
Diagonal form factors from non-diagonal ones

Zoltan Bajnok and Chao Wu

Abstract We prove the asymptotic large volume expression of diagonal form fac-
tors in integrable models by evaluating carefully the diagonal limit of a non-diagonal
form factor in which we send the rapidity of the extra particle to infinity.

1 Introduction

Two dimensional integrable quantum field theories are useful toy models of statis-
tical and particle physics as they provide many interesting observables, which can
be calculated exactly [12]. These models are first solved in infinite volume, where
the scattering matrix [21, 4], which connects asymptotic multiparticle states, are
determined together with the form factors which are the matrix elements of local
operators sandwiched between the same asymptotic states [19]. These form factors
then can be used to build up the correlation functions, which define the theory in the
Wightman sense [1].

In the relevant practical applications, however, quantum field theories are con-
fined to a finite volume and the calculation of finite size corrections is unavoidable.
Fortunately, all these finite size corrections can be expressed in terms of the in-
finite volume characteristics, such as masses, scattering matrices and form factors
[10, 11, 16]. We can distinguish three domains in the volume according to the nature
of the corrections. The leading finite size corrections are polynomial in the inverse
power of the volume, while the sub-leading corrections are exponentially volume-
suppressed.
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Concerning the finite volume energy spectrum the domain when only polynomial
corrections are kept is called the Bethe-Yang (BY) domain. We there merely need
to take into account the finite volume quantization of the momenta, which origi-
nates from the periodicity requirement and explicitly includes the scattering phase-
shifts [11]. The exponentially small corrections are due to virtual particles traveling
around the world and the domain in which we keep only the leading exponential
correction is called the Luscher domain [10]. In a small volume, when all exponen-
tials contribute the same way, we have to sum them up leading to a description given
by the Thermodynamic Bethe Ansatz (TBA) [20].

The situation for the form factors are not understood at the same level yet. The
BY domain was investigated in [16, 17]. It was proven for non-diagonal form factors
that all polynomial finite size effects come only from the finite volume (Kronecker-
delta) normalization of states. The authors also conjectured the BY form of diagonal
finite volume form factors, which they derived for two particle-states. The leading
exponential finite size corrections for generic form factors are not known, except
for the diagonal ones, for which exact conjectures exist. The LeClair-Mussardo
(LM) conjecture expresses the exact finite volume/temperature one-point functions
in terms of infinite volume diagonal connected form factors, and densities of mir-
ror states determined by the TBA equation [9]. Actually it was shown in [13, 14]
that the BY form of diagonal form factors implies the LM formula and vice versa.
Using analytical continuation a ’la [5] Pozsgay extended the LM formula for finite
volume diagonal matrix elements [15]. The aim of the present paper is to prove the
conjectured BY form of diagonal form factors [18, 17] from the already proven non-
diagonal BY form factors [16] by carefully calculating the diagonal limit, in which
we send one particle’s rapidity to infinity. By this way our result also leads to the
prove of the LM formula. Here we focus on theories with one type of particles.

The paper is organized such that in the next section we summarize the known
facts about the BY form of diagonal and non-diagonal form factors. We then in
section 3 prove the diagonal conjecture and conclude in section 4.

2 The conjecture for diagonal large volume form factors

In this section we introduce the infinite volume form factors and their properties and
use them later on to describe the finite volume form factors in the BY domain.

2.1 Infinite volume form factors

Infinite volume form factors are the matrix elements of local operators sand-
wiched between asymptotic states 〈θ ′1, . . . ,θ ′m|O|θn, . . . ,θ1〉. We use the rapidity θ

to parametrize the momenta as p = msinhθ . The crossing formula
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〈θ ′1, . . . ,θ ′m|O|θn, . . . ,θ1〉 = 〈θ ′1, . . . ,θ ′m−1|O|θ̄ ′m− iε,θn, . . . ,θ1〉+ (1)
n

∑
i=1

2πδ (θm−θi)
n

∏
j=i+1

S(θ j−θi)〈θ ′1, . . . ,θ ′m−1|O|θn−1, . . . ,θ1〉

can be used to express every matrix element in terms of the elementary form factors

〈0|O|θn, . . . ,θ1〉= Fn(θn, . . . ,θ1) (2)

where θ̄ = θ + iπ denotes the crossed rapidity and the two particle S-matrix satis-
fies S(θ) = S(iπ − θ) = S(−θ)−1. Infinite volume states are normalized to Dirac
δ -functions: as 〈θ ′|θ〉= 2πδ (θ −θ ′). The elementary form factor satisfies the per-
mutation and periodicity axiom

