Remarks on $A_{n}^{(1)}$ face weights

Atsuo Kuniba

Abstract

Elementary proofs are presented for the factorization of the elliptic Boltzmann weights of the $A_{n}^{(1)}$ face model, and for the sum-to-1 property in the trigonometric limit, at a special point of the spectral parameter. They generalize recent results obtained in the context of the corresponding trigonometric vertex model.

1 Introduction

In the recent work [8], the quantum R matrix for the symmetric tensor representation of the Drinfeld-Jimbo quantum affine algebra $U_{q}\left(A_{n}^{(1)}\right)$ was revisited. A new factorized formula at a special value of the spectral parameter and a certain sum rule called sum-to-1 were established. These properties have led to vertex models that can be interpreted as integrable Markov processes on one-dimensional lattice including several examples studied earlier [[\mathbb{Z}, Fig.1,2]. In this note we report analogous properties of the Boltzmann weights for yet another class of solvable lattice models known as IRF (interaction round face) models [2] or face models for short. More specifically, we consider the elliptic fusion $A_{n}^{(1)}$ face model corresponding to the symmetric tensor representation [6, 5]. For $n=1$, it reduces to [[1] and [4] when the fusion degree is 1 and general, respectively. There are restricted and unrestricted versions of the model. The trigonometric case of the latter reduces to the $U_{q}\left(A_{n}^{(1)}\right)$ vertex model when the site variables tend to infinity. See Proposition Il. In this sense Theorem \mathbb{I} and Theorem \rrbracket given below, which are concerned with the unrestricted version, provide generalizations of [8, Th.2] and [8, eq.(30)] so as to include finite site variables (and also to the elliptic case in the former). In Section 3 we will also

[^0]comment on the restricted version and difficulties to associate integrable stochastic models.

2 Results

Let $\theta_{1}(u)=\theta_{1}(u, p)=2 p^{\frac{1}{4}} \sin \pi u \prod_{k=1}^{\infty}\left(1-2 p^{2 k} \cos 2 \pi u+p^{4 k}\right)\left(1-p^{2 k}\right)$ be one of the Jacobi theta function $(|p|<1)$ enjoying the quasi-periodicity

$$
\begin{equation*}
\theta_{1}\left(u+1 ; e^{\pi i \tau}\right)=-\theta_{1}\left(u ; e^{\pi i \tau}\right), \quad \theta_{1}\left(u+\tau ; e^{\pi i \tau}\right)=-e^{-\pi i \tau-2 \pi i u} \theta_{1}\left(u ; e^{\pi i \tau}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{Im} \tau>0$. We set

$$
[u]=\theta_{1}\left(\frac{u}{L}, p\right), \quad[u]_{k}=[u][u-1] \cdots[u-k+1], \quad\left[\begin{array}{l}
u \tag{2}\\
k
\end{array}\right]=\frac{[u]_{k}}{[k]_{k}} \quad\left(k \in \mathbb{Z}_{\geq 0}\right)
$$

with a nonzero parameter L. These are elliptic analogue of the q-factorial and the q-binomial:

$$
(z)_{m}=(z ; q)_{m}=\prod_{i=0}^{m-1}\left(1-z q^{i}\right), \quad\binom{m}{l}_{q}=\frac{(q)_{m}}{(q)_{l}(q)_{m-l}}
$$

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ with any k we write $|\alpha|=\alpha_{1}+\cdots+\alpha_{k}$. The relation $\beta \geq \gamma$ or equivalently $\gamma \leq \beta$ means $\beta_{i} \geq \gamma_{i}$ for all i.

