Remarks on A,gl) face weights

Atsuo Kuniba

Abstract Elementary proofs are presented for the factorization of the elliptic Boltz-
mann weights of the AS,I) face model, and for the sum-to-1 property in the trigono-
metric limit, at a special point of the spectral parameter. They generalize recent

results obtained in the context of the corresponding trigonometric vertex model.

1 Introduction

In the recent work [B], the quantum R matrix for the symmetric tensor representa-
tion of the Drinfeld-Jimbo quantum affine algebra Uq(A,g])) was revisited. A new
factorized formula at a special value of the spectral parameter and a certain sum
rule called sum-to-1 were established. These properties have led to vertex models
that can be interpreted as integrable Markov processes on one-dimensional lattice
including several examples studied earlier [[Z, Fig.1,2]. In this note we report anal-
ogous properties of the Boltzmann weights for yet another class of solvable lattice

models known as IRF (interaction round face) models [] or face models for short.
More specifically, we consider the elliptic fusion AS,D face model corresponding to
the symmetric tensor representation [6, 8]. For n = 1, it reduces to [[II] and [4] when
the fusion degree is 1 and general, respectively. There are restricted and unrestricted

versions of the model. The trigonometric case of the latter reduces to the U, (Aﬁ,l) )
vertex model when the site variables tend to infinity. See Proposition [Il. In this sense
Theorem M and Theorem & given below, which are concerned with the unrestricted
version, provide generalizations of [, Th.2] and [8, eq.(30)] so as to include finite
site variables (and also to the elliptic case in the former). In Section B we will also
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comment on the restricted version and difficulties to associate integrable stochastic
models.

2 Results

Let 0 (u) = 0 (u,p) = 2p% sinwu [T (1 —2p* cos2zu+ p*) (1 — p*) be one of
the Jacobi theta function (|p| < 1) enjoying the quasi-periodicity

6, (u+ l;emr) =0 (u;eﬂi‘r), 0, (M+T;em‘t) e—mr 27171149 ( mr)’ (1)

where Im7 > 0. We set

W =61(7.p) k= [lu—1]f—k+1], ] =T (keZs),

L
2

with a nonzero parameter L. These are elliptic analogue of the g-factorial and the
g-binomial:
m

(O = Hol (1), (rln)q: (@)m

i (q)l(q)mfl )

For o = (e, ..., 0 ) with any k we write |ot| = o +- - - + 0. The relation § >y
or equivalently y < < B means ; > ¥ for all i.

We take the set of local states as & = n+ 7" with a generic n € C"*!. Given
positive integers [ and m, let a,b,c,d € & be the elements such that

a=d—a€B, B=c—d€eB,, y=c—beEB, S=b—acBy, 3)
where B,, is defined by
By = {0 = (1. 1) € 224 | o = m}. )

The relations (B) imply &+ 8 = v+ 8. The situation is summarized as

6
a ) b
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To the above configuration round a face we assign a function of the spec-
tral parameter u called Boltzmann weight. Its unnormalized version, denoted by

5772 b
Wl,in (Z ¢

u) , is constructed from the / = 1 case as follows:

_ p( .

(521 = X (2 20
+by — .jl o [by—aj+1

W1,m(2i‘“):[u oo g vt (d=a+ey, c=b+ey),

H']Iil [ev —b)]

ith .
where ¢; = (0,...,0, 1,0,...,0). In (8), a9, . .a) € P is a path form a® =
atoal =d such that a1 —q) € B (0 < i< 1). The sum is taken over
bV, ...b=D ¢ P satisfying the conditions b+ —pl) € By (0 < i < [) with
b =p and b = c. It is independent of the choice of a(V),...,a"Y (cf. (8,
Fig.2.4]). We understand that W, m(

,pB,y,6
The normalized weight is defined by

ab — sa b \[1] m-1
Wl’m(d c‘u)_Wl’m(d C‘M)W[l] ' ©)
It satisfies [S] the (unrestricted) star-triangle relation (or dynamical Yang-Baxter
equation) []:
ab fg c
EWon(§ o) in () 51w gle)
ab gc
= W (G =)W (o)W (g o)

where the sum extends over g € & giving nonzero weights. Under the same setting
(3) as in (), we introduce the product

Sz,m(a b) _ {m]—l 1 [Ci—dj]ci_bi. ®

dc l 1<i,j<n+1 [ci = bjle—b;

. ) = 0 unless (@) is satisfied for some

)

Note that S,,m( C) = 0 unless d < b because of the factor H’”rl [ci —di]¢;—p,- The

following result giving an explicit factorized formula of the weight W, ,, at special
value of the spectral parameter is the elliptic face model analogue of [8, Th.2].

