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Abstract We apply the Guinand-Weil-Mestre explicit formula to resolve two ques-
tions about how a certain hypergeometric motive splits into two irreducible motives.

1 Introduction

The classical explicit formula of Guinand and Weil was generalized to a broader
context by Mestre in [1]. This formula applies to any L-function satisfying standard
analytic properties, and gives a family of formulas for its conductor N. Mestre used
it to get lower bounds on conductors of abelian varieties. This extended abstract
gives an example of how it can be used in more exotic motivic contexts.

The example we pursue here has the form M =M8⊕M6, the factor motives being
indexed by their degree. We assume that the associated L-functions really do have
the required analytic properties, and work numerically to a precision that is adequate
for being very confident in the assertions. Presently, we can compute directly with
M, but not with the individual factors. We know that its conductor is cond(M) = 215

and its local L-factor at 2 is just 1. These numerics imply that one of M6 and M8
is tame at 2, and the other is minimally wild. Also we know the order of central
vanishing is rank(M) = 2. This raises two questions:

Q1: (rank(M6), rank(M8)) can only be (2,0), (1,1), or (0,2). Which is correct?
Q2: (cond(M6),cond(M8)) can only be (26,29) or (27,28). Which is correct?

The answers are given in the table at the end of this extended abstract. We provide
enough computational details so that the reader can both reproduce our answers and
attempt analogous calculations for other split motives.
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2 The motive M = M6 ⊕M8

One of the points of the talk was to illustrate how the Magma hypergeometric mo-
tives package by Mark Watkins lets one compute with hypergeometric motives of
large degree. We use Magma language here as well [2], and the reader can repeat
most computations using the free online Magma calculator.

To obtain the motive M and its L-function L, type
M:=HypergeometricData(

[1/2: i in [1..16]], [0: i in [1..16]]);
L:=LSeries(M,1:Precision:=10,BadPrimes:=[<2,15,1>]);

Here Magma correctly understands that M has good reduction outside of 2. The
optional argument ensures that it has the correct data at 2 as well, that being con-
ductor 215 and local L-factor 1. Other possibilities failing badly, correctness of the
choice <2,15,1> is confirmed by CheckFunctionalEquation(L) return-
ing 0.0000000000. The command HodgeStructure(L:PHV) says that M has
weight w = 15 with Hodge vector

(h0,15,h1,14, . . . ,h14,1,h15,0) = (1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1).

In particular M can only appear in the cohomology of varieties of dimension ≥ 15.
In general, if d is even and the αi’s and the β j’s are obtained from one an-

other by adding 1/2 modulo Z, then H(α,β |1) decomposes as a sum of two
motives of specified degrees. In our case, we know a priori that M = M8 ⊕M6.
Factorization(EulerFactor(L,3)) then yields f3(x) in two seconds:

(1−268 ·3x+204193 ·34x2 −1001800 ·39x3 +204193 ·319x4

−268 ·331x5 +345x6)

(1+2992 · x+39116 ·34x2 −7596496 ·36x3 −203836426 ·312x4

−7596496 ·321x5 +39116 ·334x6 +2992 ·345x7 +360x8).

Thus, M6 and M8 are both irreducible. Moreover Newton-over-Hodge forces the
Hodge vector of M to decompose nicely into h6 +h8 with

h6 : = (0,1,0,1,0,1,0,0,0,0,1,0,1,0,1,0),
h8 : = (1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1).

Likewise, but in 30 seconds, 8 minutes, and 2.5 hours now,

f5(x) = (1+1614 ·53x+ · · ·+545x6)(1−41208x+ · · ·+560x8),

f7(x) = (1+248232 ·7x+ · · ·+745x6)(1+667104x+ · · ·+760x8),

f11(x) = (1−883812 ·11x+ · · ·+1145x6)(1+34438544x+ · · ·+1160x8).