We take the set of local states as $\tilde{\mathscr{P}}=\eta+\mathbb{Z}^{n+1}$ with a generic $\eta \in \mathbb{C}^{n+1}$. Given positive integers l and m, let $a, b, c, d \in \tilde{\mathscr{P}}$ be the elements such that

$$
\begin{equation*}
\alpha=d-a \in B_{l}, \quad \beta=c-d \in B_{m}, \quad \gamma=c-b \in B_{l}, \quad \delta=b-a \in B_{m}, \tag{3}
\end{equation*}
$$

where B_{m} is defined by

$$
\begin{equation*}
B_{m}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \in \mathbb{Z}_{\geq 0}^{n+1}| | \alpha \mid=m\right\} \tag{4}
\end{equation*}
$$

The relations (3) imply $\alpha+\beta=\gamma+\delta$. The situation is summarized as

To the above configuration round a face we assign a function of the spectral parameter u called Boltzmann weight. Its unnormalized version, denoted by $\bar{W}_{l, m}\left(\left.\begin{array}{ll}a & b \\ d & c\end{array} \right\rvert\, u\right)$, is constructed from the $l=1$ case as follows:
$\bar{W}_{l, m}\left(\left.\begin{array}{ll}a & b \\ d & c\end{array} \right\rvert\, u\right)=\sum \prod_{i=0}^{l-1} \bar{W}_{1, m}\left(\left.\begin{array}{cc}a^{(i)} & b^{(i)} \\ a^{(i+1)} & b^{(i+1)}\end{array} \right\rvert\, u-i\right)$,
$\bar{W}_{1, m}\left(\left.\begin{array}{ll}a & b \\ d & c\end{array} \right\rvert\, u\right)=\frac{\left[u+b_{v}-a_{\mu}\right] \prod_{j=1(j \neq \mu)}^{n+1}\left[b_{v}-a_{j}+1\right]}{\prod_{j=1}^{n+1}\left[c_{v}-b_{j}\right]} \quad\left(d=a+\mathbf{e}_{\mu}, c=b+\mathbf{e}_{v}\right)$,
where $\mathbf{e}_{i}=(0, \ldots, 0, \stackrel{i \text { th }}{1}, 0, \ldots, 0)$. In (IV), $a^{(0)}, \ldots, a^{(l)} \in \tilde{\mathscr{P}}$ is a path form $a^{(0)}=$ a to $a^{(l)}=d$ such that $a^{(i+1)}-a^{(i)} \in B_{1}(0 \leq i<l)$. The sum is taken over $b^{(1)}, \ldots, b^{(l-1)} \in \tilde{\mathscr{P}}$ satisfying the conditions $\bar{b}^{(i+1)}-b^{(i)} \in B_{1}(0 \leq i<l)$ with $b^{(0)}=b$ and $b^{(l)}=c$. It is independent of the choice of $a^{(1)}, \ldots, a^{(l-1)}$ (cf. [4, Fig.2.4]). We understand that $\bar{W}_{l, m}\left(\left.\begin{array}{lll}a & b \\ d & c\end{array} \right\rvert\, u\right)=0$ unless (Bl) is satisfied for some $\alpha, \beta, \gamma, \delta$.

The normalized weight is defined by

$$
W_{l, m}\left(\left.\begin{array}{ll}
a & b \tag{6}\\
d & c
\end{array} \right\rvert\, u\right)=\bar{W}_{l, m}\left(\left.\begin{array}{ll}
a & b \\
d & c
\end{array} \right\rvert\, u\right) \frac{[1]^{l}}{[l]_{l}}\left[\begin{array}{c}
m \\
l
\end{array}\right]^{-1} .
$$

It satisfies [5] the (unrestricted) star-triangle relation (or dynamical Yang-Baxter equation) [2]:

$$
\begin{align*}
& \sum_{g} W_{k, m}\left(\left.\begin{array}{ll}
a & b \\
f & g
\end{array} \right\rvert\, u\right) W_{l, m}\left(\left.\begin{array}{ll}
f & g \\
e & d
\end{array} \right\rvert\, v\right) W_{k, l}\left(\left.\begin{array}{ll}
b & c \\
g & d
\end{array} \right\rvert\, u-v\right) \tag{7}\\
& =\sum_{g} W_{k, l}\left(\left.\begin{array}{ll}
a & g \\
f & e
\end{array} \right\rvert\, u-v\right) W_{l, m}\left(\left.\begin{array}{ll}
a & b \\
g & c
\end{array} \right\rvert\, v\right) W_{k, m}\left(\left.\begin{array}{ll}
g & c \\
e & d
\end{array} \right\rvert\, u\right),
\end{align*}
$$

where the sum extends over $g \in \tilde{\mathscr{P}}$ giving nonzero weights. Under the same setting (B]) as in (6), we introduce the product

$$
S_{l, m}\left(\begin{array}{ll}
a & b \tag{8}\\
d & c
\end{array}\right)=\left[\begin{array}{c}
m \\
l
\end{array}\right]^{-1} \prod_{1 \leq i, j \leq n+1} \frac{\left[c_{i}-d_{j}\right]_{c_{i}-b_{i}}}{\left[c_{i}-b_{j}\right] c_{i}-b_{i}} .
$$

