifying the super-
congruences conjectured by Rodriguez-Villegas coming from the well-known 14
hypergeometric families of Calabi–Yau threefolds whose Picard–Fuchs equations
are degree 4 hypergeometric differential equations with solution near 0 of the form

4F3

[
d1 1−d1 d2 1−d2

1 1 1
; z

]
,

where d1,d2 are as in Theorem 1. When z = 1, it corresponds to the singularity
of the hypergeometric differential equation, which is equivalent to getting a rigid
Calabi–Yau threefold in the fibre. Due to Gouvêa and Yui [6], a rigid Calabi–Yau
threefold defined over Q is modular. This means, the L-function associated with the
third étale cohomology group of a rigid Calabi–Yau threefold V in the 14 families is
equal to the L-function of an explicit Hecke eigenform of weight 4 conjectured by
Rodriguez-Villegas.

Very recently, Fuselier and McCarthy [?] establish the case (d1,d2) = (1/2,1/4).
In this joint project, we provide a more general method to verify the remaining 11
cases of supercongruences conjectured by Rodriguez-Villegas.

3 Key Ideas and Example

The strategy of our proof is to use hypergeometric motives over Q to describe the
arithmetic background. There are different versions of hypergeometric motives such
as given by Katz, Greene and McCarthy. However, for our purposes, the most con-
nivent one is the general version given by Beukers, Cohen and Mellit in [4]. They
modify Katz’s finite hypergeometric function H(α,β ;λ ) so that their version works
for all the primes p. They also give a recipe to realize toric models as hypergeomet-
ric motives arising from certain type hypergeometric data α = (α1,α2, . . . ,αd) and
β = (β1,β2, . . . ,βd), where αi,β j ∈ Q. For such case, one can express the number
of rational points over finite fields on the given model in terms of H(α,β ;λ ).

For example, the multi-sets α = (1/3,2/3,1/3,2/3) and β = (1,1,1,1) give the
hypergeometric type Calabi–Yau threefold with d1 = d2 = 1/3. The toric model in
this case corresponds to the resolution of singularities on the affine variety given by
projective equations

W : x1 +x2 +x3 +x4 = y1 +y2 +y3 +y4 = 0, (x1y1)
3 = 36x2x3x4y2y3y4, xi,y j ̸= 0.

The resulting manifold W is the rigid Calabi–Yau threefold labelled as V3,3 by
Batyrev and van Straten in [2].

In the talk, principal ideas of our proof are illustrated in the case d1 = d2 = 1/3.
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