Any two of the fp(x) are completely different Galois-theoretically, implying that the
two factor Mk each have motivic Galois group as large as possible, namely GSpk.
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L has a functional equation with respect to s ↔ 16− s. Sign(L) immediately
returns 1, so the analytic rank r of L is even. Evaluate(L,8) takes four seconds
and returns 0.000000000, so r ≥ 2. Evaluate(L,8:Derivative:=2) takes
fourteen seconds and returns 7.851654518, so r = 2. The Hardy Z-function Z(t) is
a vertically rescaled version of L(M,8+ ti). On [0,7] it graphs out to
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The double zero at t = 0 is visible. The next three zeros are γ1 ≈ 1.93195000805,
γ2 ≈ 3.00559765, and γ3 ≈ 3.61679. Note that this calculation does not give any
hints as to the desired factorization Z(t) = Z6(t)Z8(t). In other words, we do not
know which motive a given γi belongs to.

3 The explicit formula

Let M be a motive of odd weight w with L-function assumed to satisfy the Riemann
hypothesis. Then its Hodge vector h, conductor N, analytic rank r, Frobenius traces
cpe = Tr(Fre

p|M), and zeros 1/2+ γki in the upper half plane are related by logN =

2πrF̂(0)+4π ∑
k

F̂(γk)+4 ∑
j>0

h j
∫ ∞

0
F̂(t)E j(t)dt +2∑

pe
cpe

log p
p(ew+e)/2 F(e log p).

Here F is an allowed test function, E j(t) = log2π −Ψ((1+ j)/2+ it) with Ψ(s) =
Re(Γ ′(s)/Γ (s)), and hp−q = hp,q.

The standard Odlyzko test function and its Fourier transform are

FOd(x) = χ[−1,1]

(
(1−|x|)cos(πx)+

sin |πx|
π

)
, F̂Od(t) =

4π cos2(t/2)
(π2 − t2)2 .

Also allowed are the scaled functions Fz(x) = FOd(x/ logz) and their Fourier trans-
forms F̂z(t) = (logz)F̂Od(t logz).

4 Applying the explicit formula to M6 and M8

Computing cpe for our motive M is easily done by Magma. However, to get the
decomposition cpe = c6

pe + c8
pe , even for just e = 1, we need to factor fp(x), which

we can do only for p ≤ 11. From the factorizations above, one has c6
3 = 268 · 3,
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c6
9 = (268 ·3)2 −2(204193 ·34), etc. The explicit formula using (F13, F̂13), with all

terms divided by log2 for greater clarity, answers Questions 1 and 2:

(Tends to (Tends to
6 or 7) 8 or 9)

term6 total6 term8 total8 Comments
h 3.11142 3.11142 4.85928 4.85928 Hodge contribution
3 0.17011 3.28154 −0.63306 4.22622 Contributions
5 −0.35472 2.92682 0.07245 4.29897 from the successively
7 −0.07386 2.85296 −0.02836 4.27031 harder factorizations
9 −0.02269 2.83027 0.00183 4.27214 of Frobenius
11 0.00028 2.83055 −0.00101 4.27114 polynomials fp(x)
r 2.99946 5.83002 2.99946 7.27060 Forced! A1 : (1,1)
γ1 5.83002 1.68061 8.95121 Forced! A2 : (26,29)
γ2 0.13610 5.96612 8.95121 Forced!
...

...
...

...
...

Total 6.00000 9.00000

Terms are positive after the double line, and so these terms must be associated with
either M6 or M8 so as to keep (total6, total8) coordinatewise less than either (6,9) or
(7,8). This forces the indicated answers. Thus, both motives have analytic rank 1.
The prime 2 is tamely ramified in M6 and minimally wildly ramified in M8

Remarkably, the talk just described relates directly to two collaborative projects
begun at the MATRIX Institute. The decomposition studied here is the d = 16 case
of the sequence of decompositions mentioned in §4.ii in the abstract with Rodriguez
Villegas. The Hodge vectors h6 and h8 also arise for the L-functions denoted L16
and L18 in the abstract with Broadhurst; conductors there are 1260 = 22 · 32 · 5 · 7
and 7560 = 23 ·33 ·5 ·7 respectively.

Acknowledgements I thank the organizers and local staff for the excellent conference. My atten-
dance at the MATRIX Institute was supported by the conference and by grant DMS-1601350 from
the National Science Foundation.
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