Note that $S_{l, m}\left(\begin{array}{ll}a & b \\ d & c\end{array}\right)=0$ unless $d \leq b$ because of the factor $\prod_{i=1}^{n+1}\left[c_{i}-d_{i}\right]_{c_{i}-b_{i}}$. The following result giving an explicit factorized formula of the weight $W_{l, m}$ at special value of the spectral parameter is the elliptic face model analogue of [8, Th.2].

Theorem 1. If $l \leq m$, the following equality is valid:

$$
W_{l, m}\left(\left.\begin{array}{ll}
a & b \tag{9}\\
d & c
\end{array} \right\rvert\, u=0\right)=S_{l, m}\left(\begin{array}{ll}
a & b \\
d & c
\end{array}\right) .
$$

Proof. We are to show

$$
\bar{W}_{l, m}\left(\left.\begin{array}{ll}
a & b \tag{10}\\
d & c
\end{array} \right\rvert\, 0\right)=\frac{[l]_{l}}{[1]^{l}} \prod_{i, j} \frac{\left[c_{i}-d_{j}\right]_{c_{i}-b_{i}}}{\left[c_{i}-b_{j}\right]_{c_{i}-b_{i}}} .
$$

Here and in what follows unless otherwise stated, the sums and products are taken always over $1, \ldots, n+1$ under the condition (if any) written explicitly. We invoke the induction on l. It is straightforward to check (띠) for $l=1$. By the definition (5I) the $l+1$ case is expressed as
$\bar{W}_{l+1, m}\left(\left.\begin{array}{ll}a & b \\ d & c\end{array} \right\rvert\, 0\right)=\sum_{v} \bar{W}_{l, m}\left(\left.\begin{array}{cc}a & b \\ d^{\prime} & c^{\prime}\end{array} \right\rvert\, 0\right) \bar{W}_{1, m}\left(\left.\begin{array}{cc}d^{\prime} & c^{\prime} \\ d & c\end{array} \right\rvert\,-l\right) \quad\left(d^{\prime}=d-\mathbf{e}_{\mu}, c^{\prime}=c-\mathbf{e}_{v}\right)$
for some fixed $\mu \in[1, n+1]$. Due to the induction hypothesis on $\bar{W}_{l, m}$, the equality to be shown becomes

$$
\begin{align*}
& \sum_{v} \frac{[l]_{l}}{[1]^{l}}\left(\prod_{i, j} \frac{\left[c_{i}^{\prime}-d_{j}^{\prime}\right]_{c_{i}^{\prime}-b_{i}}}{\left[c_{i}^{\prime}-b_{j}\right]_{c_{i}^{\prime}-b_{i}}}\right) \frac{\left[-l+c_{v}^{\prime}-d_{\mu}^{\prime}\right] \prod_{k \neq \mu}\left[c_{v}^{\prime}-d_{k}^{\prime}+1\right]}{\prod_{k}\left[c_{v}-c_{k}^{\prime}\right]} \tag{11}\\
& =\frac{[l+1]_{l+1}}{[1]^{l+1}} \prod_{i, j} \frac{\left[c_{i}-d_{j}\right]_{c_{i}-b_{i}}}{\left[c_{i}-b_{j}\right]_{c_{i}-b_{i}}} .
\end{align*}
$$