Fn(θ1,θ2, . . . ,θi,θi+1 . . . ,θn) = S(θi−θi+1)Fn(θ1,θ2, . . . ,θi+1,θi . . . ,θn)

= Fn(θ2, . . . ,θi,θi+1 . . . ,θn,θ1−2iπ) (3)

together with the kinematical singularity relation

−iResθ ′=θ Fn+2(θ
′+ iπ,θ ,θ1, . . . ,θn) = (1−

n

∏
i=1

S(θ −θi))Fn(θ1, . . . ,θn) (4)

For scalar operators, when properly normalized, the form factor also satisfies the
cluster property

lim
Λ→∞

Fn+m(θ1 +Λ , . . . ,θn +Λ ,θn+1, . . . ,θn+m) = Fn(θ1, . . . ,θn)Fm(θn+1, . . . ,θn+m)

(5)
which will be used to analyze the diagonal limit of 〈θ ,θ ′1, . . . ,θ ′n|O|θn, . . . ,θ1〉 via
θ → ∞ in finite volume.

The diagonal form factors 〈θ1, . . . ,θ n|O|θn, . . . ,θ1〉 are singular due to the δ (θ)
terms coming from the normalization of the states and also from poles related to
the kinematical singularity axiom. Actually, F2n(θ̄1 + ε1, . . . , θ̄n + εn,θn, . . . ,θ1) is
not singular when all εi go to zero simultaneously, but depends on the direction of
the limit. The connected diagonal form factor is defined as the finite ε-independent
part:

Fc
2n(θ1, . . . ,θk) = Fp

(
F2n(θ̄1 + ε1, . . . , θ̄n + εn,θn, . . . ,θ1)

)
(6)

while the symmetric evaluation is simply

Fs
2n(θ1, . . . ,θk) = lim

ε→0
F2n(θ̄1 + ε, . . . , θ̄n + ε,θn, . . . ,θ1) (7)

In order to understand the singularity structure of the diagonal limit we note that the
singular part can very nicely be visualized by graphs [17]:

F2n(θ̄1 + ε1, . . . , θ̄n + εn,θn, . . . ,θ1) = ∑
allowedgraphs

F(graph)+O(εi) (8)
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where an allowed graph is an oriented tree-like (no-loop) graph in which at each
vertex there is at most one outgoing edge. The contribution of a graph, F(graph), can
be evaluated as follows: points (i1, . . . , ik) with no outgoing edges contribute a factor,
Fc

2k(θi1 , . . . ,θik), while for each edge from i to j we associate a factor ε j
εi

φ(θi−θ j),

where φ(θ) = −i∂θ logS(θ) = −i S′(θ)
S(θ) . We recall the proof of (8) from [17] as

similar argumentations will be used later on. The proof goes in induction in n and
evaluates the residue at εn = 0 keeping all other εs finite. Clearly such singular term
can come only from graphs in which n has only an outgoing edge and no incoming
one. The contributions of such terms are

1
εn

(ε1φ1n + · · ·+ εn−1φn−1n)F2n−2(θ̄1 + ε1, . . . , θ̄n−1 + εn−1,θn−1, . . . ,θ1) (9)

Now comparing this expression to the kinematical singularity axiom and using the
definition of φ(θ) together with the properties of the scattering matrix we can see
that they completely agree. The formula (8) can be used to define connected form
factors recursively by subtracting the singular terms and taking the diagonal limit.
Observe also that taking all ε to be the same makes the lhs. of (8) the symmetric
form factor, which is expressed by (8) in terms of the connected ones.

In particular, for the 2-particle form factor we have only three graphs:

1 2 1 2 1 2

which give

F4(θ̄1 + ε1, θ̄2 + ε2,θ2,θ1) = Fc
4 (θ1,θ2)+

ε1

ε2
φ12Fc

2 (θ1)+
ε2

ε1
φ21Fc

2 (θ2)+O(εi)

(10)
This equation on the one hand can be used to define Fc

4 (θ1,θ2), once Fc
2 (θ) has been

already defined, and on the other hand, it connects the symmetric form factor to the
connected one:

Fs
4 (θ1,θ2) = Fc

4 (θ1,θ2)+φ12Fc
2 (θ1)+φ21Fc

2 (θ2) (11)