Theorem 1. If ] < m, the following equality is valid:

(4 o) =505
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Proof. We are to show

Ton(l £ 10) = T s

. (10)

i~ Y }Ci_bi
Here and in what follows unless otherwise stated, the sums and products are taken
always over 1,...,n+ 1 under the condition (if any) written explicitly. We invoke
the induction on /. It is straightforward to check (IM) for / = 1. By the definition (B)
the [ 4 1 case is expressed as

— ab a b d ¢
Wl“""(d c’ ) ZWI'"(d’ O)Wl’m( dc

for some fixed y € [1,n+ 1]. Due to the induction hypothesis on W/, the equality
to be shown becomes

L (I

v ij [C'_bj]cgfb,-

fl) (d'=d—ey,c’ =c—ey)

[C;_d}]d—bi) [—l+c, — ]Hk;ﬁu[ —d +1]
/
l

Hk[ Cy — k} (]1)

[T gy e —djle—p;
i e,

After removing common factors using c§ =c¢;— 6y, dl( =d;— 5,-“, one finds that (ICT)
is equivalent to

Z[Cv—du_l]n [

v i#V

| (RIS § )

¢y —ci | ;

with I determined by /41 =Y ;(c; —b;). One can eliminate d;, and rescale the
variables by (b;,c;) — (Lbj+dy,Lcj+d,,) for all j. The resulting equality follows
from Lemma [

Lemma 1. Let by, ... by, c1,...,cn € C be generic and set s =Y} (c; — b;). Then
for any n € Z> the following identity holds:

O1(z+ci—s) fl Wﬁeﬂci—bﬂ = 91(s)f191(z+b,').

1 j=1(izi) TINCi =€) G i=1

-

1

Proof. Denote the LHS —RHS by f(z). From (0) we see that f(z) satisfies () with

=4,A = ”(12”) +Z;f:1 b; and A, = n. Moreover it is easily checked that f(z)
possesses zeros at z = —cy, . .., —¢y. Therefore Lemma O claims — (¢ + -+ ¢;) —
(Bt+ %Az —A;) =0mod Z + Zr. But this gives s = 0 which is a contradiction since
bj,cj can be arbitrary. Therefore f(z) must vanish identically.

Lemma 2. Let Imt > 0. Suppose an entire function f(z) # 0 satisfies the quasi-
periodicity
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fe+1)=eBf(z),  flz+71)=e ATA) f(r), (12)

Then Ay € Z>q holds and f(z) has exactly A zeros zi, . ..,z4, mod Z+ Zt. More-
overzi+---+z4, =BT+ %Ag —A1 modZ+ 7~ holds.

Proof. Let C be a period rectangle (§,& +1,& +1+7,& + ) on which there is no
zero of f(z). From the Cauchy theorem the number of zeros of f(z) in C is equal to
Je %ﬂ Calculating the integral by using (I2) one gets A,. The latter assertion

2mi*
2f'(2) dz.
f(z) 2mi*

can be shown similarly by considering the integral [

From Theorem [ and () it follows that S; ,, (Z ﬁ) also satisfies the (unrestricted)

star-triangle relation (d) without spectral parameter. The discrepancy of the factor-
izing points # =0 in (8) and “u = —m” in [8, Th.2] is merely due to a conventional
difference in defining the face and the vertex weights.

Since (B) and (B) are homogeneous of degree 0 in the symbol [---], the trigono-

metric limit p — 0 may be understood as replacing (2) by [u] = ¢*/> — g~*/? with

generic g = exp % Under this prescription the elliptic binomial ['H from (@) is

replaced by ¢/ (I=m)/2 ('l")q, therefore the trigonometric limit of (8) becomes

-1 bi—d;+1
ab m (" )i,
sn(§0), = () I Gk
m dc trig [ ¢ 1<ij<n+tl (qbl b_H‘l)Ci_b,'

The following result is a trigonometric face model analogue of [8, Th.6].

Theorem 2. Suppose | < m. Then the sum-to-1 holds in the trigonometric case:

Zonly),, 1

where the sum runs over those b satisfying c—d € B, and d —a € Bj.
Proof. The relation (I4) is equivalent to
m (P,
<l> - L I1 (g W), (cij =ci—¢;) (15)
q  yeBy<pl<ij<nt+1 \ 4" g

for any fixed B = (B1,...,Bn+1) € Bm, I < m and the parameters cy,...,c,11, where
the sum is taken over y € B; (@) under the constraint ¥ < f3. In fact we are going to
show

-1 10t (g7 2/ (zjw)))
wiow i/ \ZjWj)) s
( 1 n q )l _ Z H T Vi (l c ZZO); (]6)
(@) ly|=1 1<i,j<n (‘1 ! Zi/Zf)y,-
where the sum is over y € Z%, such that |y| = [, and wy,...,wy,21,...,2, are

arbitrary parameters. The relation (I3) is deduced from () |p—nt1 by setting
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Zi =¢q%wi = q’ﬁi and specializing f8;’s to nonnegative integers. In particular, the
constraint y < 8 automatically arises from the i = j factor [T}, (¢~ 7’1“*31) in the
numerator. To show (I[8) we rewrite it slightly as

(q) W\ li= (q)%. 1<,7éj<n( _y/Zj/Zi)yi

Denote the RHS by F,(w1,...,wn|z1,...,2,). We will suppress a part of the argu-
ments when they are kept unchanged in the formulas. It is easy to see