After removing common factors using $c_{i}^{\prime}=c_{i}-\delta_{i v}, d_{i}^{\prime}=d_{i}-\delta_{i \mu}$, one finds that (II) is equivalent to

$$
\sum_{v}\left[c_{v}-d_{\mu}-l\right] \prod_{i \neq v} \frac{\left[c_{i}-d_{\mu}+1\right]}{\left[c_{v}-c_{i}\right]} \prod_{j}\left[c_{v}-b_{j}\right]=[l+1] \prod_{i}\left[b_{i}-d_{\mu}+1\right]
$$

with l determined by $l+1=\sum_{j}\left(c_{j}-b_{j}\right)$. One can eliminate d_{μ} and rescale the variables by $\left(b_{j}, c_{j}\right) \rightarrow\left(L b_{j}+d_{\mu}, L c_{j}+d_{\mu}\right)$ for all j. The resulting equality follows from Lemmall.

Lemma 1. Let $b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n} \in \mathbb{C}$ be generic and set $s=\sum_{i=1}^{n}\left(c_{i}-b_{i}\right)$. Then for any $n \in \mathbb{Z}_{\geq 1}$ the following identity holds:

$$
\sum_{i=1}^{n} \theta_{1}\left(z+c_{i}-s\right) \prod_{j=1}^{n} \frac{\theta_{1}\left(z+c_{j}\right)}{\theta_{1}\left(c_{i}-c_{j}\right)} \prod_{j=1}^{n} \theta_{1}\left(c_{i}-b_{j}\right)=\theta_{1}(s) \prod_{i=1}^{n} \theta_{1}\left(z+b_{i}\right)
$$

Proof. Denote the LHS - RHS by $f(z)$. From (III) we see that $f(z)$ satisfies ([2) with $B=\frac{n}{2}, A_{1}=\frac{n(1+\tau)}{2}+\sum_{j=1}^{n} b_{j}$ and $A_{2}=n$. Moreover it is easily checked that $f(z)$ possesses zeros at $z=-c_{1}, \ldots,-c_{n}$. Therefore Lemma \boxtimes claims $-\left(c_{1}+\cdots+c_{n}\right)-$ $\left(B \tau+\frac{1}{2} A_{2}-A_{1}\right) \equiv 0 \bmod \mathbb{Z}+\mathbb{Z} \tau$. But this gives $s \equiv 0$ which is a contradiction since b_{j}, c_{j} can be arbitrary. Therefore $f(z)$ must vanish identically.

Lemma 2. Let $\operatorname{Im} \tau>0$. Suppose an entire function $f(z) \not \equiv 0$ satisfies the quasiperiodicity

Remarks on $A_{n}^{(1)}$ face weights

$$
\begin{equation*}
f(z+1)=e^{-2 \pi i B} f(z), \quad f(z+\tau)=e^{-2 \pi i\left(A_{1}+A_{2} z\right)} f(z) \tag{12}
\end{equation*}
$$

Then $A_{2} \in \mathbb{Z}_{\geq 0}$ holds and $f(z)$ has exactly A_{2} zeros $z_{1}, \ldots, z_{A_{2}} \bmod \mathbb{Z}+\mathbb{Z} \tau$. Moreover $z_{1}+\cdots+z_{A_{2}} \equiv B \tau+\frac{1}{2} A_{2}-A_{1} \quad \bmod \mathbb{Z}+\mathbb{Z} \tau$ holds.

Proof. Let C be a period rectangle $(\xi, \xi+1, \xi+1+\tau, \xi+\tau)$ on which there is no zero of $f(z)$. From the Cauchy theorem the number of zeros of $f(z)$ in C is equal to $\int_{C} \frac{f^{\prime}(z)}{f(z)} \frac{d z}{2 \pi i}$. Calculating the integral by using ([Ш2) one gets A_{2}. The latter assertion can be shown similarly by considering the integral $\int_{C} \frac{z f^{\prime}(z)}{f(z)} \frac{d z}{2 \pi i}$.

From Theorem \mathbb{D} and ($\mathbb{D})$ it follows that $S_{l, m}\left(\begin{array}{ll}a & b \\ d & c\end{array}\right)$ also satisfies the (unrestricted) star-triangle relation (II) without spectral parameter. The discrepancy of the factorizing points $u=0$ in ($(\mathbb{)}$) and " $u=l-m$ " in [$\mathbb{8}$, Th.2] is merely due to a conventional difference in defining the face and the vertex weights.

