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Abstract We give an extended abstract regarding our talk, and the associated
Magma implementation of Jacobi sums and Hecke Grössencharacters. This builds
upon seminal work of Weil (1952), and makes his construction explicitly com-
putable, inherently relying on his upper bound for the conductor. Moreover, we can
go slightly further than Weil by additionally allowing Kummer twists of the Jacobi
sums. We also note the correspondence of these (twisted) Jacobi sums to tame prime
information for hypergeometric motives.

Although our viewpoint and notation is derived from later work of Anderson, we
do not use his formalism in any substantial way, and indeed the main thrust of all
we do is already in Weil’s work.

Let θ = ∑ j n j⟨x j⟩ ∈ Z[Q/Z]0 be an integral linear combination of nonzero ele-
ments x j ∈ Q/Z as a formal sum, with ∑ j n jx j = 0. We put m for the least common
multiple of the denominators of the x j, and write Kθ ⊆ Q(ζm) for the subfield cor-
responding by Galois theory to modding out (Z/mZ)⋆ by those u for which the
scaling u◦θ = ∑ j n j⟨ux j⟩ is equal to θ . Letting α be a nontrivial additive character
modulo p and recalling the Gauss sum of a multiplicative character ψ on F×

p as

Gα(ψ) =− ∑
x∈F×

p

ψ(x)α(Trx),

for ideals p of Q(ζm) we define the Jacobi sum

Jθ (p) = ∏
j

Gα(χ
mx j
p )n j

where this is independent of the choice of α and χp is the power residue symbol
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χp(x) =
( x
p

)
m
≡ x(q−1)/m (mod p).

where q is the norm of p. One then has a partial L-function

L⋆
θ (s) = ∏

p

(
1− Jθ (p)

qs

)−1

,

where the product is over p ∤ m in Kθ .
In a 1952 paper [3], Weil associates a Grössencharacter to such a Jacobi sum

L-function, and in particular gets an upper bound on the modulus. This gives us
an algorithm in principle to compute said Grössencharacter, which has been imple-
mented in the Magma computer algebra system [2, 1]. Briefly, one first determines
the field of definition Kθ of the Grössencharacter as above, and then the ∞-type in
a similar manner. The upper bound on the modulus then makes it a finite problem
to recognize the correct twist in the Hecke character group (the dual of the ray class
group), and by computing Jθ (p) at sufficiently many primes of small norm we can
isolate the desired twist. The possibility of including Kummer twists of the θ was
not considered directly by Weil, but fits easily into the above framework.

The resulting Jacobi sum machinery also helps explain the tame prime behavior
of hypergeometric motives, in particular giving the Euler factors when the inertia
corresponding to such primes is in fact trivialized. As an example, for the quintic
3-fold at (say) t = t0 · p5 with p ≡ 1 (mod 5), the Euler factor corresponds to a
Grössencharacter over Q(ζ5), with the precise twist varying with t0.

This is joint work with David Roberts and Fernando Rodriguez Villegas.
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