
Schwarzian equations and equivariant functions

Abdellah Sebbar

Abstract In this review article we show how the theory of Schwarzian differential
equations leads to an interesting class of meromorphic functions on the upper-half
plane H named equivariant functions. These functions have the property that their
Schwarz derivatives are weight 4 automorphic forms for a discrete subgroup Γ of
PSL2(R). It turns out that these functions must satisfy the relation

f (γτ) = ρ(γ) f (τ) , τ ∈H , γ ∈ Γ ,

where ρ is a 2-dimensional complex representation of Γ and the matrix action on
both sides is by linear fractional transformation. When ρ is the identity represen-
tation ρ(γ) = γ , the equivariant functions are parameterized by scalar automorphic
forms, while if ρ is an arbitrary representation they are parameterized by vector-
valued automorphic forms with multiplier ρ . If Γ is a modular subgroup we obtain
important applications to modular forms for Γ as well as a description in terms of
elliptic functions theory. We also prove the existence of equivariant functions for the
most general case by constructing a vector bundle attached to the data (Γ ,ρ) and
applying the Kodaira vanishing theorem.

1 The Schwarz derivative

Let D be a domain in C and f a meromorphic function on D. The Schwarz derivative
or the Schwarzian of f is defined by
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It was named after Schwarz by Cayley, however, Schwarz himslef pointed out that it
was discovered by Lagrange in 1781. It also appeared in a paper by Kummer (1836)
[10]. The Schwarz derivative has many interesting properties which are given below.
The functions involved are meromorphic functions on a domain D.

• Projective invariance:{
a f +b
c f +d

,z
}

= { f ,z} , a, b, c, d ∈ C , ad −bc ̸= 0.

• Cocycle property: If w is a function of z, then

{ f ,z} = { f ,w}(dw/dz)2 +{w,z}.

• { f ,z} = 0 if and only if f (z) =
az+b
cz+d

for some a, b, c, d ∈ C.

• If w =
az+b
cz+d

with
(

a b
c d

)
∈ GL2(C), then

{ f ,z} = { f ,w} (ad −bc)2

(cz+d)4 .

• For two meromorphic functions f and g on D,

{ f ,z} = {g,z} if and only if f (z) =
ag(z)+b
cg(z)+d

,

(
a b
c d

)
∈ GL2(C)

• If w(z) is a function of z with w′(z0) ̸= 0 for some z0 ∈ D, then in a neighborhood
of z0, we have

{z,w} = {w,z}(dz/dw)2 .

Some of the properties are elementary and the rest follows from the following im-
portant connection with the theory of ordinary differential equations:

Let R(z) be a meromorphic function on D and consider the second order differ-
ential equation

y′′+
1
2

R(z)y = 0

with two linearly independent solutions y1 and y2. Then f = y1/y2 is a solution to
the Schwarz differential equation

{ f ,z} = R(z).
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Conversely, if f (z) is locally univalent and { f ,z} = R(z), then y1 = f/
√

f ′ and

y2 = 1/
√

f ′ are two linearly independent solutions to y′′+
1
2

R(z)y = 0.

The Schwarz derivative plays an important role in the study of the complex
projective line, univalent functions, conformal mapping , Teichmuller spaces and
most importantly in the theory of modular forms and hypergeometric functions
[1, 4, 6, 8, 9, 11].

We now look at the effect of the Schwarz derivative on automorphic functions for
a discrete subgroup Γ of PSL2(Z), that is a Fuchsian group of the first kind acting
on the upper half-plane H= {τ ∈ C | ℑ(τ)> 0} by linear fractional transformation

γτ =
aτ +b
cτ +d

, γ =

(
a b
c d

)
∈ Γ .