2.2 Finite volume form factors in the BY domain

In the BY domain we drop the exponentially suppressed O(e−mL) terms and keep
only the O(L−1) polynomial volume dependence. The quantization of the momenta
is given by the BY equations

Q j ≡ p(θ j)L− i ∑
k:k 6= j

logS(θ j−θk) = 2πI j (12)
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An n-particle state is labeled by the integers I j, which can be traded for the momenta:
|I1, . . . , In〉 ≡ |θ1, . . . ,θn〉L. These states are normalized to Kronecker delta functions
〈I′|I〉= ∏ j δI′jI j

. Since two point functions in finite and infinite volume are equal up

to exponentially small O(e−mL) terms, the finite and infinite volume form factors
differ only in the normalization of states [16]. In particular, this implies the non-
diagonal finite volume form factor formula

〈θ ′1, . . . ,θ ′m|O|θn, . . . ,θ1〉L =
Fn+m(θ̄

′
1, . . . , θ̄

′
m,θ n, . . . ,θ 1)√

ρnρ ′m
+O(e−mL) (13)

where the densities of states are defined through the Bethe Ansatz equation via

ρn = det |Qi j| ; Qi j = ∂iQ j ≡
∂Q j

∂θi
(14)

The conjectured formula for diagonal form factors takes the form [18]:

〈θ1, . . . ,θn|O|θn, . . . ,θ1〉L =
∑α∪ᾱ Fc

α ρᾱ

ρn
+O(e−mL) (15)

where the index set I = {1, . . . ,n} is split in all possible ways I = α ∪ ᾱ , Fc
α =

Fc
2k(θα1 , . . . ,θαk) with |α| = k and ρᾱ is the shorthand for ρn−k(θᾱ1 , . . . ,θᾱn−k),

which denotes the sub-determinant of the matrix, Qi j, with indices only from ᾱ .
There is an analogous expression in terms of the symmetric form factors [17]

〈θ1, . . . ,θn|O|θn, . . . ,θ1〉L =
∑α∪ᾱ Fs

α ρs
ᾱ

ρn
+O(e−mL) (16)

where now ρs
α is the density of states corresponding to the variables with labels in

α . The equivalence of the two formulas was shown in [17]. Let us note that for L= 0
the sum reduces to one single term ∑α∪ᾱ Fs

α ρs
ᾱ
→ Fs

n as all other ρs factor vanish.
Let us spell out the details for two particles. The diagonal finite volume form

factor up to exponential correction is

〈θ1,θ2|O|θ2,θ1〉L =
Fc

4 (θ1,θ2)+ρ1(θ1)Fc
2 (θ2)+ρ1(θ2)Fc

2 (θ1)+ρ2(θ1,θ2)F0

ρ2(θ1,θ2)
(17)

where

ρ2(θ1,θ2) =

∣∣∣∣E1L+φ12 −φ12
−φ21 E2L+φ21

∣∣∣∣ ; ρ1(θi) = EiL+φi3−i

The analogous formula with the symmetric evaluation reads as

〈θ1,θ2|O|θ2,θ1〉L =
Fs

4 (θ1,θ2)+ρs
1(θ1)Fs

2 (θ2)+ρs
1(θ2)Fs

2 (θ1)+ρs
2(θ1,θ2)Fs

0
ρ2(θ1,θ2)

(18)
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where
ρ

s
2(θ1,θ2) = ρ2(θ1,θ2) ; ρ

s
1(θi) = EiL

3 The proof for diagonal large volume form factors

The idea of the proof follows from the large θ behaviour of the scattering matrix,
namely S(θ)→ 1, for θ → ∞. This also lies behind the cluster property of the form
factors. Thus by taking the non-diagonal form factor 〈θ ,θ ′1, . . . ,θ ′n|O|θ n, . . . ,θ 1〉L
and sending θ → ∞, the extra particle decouples and we can approach the diagonal
form factor. This can be achieved by choosing the same quantization numbers for
both the θ j and θ ′j particles:

Q′j ≡ p(θ ′j)L− i ∑
k:k 6= j

logS(θ ′j−θ
′
k)− i logS(θ ′j−θ) = 2πI j (19)

Indeed, by sending (the quantization number of) θ to infinity the BA equations, Q′j,
reduce to the Bethe Ansatz equations, Q j. This means that in the limit considered
θ ′i = θi+εi and εi goes to zero. In principle, εi depends on {θi} and on the way how
θ goes to infinity.