Since (6) and (四) are homogeneous of degree 0 in the symbol $[\cdots]$, the trigonometric limit $p \rightarrow 0$ may be understood as replacing (Z) by $[u]=q^{u / 2}-q^{-u / 2}$ with generic $q=\exp \frac{2 \pi i}{L}$. Under this prescription the elliptic binomial $\left[\begin{array}{c}m \\ l\end{array}\right]$ from (Z) is replaced by $q^{l(l-m) / 2}\binom{m}{l}_{q}$, therefore the trigonometric limit of ($\left.\mathbb{Z}\right)$ becomes

$$
S_{l, m}\left(\begin{array}{ll}
a & b \tag{13}\\
d & c
\end{array}\right)_{\text {trig }}=\binom{m}{l}_{q}^{-1} \prod_{1 \leq i, j \leq n+1} \frac{\left(q^{b_{i}-d_{j}+1}\right)_{c_{i}-b_{i}}}{\left(q^{b_{i}-b_{j}+1}\right)_{c_{i}-b_{i}}} .
$$

The following result is a trigonometric face model analogue of [8, Th.6].
Theorem 2. Suppose $l \leq m$. Then the sum-to-1 holds in the trigonometric case:

$$
\sum_{b} S_{l, m}\left(\begin{array}{ll}
a & b \tag{14}\\
d & c
\end{array}\right)_{\mathrm{trig}}=1
$$

where the sum runs over those b satisfying $c-d \in B_{m}$ and $d-a \in B_{l}$.
Proof. The relation (II4) is equivalent to

$$
\begin{equation*}
\binom{m}{l}_{q}=\sum_{\gamma \in B_{l}, \gamma \leq \beta} \prod_{1 \leq i, j \leq n+1} \frac{\left(q^{c_{i j}-\gamma_{i}+\beta_{j}+1}\right) \gamma_{i}}{\left(q^{c_{i j}-\gamma_{i}+\gamma_{j}+1}\right) \gamma_{i}} \quad\left(c_{i j}=c_{i}-c_{j}\right) \tag{15}
\end{equation*}
$$

for any fixed $\beta=\left(\beta_{1}, \ldots, \beta_{n+1}\right) \in B_{m}, l \leq m$ and the parameters c_{1}, \ldots, c_{n+1}, where the sum is taken over $\gamma \in B_{l}(\mathbb{4})$ under the constraint $\gamma \leq \beta$. In fact we are going to show

$$
\begin{equation*}
\frac{\left(w_{1}^{-1} \ldots w_{n}^{-1} q^{-l+1}\right)_{l}}{(q)_{l}}=\sum_{|\gamma|=l} \prod_{1 \leq i, j \leq n} \frac{\left(q^{-\gamma_{i}+1} z_{i} /\left(z_{j} w_{j}\right)\right)_{\gamma_{i}}}{\left(q^{\gamma_{j}-\gamma_{i}+1} z_{i} / z_{j}\right)_{\gamma_{i}}} \quad\left(l \in \mathbb{Z}_{\geq 0}\right) \tag{16}
\end{equation*}
$$

where the sum is over $\gamma \in \mathbb{Z}_{\geq 0}^{n}$ such that $|\gamma|=l$, and $w_{1}, \ldots, w_{n}, z_{1}, \ldots, z_{n}$ are arbitrary parameters. The relation ([5) is deduced from (ㄸ6) $\left.\right|_{n \rightarrow n+1}$ by setting
$z_{i}=q^{c_{i}}, w_{i}=q^{-\beta_{i}}$ and specializing β_{i} 's to nonnegative integers. In particular, the constraint $\gamma \leq \beta$ automatically arises from the $i=j$ factor $\prod_{i=1}^{n}\left(q^{-\gamma_{i}+1+\beta_{i}}\right) \gamma_{i}$ in the numerator. To show (16) we rewrite it slightly as

$$
\begin{equation*}
q^{\frac{l^{2}}{2}} \frac{\left(w_{1} \ldots w_{n}\right)_{l}}{(q)_{l}}=\sum_{|\gamma|=l} \prod_{i=1}^{n} q^{\frac{\gamma_{i}^{2}}{2}} \frac{\left(w_{i}\right)_{\gamma_{i}}}{(q)_{\gamma_{i}}} \prod_{1 \leq i \neq j \leq n} \frac{\left(z_{j} w_{j} / z_{i}\right)_{\gamma_{i}}}{\left(q^{-\gamma_{j}} z_{j} / z_{i}\right)_{\gamma_{i}}} \tag{17}
\end{equation*}
$$