Proposition 1.1 [8] If f is an automorphic function for a discrete group Γ , then
{ f ,τ} is a weight 4 automorphic form for Γ that is holomorphic everywhere except
at the points where f has a multiple zero or a multiple pole (including at the cusps).
Moreover, if Γ is of genus zero and f is a Hauptmodul, then { f ,τ} is modular for
the normalizer of Γ in PSL2(R)

As an example, let λ be the Klein modular function for Γ (2) given by

λ (τ) =
(

η(τ/2)
η(2τ)

)8

,

where η is the Dedekind eta-function given by

η(τ) = q
1
24 ∏

n≥1
(1−qn) , q = exp(2πiτ),

then

{λ ,τ} =
π2

2
E4(τ),

where E4 is the weight 4 Eisenstein series

E4(τ) = 1+240 ∑
n≥1

σ3(n)qn ,

with σk(n) being the sum of the k-th powers of the positive divisors of n.

If Γ = Γ0(8) and we consider the Hauptmodul f8 for Γ given by

f8(τ) =
η(4τ)12

η(2τ)4η(8τ)8

then
1

2π2 { f8,τ} =
1
4
(θ 4

3 +θ 4
4 )

2 = θD4⊕D4(2τ),



4 Abdellah Sebbar

where θD4⊕D4(2τ) is the theta function of two copies of the root lattice D4 and θ3
and θ4 are the Jacobi theta-functions

θ3(τ) = ∑
n∈Z

q
1
2 n2

, θ4(τ) = ∑
n∈Z

(−1)nq
1
2 n2

.

For later use, we also give

θ2(τ) = ∑
n∈Z

q
1
2 (n+1/2)2

.

Finally, if Γ = Γ1(5) and f5 is the Hauptmodul given by

f5(τ) = q ∏
n≥1

(1−qn)5( n
5 )

where
(n

5

)
is the Legendre symbol, then

1
2π2 { f5,τ} = θQ8(1)

where Q8(1) is the Icosian or Maass lattice which is the 8-dimensional 5-unimodular
lattice with determinant 625 and minimal norm 4.

Notice that in the above three examples, the Schwarz derivatives are all holomor-
phic as the the groups involved are torsion-free and thus their Hauptmoduls do not
have multiple zeros or poles.

One may ask if the converse of the above properties is true: Suppose that the
Schwarz derivative { f ,τ} of a meromorphic function on H is a weight 4 automor-
phic, what can be said about f ? Does it have any automorphic properties? The fol-
lowing sections will be devoted to elucidate this question.

2 Equivariant functions

Suppose that F is a weight 4 automorphic form for a discrete group Γ and f is a
meromorphic function on H such that { f ,τ} = F(τ). Then using the properties of

the Schwarz derivative from the previous section we have, for γ =

(
a b
c d

)
∈ Γ ,
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(cτ +d)4 F(τ) = F
(

aτ +b
cτ +d

)
=

{
f
(

aτ +b
cτ +d

)
,

aτ +b
cτ +d

}
= (cτ +d)4

{
f
(

aτ +b
cτ +d

)
,τ
}
.

Therefore,

{ f ,τ} =

{
f
(

aτ +b
cτ +d

)
,τ
}
.

Hence, there exists
(

A B
C D

)
∈ GL2(C) such that

f
(

aτ +b
cτ +d

)
=

A f (τ)+B
C f (τ)+D

.

This defines a 2-dimensional representation ρ of Γ in GL2(C) such that

f (γτ) = ρ(γ) f (τ) (1)

where on both sides the action of the matrices is by linear fractional transformation.

We will distinguish three cases:

1. ρ = 1 a constant , in which case f is an automorphic function.

2. ρ = Id, the embedding of Γ in GL2(C) or the defining representation of Γ , pro-
viding a meromorphic function commuting with the action of Γ which we call
an equivariant function for Γ .

3. ρ is a general representation not equal to one in the above cases giving a function
f called a ρ−equivariant function for Γ .

We will be interested in the last two cases. A trivial example of an equivariant func-
tion for a discrete group Γ is f (τ) = τ . We will see in the next section that there are
infinitely many examples parametrized by automorphic forms for Γ . Furthermore,
the set of equivariant functions will have a structure of an infinite dimensional vec-
tor space isomorphic to the space of meromorphic sections of the canonical bundle
of the compact Riemann surface X(Γ ) = (Γ \H)∗ where the star indicates that we
have added the cusps to the quotient space, in other words, the space of meromor-
phic differential forms on X(Γ ).