For finite θ , the form factor is non-diagonal and we can use

〈θ ,θ ′1, . . . ,θ ′n|O|θ n, . . . ,θ 1〉L =
F2n+1(θ̄ , θ̄

′
1, . . . , θ̄

′
n,θn, . . . ,θ1)√

ρ ′n+1ρn

+O(e−mL) (20)

The numerator is a finite quantity for any θ and has a finite θ →∞ limit accordingly.
We can see in the limit that ρ ′n+1(θ ,θ

′
1, . . . ,θ

′
n) goes to ρ1(θ)ρn(θ1, . . . ,θn). Simi-

larly, for the form factors F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n,θn, . . . ,θ1) the cluster property guar-

anties the factorization F2n(θ̄
′
1, . . . , θ̄

′
n,θn, . . . ,θ1)F1(θ̄), where additionally θ ′i → θi.

Actually the expression depends in the direction we take the limit in which all εi
go to zero and our main task is to calculate this limit explicitly. Fortunately, the
direction is dictated by the difference of the BA equations:

Q′j−Q j = E jLε j + ∑
k:k 6= j

φ jk(ε j− εk)−δ j = ∑
k

Q jkεk−δ j = 0 (21)

where we have used the notations:

E j = ∂ j p(θ j) ; φ jk = φ(θ j−θk) =−i∂ j logS(θ j−θk) ; δ j = i logS(θ j−θ)
(22)

Clearly δ js are small and so are the ε js. In the following we analyze the ε and
δ dependence of the form factor F2n+1(θ̄ , θ̄

′
1, . . . , θ̄

′
n,θn, . . . ,θ1). Similarly to the

diagonal limit of form factors we can describe the δ and ε dependence by graphs.
We claim that
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F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
k,θk, . . . ,θ1) = ∑

allowedgraphs,colorings
F(graph)+O(εi,δ ) (23)

where, additionally to the previous graphs in (8), we should allow the coloring of
those vertices, which do not have any outgoing edge, i.e. they can be either black
or white. For each black dot with label i we associate a factor δi

εi
. Note that in the

θ → ∞ limit we will have an overall F1(θ̄) factor, which we factor out.
Let us see how it works for n = 1: The single dot can be either black or white:

1 1

thus the two contributions are

F3(θ̄ , θ̄
′
1,θ1)F1(θ̄)

−1 =
δ1

ε1
+Fc

2 (θ1)+ . . . (24)

where ellipsis represents terms vanishing in the δ ,ε → 0 limit. Let us show that
Fc

2 (θ1) is not singular, i.e. the singularity of the lhs. is exactly δ1
ε1
. The kinematical

residue equation tells us that

F3(θ̄ , θ̄
′
1,θ1) =

i
ε1
(1−S(θ ′1−θ + iπ))F1(θ̄)+O(1) =

δ1

ε1
F1(θ̄)+O(1) (25)

Thus, once the singularity is subtracted, we can safely take the ε1→ 0 and the δ → 0
limits leading to

lim
δ ,ε1→0

(F3(θ̄ , θ̄
′
1,θ1)−

δ1

ε1
F1(θ̄)) = Fc

2 (θ1)F1(θ̄) (26)

where we used the cluster property of form factors and the fact that the two particle
diagonal connected form factor is non-singular.

Now we adapt the proof in the induction step in (8) by noticing that the ε−1
n

singularity can come either from terms with only one outgoing edge or from being
black. Thus the residue is

1
εn

(δn + ε1φ1n + · · ·+ εn−1φn−1n)F2n−1(θ̄ , θ̄1 + ε1, . . . , θ̄n−1 + εn−1,θn−1, . . . ,θ1)

(27)
Let us calculate the analogous term from the kinematical residue axiom:

F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n,θn, . . . ,θ1)→

i
εn

(
1− S(θ ′n−θn−1) . . .S(θ ′n−θ1)

S(θ ′n−θ ′n−1) . . .S(θ
′
n−θ ′1)

1
S(θ ′n−θ)

)
×

F2n−1(θ̄ , θ̄
′
1, . . . , θ̄

′
n−1,θn−1, . . . ,θ1) (28)

The bracket can be expanded as
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() =−i(δn +φnn−1εn−1 + · · ·+φn1ε1) (29)

which completes the induction.
In particular, for two particles we have the following diagrams:

1 2 1 2 1 2 1 2

1 2 1 2 1 21 2

which lead to the formula

F5(θ̄ , θ̄
′
1, θ̄
′
2,θ2,θ1)F−1

1 = Fc
4 (θ1,θ2)+

ε2

ε1
φ21

δ2

ε2
+

ε1

ε2
φ12

δ1

ε1
+

δ1

ε1

δ2

ε2
(30)

+
ε1

ε2
φ12Fc

2 (θ1)+
δ2

ε2
Fc

2 (θ1)+
ε2

ε1
φ21Fc

2 (θ2)+
δ1

ε1
Fc

2 (θ2)

It is interesting to check the coefficient of Fc
2 (θ1) :

ε1φ12 +δ2

ε2
= E2L+φ21 = ρ1(θ2) (31)

where we used the BA equations. Similarly

δ1

ε1

δ2

ε2
+

ε1

ε2
φ12

δ1

ε1
+

ε2

ε1
φ21

δ2

ε2
= ρ2(θ1,θ2) (32)

which leads to the sought for formula for n = 2:

F5(θ̄ , θ̄
′
1, θ̄
′
2,θ2,θ1)F−1

1 = Fc
4 (θ1,θ2)+ρ1(θ2)Fc

2 (θ1)+ρ1(θ1)Fc
2 (θ2)+ρ2(θ1,θ2)

(33)
In the following we prove the form of the diagonal form factors in the general

case by induction. First we notice that once we use the BA equations to express δi
in terms of εk then all denominators of εs disappear. Focus on ε−1

n and observe that

δn + ε1φ1n + · · ·+ εn−1φn−1n = εn (EnL+φn−1n + · · ·+φ1n) (34)

This implies that the diagonal finite volume form factor is a polynomial in L and
linear in each EkL. We first check the L = 0 piece and then calculate the derivative
wrt. EnL as the full expression is symmetric in all variables. Note that the would be
singular term in εn at L = 0:

1
εn

εn (EnL+φn−1n + · · ·+φ1n) |L=0 =
1
ε
(εφn−1n + · · ·+ εφ1n) (35)

is exactly the same we would obtain if we had calculated the diagonal limit of the
form factor in the symmetric evaluation, i.e. for L = 0 we obtain the symmetric
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n-particle form factor. We now check the linear term in EnL. In doing so we differ-
entiate the expression (23) wrt. EnL:

∂EnLF2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n,θn, . . . ,θ1) = F2n−1(θ̄ , θ̄

′
1, . . . , θ̄

′
n−1,θn−1, . . . ,θ1) (36)

since the term EnL can come only through the singularity at εn = 0. Note that on
the rhs. θk satisfies the original BA and not the one where θn is missing. Let us now
take a look at the expression we would like to prove:

F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n,θn, . . . ,θ1)F−1

1 = ∑
α∪ᾱ=I

Fc
α ρᾱ = ∑

α∪ᾱ=I
Fs

α ρ
s
ᾱ (37)

where I = {1, . . . ,n}. Clearly the rhs. is also a polynomial in L, which is linear in
each EkL. To finish the proof, we note that the L = 0 constant part of the rhs. is the
symmetric form factor. Using that ∂EnLρα = ρα\{n} if n ∈ α and 0 otherwise we can
see that

∂EnL ∑
α∪ᾱ=I

Fc
α ρᾱ = ∑

β∪β̄=I\{n}
Fc

β
ρ

β̄
=F2n−1(θ̄ , θ̄

′
1, . . . , θ̄

′
n−1,θn−1, . . . ,θ1)F−1

1 (38)

by the induction hypothesis, which completes the proof.

4 Conclusion

In this paper we proved the large volume expression for the diagonal form factors
by taking carefully the limit of a nondiagonal form factor. Our result completes the
proof of the LM formula, which describes exactly the one-point function in a finite
volume.

Diagonal finite volume form factors are relevant in the AdS/CFT correspondence
as they conjectured to describe the Heavy-Heavy-Light (HHL) type three point func-
tions of the maximally supersymmetric 4D gauge theory [3]. This conjecture was
first proved at weak coupling [6] then at strong coupling [2], finally for all couplings
in [8, 7]. We have profited from all of these proofs in and used them in the present
paper.

There is a natural extension of our results for diagonal form factors in non-
diagonal theories. Clearly the same idea of adding one more particle and sending
its rapidity to infinity can be applied there too and we have an ongoing research into
this direction.
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