Denote the RHS by $F_{n}\left(w_{1}, \ldots, w_{n} \mid z_{1}, \ldots, z_{n}\right)$. We will suppress a part of the arguments when they are kept unchanged in the formulas. It is easy to see

$$
F_{n}\left(w_{1}, w_{2} \mid z_{1}, z_{2}\right)=F\left(w_{2}, w_{1} \mid z_{2}, z_{1}\right)=F_{n}\left(\frac{z_{2} w_{2}}{z_{1}}, \left.\frac{z_{1} w_{1}}{z_{2}} \right\rvert\, z_{1}, z_{2}\right)
$$

Thus the coefficients in the expansion $F_{n}\left(w_{1}, w_{2} \mid z_{1}, z_{2}\right)=\sum_{0 \leq i, j \leq l} C_{i, j}\left(z_{1}, z_{2}\right) w_{1}^{i} w_{2}^{j}$ are rational functions in z_{1}, \ldots, z_{n} obeying $C_{i, j}\left(z_{1}, z_{2}\right)=C_{j, i}\left(z_{2}, z_{1}\right)=\left(\frac{z_{1}}{z_{2}}\right)^{i-j} C_{j, i}\left(z_{1}, z_{2}\right)$. On the other hand from the explicit formula ([Ш7), one also finds that any $C_{i, j}\left(z_{1}, z_{2}\right)$ remains finite in the either limit $\frac{z_{1}}{z_{2}}, \frac{z_{2}}{z_{i}} \rightarrow \infty$ or $\frac{z_{1}}{z_{2}}, \frac{z_{2}}{z_{i}} \rightarrow 0$ for $i \geq 3$. It follows that $C_{i, j}\left(z_{1}, z_{2}\right)=0$ unless $i=j$, hence

$$
F_{n}\left(w_{1}, w_{2}, \ldots, w_{n} \mid z_{1}, \ldots, z_{n}\right)=F_{n}\left(1, w_{1} w_{2}, w_{3}, \ldots, w_{n} \mid z_{1}, \ldots, z_{n}\right)
$$

Moreover it is easily seen

$$
F_{n}\left(1, w_{1} w_{2}, w_{3}, \ldots, w_{n} \mid z_{1}, z_{2}, \ldots, z_{n}\right)=F_{n-1}\left(w_{1} w_{2}, w_{3}, \ldots, w_{n} \mid z_{2}, \ldots, z_{n}\right)
$$

Repeating this we reach $F_{1}\left(w_{1} \cdots w_{n} \mid z_{n}\right)$ giving the LHS of (IT7).
We note that the sum-to-1 (I4) does not hold in the elliptic case. Remember that our local states are taken from $\tilde{\mathscr{P}}=\eta+\mathbb{Z}^{n+1}$ with a generic $\eta \in \mathbb{C}^{n+1}$. So we set $a=\eta+\tilde{a}$ with $\tilde{a} \in \mathbb{Z}^{n+1}$ etc in (4) , and assume that it is valid also for $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$. It is easy to check
Proposition 1. Assume $l \leq m$ and $|q|<1$. Then the following equality holds:

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} S_{l, m}\binom{\eta+\tilde{a} \eta+\tilde{b}}{\eta+\tilde{d} \quad \eta+\tilde{c}}_{\mathrm{trig}}=q^{\sum_{i<j}\left(\beta_{i}-\gamma_{i}\right) \gamma_{j}}\binom{m}{l}_{q}^{-1} \prod_{i=1}^{n+1}\binom{\beta_{i}}{\gamma_{i}}_{q} \tag{18}
\end{equation*}
$$

where the limit means $\eta_{i}-\eta_{i+1} \rightarrow \infty$ for all $1 \leq i \leq n$, and the RHS is zero unless $0 \leq \gamma_{i} \leq \beta_{i}, \forall i$.
The limit reduces the unrestricted trigonometric $A_{n}^{(1)}$ face model to the vertex model at a special value of the spectral parameter in the sense that the RHS of $\left.(\mathbb{I})\right|_{q \rightarrow q^{2}}$ reproduces [$\underline{\underline{0}}$, eq.(23)] that was obtained as the special value of the quantum R matrix associated with the symmetric tensor representation of $U_{q}\left(A_{n}^{(1)}\right)$.

3 Discussion

Since the weights $W_{l, m}\left(\left.\begin{array}{ll}a & b \\ d & c\end{array} \right\rvert\, u\right)$ remain unchanged by shifting $a, b, c, d \in \tilde{\mathscr{P}}$ by const $\cdot(1, \ldots, 1)$, we regard them as elements from $\mathscr{P}:=\tilde{\mathscr{P}} / \mathbb{C}(1, \ldots, 1)$ in the sequel. Given $l, m_{1}, \ldots, m_{M} \in \mathbb{Z}_{\geq 1}$ and $u, w_{1}, \ldots, w_{M} \in \mathbb{C}$, the transfer matrix $T_{l}(u)=$ $T_{l}\left(u \left\lvert\, \begin{array}{c}m_{1}, \ldots, m_{M} \\ w_{1}, \ldots, w_{M}\end{array}\right.\right)$ of the unrestricted $A_{n}^{(1)}$ face model with periodic boundary condition is a linear map on the space of independent row configurations on length M row $\oplus \mathbb{C}\left|a^{(1)}, \ldots a^{(M)}\right\rangle$ where the sum is taken over $a^{(1)}, \ldots a^{(M)} \in \mathscr{P}$ such that $a^{(i+1)}-a^{(i)} \in B_{m_{i}}\left(a^{(M+1)}=a^{(1)}\right)$. Its action is specified as $T_{l}(u)\left|b^{(1)}, \ldots b^{(M)}\right\rangle=$ $\sum_{a^{(1)}, \ldots a^{(M)}} T_{l}(u)_{b^{(1)}, \ldots b^{(M)}}^{a^{(1)}, \ldots a^{(M)}}\left|a^{(1)}, \ldots a^{(M)}\right\rangle$ in terms of the matrix elements

$$
T_{l}(u)_{b^{(1)}, \ldots b^{(M)}}^{a^{(1)}, \ldots a^{(M)}}=\prod_{i=1}^{M} W_{l, m_{i}}\left(\left.\begin{array}{cc}
a^{(i)} & a^{(i+1)} \tag{19}\\
b^{(i)} & b^{(i+1)}
\end{array} \right\rvert\, u-w_{i}\right) \quad\left(a^{(M+1)}=a^{(1)}, b^{(M+1)}=b^{(1)}\right)
$$

Theorem \mathbb{d} tells that $S_{l}:=T_{l}(u)_{u=w_{1}=\cdots=w_{M}}$ has a simple factorized matrix elements. We write its elements as $S_{l, b^{(1)}, \ldots b^{(M)}}^{a^{(1)}, \ldots}$. The star-triangle relation (पI) implies the commutativity $\left[T_{l}(u), T_{l^{\prime}}\left(u^{\prime}\right)\right]=\left[S_{l}, S_{l^{\prime}}\right]=0$.