In the general case, we establish the existence of ρ−equivariant functions for an
arbitrary representation ρ of Γ . This will include the case when ρ : Γ −→ C∗ is a
character. Of course, when this character is unitary, then we recover the classical
automorphic functions with a character.
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3 The automorphic and modular aspects

In tis section we focus solely on the equivariant functions, that is when ρ is the
defining representation. We have already seen that f (τ) = τ is equivariant for every
discrete group. It turns out that there are many more nontrivial equivariant functions.

Theorem 3.1 [5] Let Γ be a discrete group. We have

1. Let f a nonzero automorphic form of weight k for Γ (even with a character), then

h f (τ) := τ + k
f (τ)
f ′(τ)

(1)

is an equivariant function for Γ .

2. Let h be an equivariant function for Γ . Then h(τ) = h f (τ) for some automorphic
form with a character for Γ if and only if the poles of 1/(h(τ)− τ) are simple
with rational residues. Moreover, if Γ has genus 0, then we can omit the character
from this statement.

If k is a nonzero integer and c is a nonzero constant, then h f = h f k = hc f and
so the correspondence f 7→ h f is not one-to-one. Because of the second part of the
theorem, an equivariant functions that arises from an automorphic form as in (1) is
called a rational equivariant form. It turns out that for such an equivariant function
h(τ), the residues of 1/(h(τ)− τ) have bounded denominators, and any common
multiple of these denominators can be the weight for an automorphic form f such
that h = h f . Moreover, not all equivariant functions are rational. An example of a
non-rational equivariant function is given by

h(τ) = τ + 4
E4(τ)

E ′
4(τ)+E6(τ)

,

where E6 is the weight six Eisenstein series

E6(τ) = 1−504 ∑
n≥1

σ5(n)qn .

Indeed, one can show that 1/(h(τ)− τ) has a simple pole at the cubic root of unity,

but with residue
1
4
+

πi
6

.

The following theorem provides two important applications of equivariant func-
tions to modular forms.

Theorem 3.2 [12] Let f be a modular form for a finite index subgroup of SL2(Z)
of nonzero weight, then

1. The derivative of f has infinitely many non-equivalent zeros in H, all but a finite
number are simple zeros.
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2. The q−expansion of f , where q is the uniformizer at ∞ for Γ , cannot have only
a finite number of nonzero coefficients.

This theorem follows from the properties of the equivariant function h f attached to
f as in (1); the most important of which is that h f takes always real values. This is
clear if h f has a pole in H as it will take rational values at the orbit of this pole, but if
h f is holomorphic, then we have to apply the theorem of Denjoie-Wolfe applied to
the iterates of h f . Then we prove that h f has infinitely many non-equivalent poles in
H. To prove that the zeros are all simple except for a finite number of them requires
the use the Rankin-Cohen brackets. The second statement is usually proven using
the L−function of the modular form, but here it is a simple consequence of the first
statement.

We end this section with an interesting connection with the cross-ration which is
defined for four distinct complex numbers zi, 1 ≤ i ≤ 4 by

[z1,z2,z3,z4] =
(z1 − z2)(z4 − z3)

(z1 − z3)(z4 − z2)
.

As it is projectively invariant, the cross-ration of four distinct equivariant functions
for a discrete group Γ is an automorphic function for Γ . As examples, we have

[τ,hθ2 ,hθ3 ,hθ4 ] = λ ,

and
[τ,hE4 ,h∆ ,hE6 ] =

1
1728

j,

where ∆ = η24 is the discriminant cusp form and the Dedekind j− function is given
by j = E3

4/∆ .

4 The elliptic aspect

The ideas in this section first started in [3] and were developed further in [15] and
more recently in full generalization in [2]. Let L = ω1Z+ω2Z be a lattice in C with
ℑω2/ω1 > 0. Its Weierstrass ℘−function is given by

℘(z) =
1
z2 + ∑

ω∈L\{0}

1
(z−ω)2 − 1

ω2 ,

and the Weierstrass ζ−function is given by

ζ (z) =
1
z
+ ∑

ω∈L\{0}

1
z−ω

+
1
ω

+
z

ω2 .



