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Abstract In this note, we summarise some regularity results recently obtained for
an optimal transport problem where the matter transported is either accelerated by
an external force field, or self-interacting, at a given intermediate time.

1 Background

This note is a summary of an ongoing work [5]. The motivation comes from a previ-
ous work by the second author [6], where he studies the motion of a self-gravitating
matter, classically described by the Euler-Poisson system. Letting ρ be the density
of the matter, the gravitational field generated by a continuum of matter with density
ρ is the gradient of a potential p linked to ρ by a Poisson coupling. The system is
thus the following  ∂tρ +∇ · (ρv) = 0,

∂t(ρv)+∇ · (ρv⊗ v) = −ρ∇p,
∆ p = ρ.

(1)

A well known problem in cosmology, named the reconstruction problem, is to
find a solution to (1) satisfying

ρ|t=0 = ρ0, ρ|t=T = ρT .

In [6], the reconstruction problem was formulated into a minimisation problem,
minimising the action of the Lagrangian which is a convex functional. Through
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this variational formulation, the reconstruction problem becomes very similar to the
time continuous formulation of the optimal transportation problem of Benamou and
Brenier [1], and the existence, uniqueness of the minimiser was obtained by use of
the Monge-Kantorovich duality. In the context of optimal transport as in [6], there
holds v = ∇ϕ for some potential ϕ , and the author obtained partial regularity results
for ϕ and ρ , as well as the consistency of the minimiser with the solution of the
Euler-Poisson system.

The optimal transport problem of [6] was formulated as finding minimisers of
the action of the Lagrangian

I(ρ,v, p) =
1
2

∫ T

0

∫
Td

ρ(t,x)|v(t,x)|2 + |∇p(t,x)|2dxdt, (2)

over all ρ, p,v satisfying

∂tρ +∇ · (ρv) = 0,
ρ(0) = ρ0, ρ(T ) = ρT ,

∆ p = ρ,

where Td denotes the d-dimensional torus, as the study in [6] was performed in the
space-periodic case.

In the work [5] we address the more general problem of finding minimisers for
the action

I(ρ,v, p) =
1
2

∫ T

0

∫
Td

ρ(t,x)|v(t,x)|2 +F (ρ(t,x))dxdt, (3)

for more general F . The problem (2) falls in this class. In [3], Lee and McCann
address the case where

F (ρ) =−
∫

ρ(t,x)V (t,x)dx.

(Note that in the context of classical mechanics F would be the potential energy.)
This Lagrangian corresponds to the case of a continuum of matter evolving in an
external force field given by ∇V (t,x). We call this the non-interacting case for ob-
vious reasons. This can be recast as a classic optimal transport problem, where the
cost functional is given by

c(x,y) = inf
γ(0)=x,γ(T )=y
γ∈C1([0,T ],Rd)

∫ T

0

1
2
|γ̇(t)|2 −V (t,γ(t))dt. (4)

For a small V satisfying some structure condition, they obtain that c satisfies the
conditions found in [8] to ensure the regularity of the optimal map.
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2 Time discretisation

In [5] we restrict ourselves to the case where the force field only acts at a single
discrete time between 0 and T :

V (t,x) = δt=T/2V (x).

We will call this case the “discrete” case. The minimisation problem therefore be-
comes

I(ρ,v) =
1
2

∫ T

0

∫
Rd

ρ(t,x)|v(t,x)|2dxdt +
∫
Rd

ρ(T/2,x)Q(x)dx, (5)

for some potential Q. This will allow to remove the smallness condition on V . More-
over, we will be able to extend our result to the mean-field case, where the force field
is given by

∇V (x) =
∫

ρ(t,y)∇κ(x− y)dy. (6)

This corresponds to the case where a particle located at x attracts or repels another
particle located at y with a force equal to ∇κ(x− y). We will give a sufficient con-
dition on κ to ensure a smooth transport map and intermediate density. Especially,
we consider the gravitational case, which corresponds to the Coulomb kernel

κ(x− y) =
cd

|x− y|d−2 ,

that correponds to the potential energy

E (t) =−F (ρ(t)) = −1
2

∫
ρ(t,x)κ(x− y)ρ(t,y)dxdy

= −1
2

∫
∥∇p∥2,

where ∆ p = ρ .
One sees straight away that between time 0 and T/2 we are solving the usual

optimal transport problem in its “Benamou-Brenier” formulation [1], as well as be-
tween T/2 and T . More generally, as done in [6], one can consider multiple-steps
time discretisation, where the potential energy term contributes only at time

ti =
iT
N
, i = 1, · · · ,N −1.