2W2 21w
Fy(wi,walz1,22) = F(wa,wi22,21) = Fn<77 o 71,22).
Thus the coefficients in the expansion F,(wi,walz1,22) = Yo<; </ C:, j(zhzz)wlwz

are rational functions in zi,. .. ,z, obeying C; ;(z1,22) = C} i(z2,21) = (Z2 ) ]Cj i(z1,22).
On the other hand from the explicit formula (I'2), one also finds that any C; ; (z1,22)
remains finite in the either limit Z—l Q —ooor & 2 (0 fori> 3. It follows that

Cij(z1,22) =0unless i = j, hence w
Fo(wi,wa, oo swylziy e yzn) = Fyp(Liwiwo,wa, oo wilzi, .o z0).
Moreover it is easily seen
I’—;,(1,14/1W2,W37 e ,Wn|Z1,Zz, . ,Zn) = Fn_l(W1W2,W3, P ,W,,|Zz, e 7Zn).
Repeating this we reach F (wy - --wy|z,) giving the LHS of (IC7).

We note that the sum-to-1 (I4) does not hold in the elliptic case. Remember that
our local states are taken from & = 1 +Z"+! with a generic n € C**!. So we set
a=mn +adwith a € Z"! etc in (@), and assume that it is valid also for &, b,é,d. Itis
easy to check

Proposition 1. Assume [ < m and |q| < 1. Then the following equality holds:

R N e (B
%grloslm(n"f-(inﬁ-f)trig_q ! ’ l g H Y q7 (18)

i=1

where the limit means 1M; — Nix1 — oo for all 1 <i < n, and the RHS is zero unless
The limit reduces the unrestricted trigonometric A,(f) face model to the vertex model
at a special value of the spectral parameter in the sense that the RHS of (I8)[,_, »
reproduces [B, eq.(23)] that was obtained as the special value of the quantum R

matrix associated with the symmetric tensor representation of U, (Aﬁ,l)).
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3 Discussion

Since the weights V[/lm(zlz ‘u) remain unchanged by shifting a,b,c,d € & by

const- (1,...,1), we regard them as elements from & := &2 /C(1,...,1) in the se-
quel. Given I, my,...,my € Z>y and u,wy,...,wy € C, the transfer matrix 7;(u) =
My ..My

T (u Wiy of the unrestricted Aﬁ,l)

dition is a linear map on the space of independent row configurations on length
M row @ClalV,...a™)) where the sum is taken over a!),...a™) € 2 such that
a1 —a) ¢ B, (aM+) = V). Tts action is specified as 7;(u)|p(1),...6M)) =

face model with periodic boundary con-

Yo o0 Ti(u )Zii) Z; la),...a™) in terms of the matrix elements
a“ a® gt M+1) _ (1) p(M+1) _ (1)
Tl valm,( (i) b(erl) I/L*Wl) ( =a ’b =b )
(19)
Theorem [ tells that S; := T1( Ju=w, =-.—wy, has a simple factorized matrix elements.

(M

We write its elements as Sz » 1) - The star-triangle relation (@) implies the com-

mutativity (), T ()] — (515p] = 0.
Let us consider whether X = 7;(u) or S; admits an interpretation as a Markov
matrix of a discrete time stochastic process. The related issue was treated in [3]

for n = 1 and mainly when min(l,my,...,my) = 1. One needs (i) sum-to-1 prop-

M a( ) ),..a™
erty Y, 4 X B0 = 1 and (ii) nonnegativity VX () > 0. We concen-

trate on the trlgonometrlc case in what follows. From Theorem [ and the fact that
Sim (C d) ~ in (I3) is independent of a, (i) indeed holds for S;. On the other hand
' tri

(3) also indicates that (ii) is not valid in general without confining the site variables
in a certain range. A typical such prescription is restriction [4, B, 8], where one takes
L=/{+n+1in () with some ¢ € Z> and lets the site variables range over the fi-
nite set of level ¢ dominant integral weights {(L+ apt1 —a1 — 1)Ag+ YL (ai —
aiv1 — DA | L4 ayi1 > a) > - > apy1,a —aj € Z}. They are to obey a stronger
adjacency condition [8, p546, (c-2)] than (B) which is actually the fusion rule of
the WZW conformal field theory. (The formal limit ¢ — oo still works to restrict the
site variables to the positive Weyl chamber and is called “classically restricted”.)
Then the star-triangle relation remains valid by virtue of nontrivial cancellation of
unwanted terms. However, discarding the contribution to the sum (I4) from those
b not satisfying the adjacency condition spoils the sum-to-1 property. For example
when (n,l,m) = (2,1,2),a=(2,1,0),c = (4,2,0),d = (3,1,0) and ¢ is sufficiently

. . 1 1
large, the unrestricted sum () consists of two terms Sj ,, (Z lc’ )mg = G)q %

for b= (4,1,0) and Slm< ) = (2);1 (@5 for b — (3,2,0) summing up to 1,

trig Vg (4%9)

but #' must be discarded in the restricted case since a "S> b’ [8, (c-2)] does not hold.
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Thus we see that in order to satisfy (i) and (ii) simultaneously one needs to resort to
a construction different from the restriction.
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