8 Abdellah Sebbar

Notice that ζ ′(z) = −℘(z), and while ℘ is L−periodic, ζ is quasi-periodic with
respect to L in the sense that for ω ∈ L and z ∈ C, we have

ζ (z+ω) = ζ (z)+HL(ω)

where the quasi-period map depends on the Lattice L. It is Z−linear and so it is
determined by the quasi-periods η1 = HL(ω1) and η2 = HL(ω2). Moreover, HL is
homogeneous of weight -1 in the sense that if α ∈ C×, then

HαL(αω) = α−1HL(ω).

The quasi-periods satisfy the Legendre relation

ω1η2 −ω2η1 = 2πi.

We now suppose that that ω1 = 1 and ω2 = τ ∈ H. Using the fact that SL2(Z) acts
on L by isomorphisms (by a change of basis) and using the homogeneity of the quasi
period map HL, it is easy to see that

h0(τ) =
η2

η1

is equivariant for SL2(Z) [3].

In fact, from the expression of the Weierstrass ζ−function one can prove that

η1 =
π2

3
E2(τ)

where E2 is the weight 2 Eisenstein series

E2(τ) = 1−24 ∑
n≥1

σ1(n)qn =
1

2πi
∆ ′(τ)
∆(τ)

.

Therefore, using the Legendre relation, we get

h0(τ) = τ +
6

iπE2(τ)
= τ +12

∆(τ)
∆ ′(τ)

,

and thus h0 = h∆ is a rational equivariant function.

Let us put

Mτ =

(
τ η2

1 η1

)
.

Then Mτ is invertible as detMτ =−2πi by the Legendre relation.

Let Γ be a finite index subgroup of SL2(Z) and denote By Eq(Γ ) the set of all
equivariant functions for SL2(Z) excluding the trivial one h(τ) = τ . Also denote by
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M2(Γ ) be the set of all weight two meromorphic modular forms for SL2(Z). We
have

Theorem 4.1 The map from M2(Γ ) to Eq(Γ )

f 7→ Mτ f

is a bijection where Mτ f is the linear fraction of f given by Mτ .

The above map sends the zero modular form to h0 which is equivariant for SL2(Z)
and hence for every subgroup. In the meantime, h0 was built using the quasi-periods
of the Weierstrass ζ−function. One might ask: what about the remaining equivari-
ant functions? can they arise also from elliptic objects in the same way h0 does? In
the paper [2], this question is fully answered, and indeed for each equivariant func-
tion for Γ , one can construct a generalizations of the Weierstrass ζ−function called
elliptic zeta functions which are quasi-periodic maps on the set of lattices such the
quotient of two fundamental quasi-periods is an equivariant function. The interest-
ing aspect is that there is a triangular commutative correspondence between the set
of these elliptic zeta functions, M2(Γ ) and Eq(Γ ) which encompasses the modular
and elliptic nature of equivariant functions.

As for the geometric aspect, because the weight 2 meromorphic modular forms
are identified with the meromorphic differential forms on the Riemann surface
X(Γ ), we can thus view the equivariant functions as the global meromorphic sec-
tions of the canonical bundle of X(Γ ).

5 The general case

In this section, we consider the case of a general discrete group and an arbitrary
representation ρ : Γ −→ GL2(C) and investigate the existence of ρ−equivariant
functions for Γ , that is, the meromorphic functions on H such that

f (γτ) = ρ(γ) f (τ).

