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Abstract We prove various supercongruences involving truncated hypergeometric
sums. These include a strengthened version of a conjecture of van Hamme. Our
method is to employ various hypergeometric transformation and evaluation formu-
lae to convert the truncated sums to quotients of Γ -values. We then convert these
to quotients of Γp-values and use use Taylor’s Theorem to make p-adic approxima-
tions. In the cases under consideration higher order coefficients often vanish leading
to the supercongruences.

In [3], van Hamme conjectured that
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≡−pΓp(1/3)9 mod p4 for p ≡ 1 mod 6.

We have, in [2], proved

Theorem 1 Let p > 11. Then

7F6

[ 1
3

7
6

1
3

1
3

1
3

1
3

1
3

1
6 1 1 1 1 1

]
p−1

≡−pΓp(1/3)9 mod p6 for p ≡ 1 mod 6

and
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p4Γp(1/3)9 mod p6 for p ≡ 5 mod 6.
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Note these are congruences cover (almost) all primes and are stronger than the van
Hamme Conjecture. We proved a number of other supercongruences including the
3F2 ones below:

Theorem 2
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≡ Γp(1/3)6 mod p3 for p ≡ 1 mod 6

and
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3
Γp(1/3)6 mod p3 for p ≡ 5 mod 6.

For p ≡ 1 mod 6 the right side of the above congruence corresponds to Dwork’s unit
root for ordinary primes of a certain modular form that is part of the corresponding
hypergeometric motive.

We outline the strategies for p ≡ 1 mod 6. Various minor differences (and one
on medium-sized technical issue in Theorem 1) arise for p ≡ 5 mod 6. The idea in
both theorems is to perturb the entries so that the series naturally truncate at p−1

3
(for p ≡ 1 mod 6).

Let ζ3 be a primitive cube root of unity. For instance in Theorem 2 we study
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for p ≡ 1 mod 6. The corresponding infinite series trun-

cates at p−1
3 . The Galois symmetry and a simple congruence argument imply
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mod p3.

At this point we can use the Pfaff-Saalschütz formula (see, for instance, Theorem
2.2.6 of [1])
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as a quotient of Γ -values. One can

rewrite this as a quotient of Γp-values and then use a Taylor approximation to get
the desired result.

For Theorem 1 a similar argument with primitive 5th roots of unity and Dougall’s
formula below, which holds when 1+2a = b+ c+d + e+ f ,
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[
a 1+ a

2 b c d e f
a
2 1+a−b 1+a− c 1+a−d 1+a− e 1+a− f

]

=
(a+1)− f (a−b− c+1)− f (a−b−d +1)− f (a− c−d +1)− f

(a−b+1)− f (a− c+1)− f (a−d +1)− f (a−b− c−d +1)− f

gives the van Hamme congruences mod p5.

To obtain the congruence mod p6 involves an extra argument. It is not difficult to
show the terminating
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∈ Zp[[x5]].

Call this power series G(x). Using a result of Bailey relating 9F8 expressions one
can in fact prove the above series is in pZp[[x5]]. A somewhat subtle argument is
required when p ≡ 5 mod 6 to obtain the divisibility of G(x) by p.

Since p | G(x), G(0)≡ G(p/3) mod p6. It is easy to show that G(0) is congruent
to the left side of Theorem 1 mod p6. The argument using Dougall’s formula gives
G(p/3) is congruent to the right side of Theorem 1 mod p6.
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