Some supercongruences for truncated hypergeometric series

Ling Long and Ravi Ramakrishna

Abstract

We prove various supercongruences involving truncated hypergeometric sums. These include a strengthened version of a conjecture of van Hamme. Our method is to employ various hypergeometric transformation and evaluation formulae to convert the truncated sums to quotients of Γ-values. We then convert these to quotients of Γ_{p}-values and use use Taylor's Theorem to make p-adic approximations. In the cases under consideration higher order coefficients often vanish leading to the supercongruences.

In [3], van Hamme conjectured that

$$
\begin{aligned}
{ }_{7} F_{6}\left[\begin{array}{rrrrrrr}
\frac{1}{3} & \frac{7}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& \frac{1}{6} & 1 & 1 & 1 & 1 & 1
\end{array}\right]_{p-1} & :=\sum_{k=0}^{p-1}(6 k+1) \frac{\left((1 / 3)_{k}\right)^{6}}{(k!)^{6}} \\
&
\end{aligned}
$$

We have, in [2], proved
Theorem 1 Let $p>11$. Then

$$
{ }_{7} F_{6}\left[\begin{array}{rrrrrrr}
\frac{1}{3} & \frac{7}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& \frac{1}{6} & 1 & 1 & 1 & 1 & 1
\end{array}\right]_{p-1} \equiv-p \Gamma_{p}(1 / 3)^{9} \bmod p^{6} \text { for } p \equiv 1 \bmod 6
$$

and

$$
{ }_{7} F_{6}\left[\begin{array}{rrrrrrr}
\frac{1}{3} & \frac{7}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& \frac{1}{6} & 1 & 1 & 1 & 1 & 1
\end{array}\right]_{p-1} \equiv-\frac{10}{27} p^{4} \Gamma_{p}(1 / 3)^{9} \bmod p^{6} \text { for } p \equiv 5 \bmod 6 .
$$

[^0]Note these are congruences cover (almost) all primes and are stronger than the van Hamme Conjecture. We proved a number of other supercongruences including the ${ }_{3} F_{2}$ ones below:

Theorem 2

$$
{ }_{3} F_{2}\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& 1 & 1
\end{array}\right]_{p-1} \equiv \Gamma_{p}(1 / 3)^{6} \bmod p^{3} \text { for } p \equiv 1 \bmod 6
$$

and

$$
{ }_{3} F_{2}\left[\begin{array}{rrr}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
& 1 & 1
\end{array}\right]_{p-1} \equiv-\frac{p^{2}}{3} \Gamma_{p}(1 / 3)^{6} \bmod p^{3} \text { for } p \equiv 5 \bmod 6
$$

For $p \equiv 1 \bmod 6$ the right side of the above congruence corresponds to Dwork's unit root for ordinary primes of a certain modular form that is part of the corresponding hypergeometric motive.

We outline the strategies for $p \equiv 1 \bmod 6$. Various minor differences (and one on medium-sized technical issue in Theorem 1) arise for $p \equiv 5 \bmod 6$. The idea in both theorems is to perturb the entries so that the series naturally truncate at $\frac{p-1}{3}$ (for $p \equiv 1 \bmod 6$).

Let ζ_{3} be a primitive cube root of unity. For instance in Theorem 2 we study ${ }_{3} F_{2}\left[\begin{array}{cc}\frac{1-p}{3} & \frac{1-\zeta_{3} p}{3} \\ 1 & \frac{1-\zeta_{3}^{2} p}{3} \\ 1 & 1\end{array}\right]$ for $p \equiv 1 \bmod 6$. The corresponding infinite series truncates at $\frac{p-1}{3}$. The Galois symmetry and a simple congruence argument imply

$$
{ }_{3} F_{2}\left[\begin{array}{ccc}
\frac{1-p}{3} & \frac{1-\zeta p}{3} & \frac{1-\zeta^{2} p}{3} \\
& 1 & 1
\end{array}\right] \equiv{ }_{3} F_{2}\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
1 & 1
\end{array}\right]_{p-1} \quad \bmod p^{3} .
$$

At this point we can use the Pfaff-Saalschütz formula (see, for instance, Theorem 2.2.6 of [I]])

$$
{ }_{3} F_{2}\left[\begin{array}{cc}
-n & a
\end{array} \quad b\right.
$$

with $n=\frac{p-1}{3}$ to write ${ }_{3} F_{2}\left[\begin{array}{ccc}\frac{1-p}{3} & \frac{1-\zeta p}{3} & \frac{1-\zeta^{2} p}{3} \\ 1 & 1\end{array}\right]$ as a quotient of Γ-values. One can rewrite this as a quotient of Γ_{p}-values and then use a Taylor approximation to get the desired result.

For Theorem 1 a similar argument with primitive 5th roots of unity and Dougall's formula below, which holds when $1+2 a=b+c+d+e+f$,

$$
\begin{aligned}
& { }_{7} F_{6}\left[\begin{array}{ccccc}
a & 1+\frac{a}{2} & b & c & d
\end{array}\right) e \\
& \\
& \\
& \\
& { }_{\frac{a}{2}} \\
& \\
& = \\
& (a+1+a-b \\
& (a-b+1)_{-f}(a-b-c+1)_{-f}(a-c+1)_{-f}(a-b-d+1)_{-f}(a-b-c-d+1)_{-f}
\end{aligned}
$$

gives the van Hamme congruences $\bmod p^{5}$.
To obtain the congruence $\bmod p^{6}$ involves an extra argument. It is not difficult to show the terminating

$$
{ }_{7} F_{6}\left[\begin{array}{rrr}
\frac{1}{3} & \frac{1}{6} & \frac{1}{3}-\zeta_{5} x \\
& \frac{1}{3}-\zeta_{5}^{2} x & \frac{1}{3}-\zeta_{5}^{3} x
\end{array}{\frac{1}{3}-\zeta_{5}^{4} x}^{\frac{1}{6}} 1+\zeta_{5} x 1+\zeta_{5}^{2} x 1+\zeta_{5}^{3} x 1+\zeta_{5}^{4} x 1+x\right]_{\frac{p-1}{3}} \in \mathbb{Z}_{p}\left[\left[x^{5}\right]\right] .
$$

Call this power series $G(x)$. Using a result of Bailey relating ${ }_{9} F_{8}$ expressions one can in fact prove the above series is in $p \mathbb{Z}_{p}\left[\left[x^{5}\right]\right]$. A somewhat subtle argument is required when $p \equiv 5 \bmod 6$ to obtain the divisibility of $G(x)$ by p.

Since $p \mid G(x), G(0) \equiv G(p / 3) \bmod p^{6}$. It is easy to show that $G(0)$ is congruent to the left side of Theorem $1 \bmod p^{6}$. The argument using Dougall's formula gives $G(p / 3)$ is congruent to the right side of Theorem $1 \bmod p^{6}$.

References

1. Andrews, G., Askey, R. and Roy, R. Special Functions. Cambridge University Press (1999).
2. Long, L., Ramakrishna, R. Some supercongruences occurring in truncated hypergeometric series. Adv. Math. 290 (2016), 773-808.
3. van Hamme, L. Some congruences involving the p-adic gamma function and some arithmetical consequences. p-adic functional analysis (Ioannina, 2000), 133-138, Lecture Notes in Pure and Appl. Math., 222, Dekker, New York, 2001.

[^0]: Ravi Ramakrishna
 Cornell University, Ithaca, NY 14850 USA, e-mail: raviamath. cornell .edul
 Ling Long
 LSU, Baton Rouge, LA 70803-4918e-mail: 11ongdmth.1su.edu