Let us consider whether $X=T_{l}(u)$ or S_{l} admits an interpretation as a Markov matrix of a discrete time stochastic process. The related issue was treated in [3] for $n=1$ and mainly when $\min \left(l, m_{1}, \ldots, m_{M}\right)=1$. One needs (i) sum-to-1 property $\sum_{a^{(1)}, \ldots a^{(M)}} X_{b^{(1)}, \ldots b^{(M)}}^{a^{(1)}, \ldots a^{(M)}}=1$ and (ii) nonnegativity $\forall X_{b^{(1)}, \ldots b^{(M)}}^{a^{(1)}, \ldots a^{(M)}} \geq 0$. We concentrate on the trigonometric case in what follows. From Theorem \mathbb{D} and the fact that $S_{l, m}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ trig in ([13) is independent of a, (i) indeed holds for S_{l}. On the other hand (II3) also indicates that (ii) is not valid in general without confining the site variables in a certain range. A typical such prescription is restriction [4, 6, [5], where one takes $L=\ell+n+1$ in (Z) with some $\ell \in \mathbb{Z}_{\geq 1}$ and lets the site variables range over the finite set of level ℓ dominant integral weights $\left\{\left(L+a_{n+1}-a_{1}-1\right) \Lambda_{0}+\sum_{i=1}^{n}\left(a_{i}-\right.\right.$ $\left.\left.a_{i+1}-1\right) \Lambda_{i} \mid L+a_{n+1}>a_{1}>\cdots>a_{n+1}, a_{i}-a_{j} \in \mathbb{Z}\right\}$. They are to obey a stronger adjacency condition [5, p546, (c-2)] than (3]) which is actually the fusion rule of the WZW conformal field theory. (The formal limit $\ell \rightarrow \infty$ still works to restrict the site variables to the positive Weyl chamber and is called "classically restricted".) Then the star-triangle relation remains valid by virtue of nontrivial cancellation of unwanted terms. However, discarding the contribution to the sum ([4]) from those b not satisfying the adjacency condition spoils the sum-to-1 property. For example when $(n, l, m)=(2,1,2), a=(2,1,0), c=(4,2,0), d=(3,1,0)$ and ℓ is sufficiently large, the unrestricted sum (14) consists of two terms $S_{l, m}\left(\begin{array}{ll}a & b \\ d & c\end{array}\right)_{\text {trig }}=\binom{2}{1}_{q}^{-1} \frac{\left(q^{-1} ; q\right)_{1}}{\left(q^{-2} ; q\right)_{1}}$ for $b=(4,1,0)$ and $S_{l, m}\left(\begin{array}{ll}a & b^{\prime} \\ d & c\end{array}\right)_{\text {trig }}=\binom{2}{1}_{q}^{-1} \frac{\left(q^{3} ; q\right)_{1}}{\left(q^{2} ; q\right)_{1}}$ for $b^{\prime}=(3,2,0)$ summing up to 1, but b^{\prime} must be discarded in the restricted case since $a \stackrel{m=2}{\Rightarrow} b^{\prime}[5,(\mathrm{c}-2)]$ does not hold.

Thus we see that in order to satisfy (i) and (ii) simultaneously one needs to resort to a construction different from the restriction.

Acknowledgements The author thanks Masato Okado for discussion. This work is supported by Grants-in-Aid for Scientific Research No. 15K13429 from JSPS.

References

1. G. E. Andrews, R. J. Baxter and P. J. Forrester, Eight vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys. 35, (1984) 193-266.
2. R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London (1982).
3. A. Borodin, Symmetric elliptic functions, IRF models, and dynamic exclusion processes, arXiv:1701.05239.
4. E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identites, Adv. Stud. in Pure Math. 16 (1988) 17-122.
5. M. Jimbo, A. Kuniba, T. Miwa and M. Okado, The $A_{n}^{(1)}$ face models, Commun. Math. Phys. 119 (1989) 543-565.
6. M. Jimbo, T. Miwa and M. Okado, Symmetric tensors of the $A_{n-1}^{(1)}$ family, Algebraic Analysis, 1 (1988) 253-266.
7. J. Kuan, An algebraic construction of duality functions for the stochastic $U_{q}\left(A_{n}^{(1)}\right)$ vertex model and its degenerations, arXiv:1701.04468.
8. A. Kuniba, V. V. Mangazeev, S. Maruyama and M. Okado, Stochastic R matrix for $U_{q}\left(A_{n}^{(1)}\right)$, Nucl. Phys. B913 (2016) 248-277.

[^0]: Atsuo Kuniba
 Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan, e-mail: at.suo.s. kunibadqmail.com