We will denote the set of such functions by Eq(Γ ,ρ). Let us first recall the notion
of vector-valued automorphic forms for the data (Γ ,ρ). A meromorphic function
F = ( f1, f2)

t : H −→ C2 where f1 and f2 are tow meromorphic functions on H is
called a 2-dimensional vector-valued automorphic form for Γ of multiplier ρ and
weight k ∈ Z if

(cτ +d)−k F(γτ) = ρ(γ)F(τ) , τ ∈H , γ =

(
a b
c d

)
∈ Γ ,

in addition to the usual growth behavior at the cusps. Denote by Vk(Γ ,ρ) the space
of all such forms. They were fairly studied in the last two decades by various authors



10 Abdellah Sebbar

in different contexts from algebraic, arithmetic, analytic, geometric and theoretical
physics points of view, see [14] and the extensive list of references therein. Their
existence is well established in the literature for a unitary representation ρ and for
Γ being a subgroup of SL2(Z) or a genus zero discrete group among other cases.
The existence for an arbitrary data (Γ ,ρ) has been recently proved in [14] even for
Γ being a Fuchsian group of the second kind.

The first result of importance to us is

Theorem 5.1 [13] Let F = ( f1, f2)
t be a 2-dimensional vector-valued automorphic

form of multiplier ρ and arbitrary weight for Γ , then hF = f1/ f2 is a ρ−equivariant
function for Γ .

This settles the question of the existence of ρ−equivariant functions which is then
a consequence of the existence of vector valued automorphic forms. A more inter-
esting result is that every ρ−equivariant functions arises in this way

Theorem 5.2 [13] The map from Vk(Γ ,ρ) to Eq(Γ ,ρ) given by

F =

[
f1
f2

]
7→ hF = f1/ f2 (1)

is surjective.

Surprisingly, the proof uses almost all the properties of the Schwarz derivative which
lead to the next theorem. If D is a domain in C, and R(z) is a holomorphic function
on D, then we cannot guarantee the existence of two linearly independent global
solutions to the differential equation

y′′+R(z)y = 0

when D is not simply connected, and all we can hope for are local solutions. How-
ever, when R(z) comes from a Schwarz derivative, then we have a different outcome.

Theorem 5.3 Let D be a domain and f be a meromorphic function on D such that
R(z) = { f ,z} is holomorphic on D. Then the differential equation y′′ +R(z)y = 0
has two linearly independent global solutions on D.

It is this important result and the use of the Bol identity that lead to the surjectivity
of the map (1).

So far we have established this close connection between ρ−equivariant func-
tions for Γ and 2-dimensional vector valued automorphic forms. All we need is to
prove, for arbitrary data (Γ ,ρ), the existence of such automorphic forms. To this
end we associate to (Γ ,ρ) a vector bundle E = EΓ ,ρ over X = X(Γ ) constructed as
follows:
We choose a covering U =(Ui)i∈I where I is the set of cusps and elliptic fixed points
on X . We then construct holomorphic maps ψi : Ui −→ GL2(C) having ρ as a factor
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of automorphy [7]. This is carried out by solving the Riemann-Hilbert problem over
Ui with the monodromy ρ . These maps yield a cocycle (Fi j) ∈ Z 1(U ,GL(2,O))
to which is associated a rank two holomorphic vector bundle E over X whose tran-
sition functions are the maps Fi j on Ui ∩U j.

Now if P is a given point (that can be a cusp) and L is the line bundle over X
corresponding to the divisor [P], then using the Kodaira vanishing theorem, there
exists an integer µ ≥ 0 such that

dimH0(X ,O(L µ ⊗E )) ≥ 2

where O(L µ ⊗E ) is the set of holomorphic sections of the sheaf L µ ⊗E which
can be seen as sections in H0(X \ {P},O(E )) having a pole at P of order at most
µ . Thus we have two linearly independent meromorphic sections of E with a single
pole at P. When lifted to H ∪{cusps} these sections yield two linearly independent
vector-valued automorphic functions (of weight 0) attached to (Γ ,ρ) with poles at
the fiber of P. The full details of the proof can found for a higher dimension of the
representation in [14].

We have therefore established the following:

Theorem 5.4 For every discrete group Γ and every 2-dimensional representation
ρ of Γ , vector-valued Γ−automorphic functions of multiplier ρ exist and so do
ρ−equivariant functions for Γ .
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