Between two time steps, the problem will be an optimal transport problem as in
[1, 2] and [9]. Then at each time step, the gravitational effect will be taken into
account, and the velocity will be discontinuous. From a Lagrangian point of view,



4 Jiakun Liu and Grégoire Loeper

the velocity of each particle will therefore be a piecewise constant function with
respect to time. Then letting the time step go to 0, one will eventually recover the
time continuous problem.

3 Main results

Let us consider a two-step time discretisation in the interval [0,T ]: At t = T/2, the
velocity is changed by an amount equal to ∇Q, the gradient of a potential Q. The
initial density ρ0 is supported on a bounded domain Ω0 ⊂ Rd , and the final density
ρT is supported on a bounded domain ΩT ⊂ Rd , satisfying the balance condition∫

Ω0

ρ0(x)dx =
∫

ΩT

ρT (y)dy. (7)

As is always the case in solving problems of the form (3), the velocity v is the
gradient of a potential, and we let ϕ be the velocity potential at time 0, i.e. v(0,x) =
∇ϕ(x). At time t = T/2, v will be changed into v+∇Q and one can see that for an
initial point x ∈ Ω0, the final point y = m(x) ∈ ΩT is given by

m(x) = x+T ∇ϕ +
T
2

∇Q
(

x+
T
2

∇ϕ
)
.

By computing the determinant of the Jacobian Dm and noting that m pushes for-
ward ρ0 to ρT , one can derive the equation for ϕ . To be specific, define a modified
potential

ϕ̃(x) :=
T
2

ϕ(x)+
1
2
|x|2, for x ∈ Ω0. (8)

It is readily seen [1, 2, 9] that the modified potential ϕ̃ is a convex function. Since
m#ρ0 = ρT , we obtain that ϕ̃ satisfies a Monge-Ampère type equation

det
[
D2ϕ̃ −

(
D2Q̃(∇ϕ̃)

)−1
]
=

(
1

detD2Q̃(∇ϕ̃)

)
ρ0

ρT ◦m
, (9)

where Q̃ is a modified potential given by

Q̃(z) :=
T
2

Q(z)+ |z|2, (10)

with an associated natural boundary condition

m(Ω0) = ΩT . (11)

For regularity of the solution ϕ̃ to the boundary value problem (9) and (11)
(equivalently that of ϕ ), it is necessary to impose certain conditions on the potential
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energy function Q̃ (equivalently on Q) and the domains Ω0,ΩT . In [5] we assume
that Q̃ satisfies the following conditions:

(H0) The function Q̃ is smooth enough, say at least C4,
(H1) The function Q̃ is uniformly convex, namely D2Q̃ ≥ ε0I for some ε0 > 0,
(H2) The function Q̃ satisfies that for all ξ ,η ∈ Rd with ξ⊥η ,

∑
i, j,k,l,p,q,r,s

(
D4

i jrsQ̃−2Q̃pqD3
i jpQ̃D3

qrsQ̃
)

Q̃rkQ̃slξkξlηiη j ≤−δ0|ξ |2|η |2, (12)

where {Q̃i j} is the inverse of {Q̃i j}, and δ0 is a positive constant. When δ0 = 0,
we call it (H2w), a weak version of (H2).

Note that conditions (H0) and (H1) imply that the inverse matrix (D2Q̃)−1 exists,
and ensure that equation (9) well defined. Condition (H2) is an analogue of the
Ma-Trudinger-Wang condition [8] in optimal transportation, which is necessary for
regularity results. We also use the notion of Q-convexity of domains as in [8].

Our first main result is the following

Theorem 1. Let ϕ be the velocity potential in the reconstruction problem. Assume
the gravitational function Q̃ satisfies conditions (H0), (H1) and (H2), ΩT is Q-
convex with respect to Ω0. Assume that ρT ≥ c0 for some positive constant c0, ρ0 ∈
Lp(Ω0) for some p > d+1

2 , and the balance condition (7) is satisfied. Then, the
velocity potential ϕ is C1,α(Ω 0) for some α ∈ (0,1).

If furthermore, Ω0,ΩT are C4 smooth and uniformly Q-convex with respect to
each other, ρ0 ∈ C2(Ω 0),ρT ∈ C2(Ω T ), then ϕ ∈ C3(Ω 0), and higher regularity
follows from the theory of linear elliptic equations. In particular, if Q̃,Ω0,ΩT ,ρ0,ρT
are C∞, then the velocity potential ϕ ∈C∞(Ω 0).

The proof of Theorem 1 is done by linking the time discretisation problem to a
transport problem, where the key observation is that the cost function c(x,y) is given
by Q̃∗(x+ y), where Q̃∗ is the Legendre transform of the gravitational function Q̃.
Under this formulation, the regularity then follows from the established theory of
optimal transportation, see for example [7, 4, 8, 10] and references therein.

Our second main result is the following:

Theorem 2. Assume that Q is given by

Q(x) =
1
2

∫
ΩT/2

ρ(T/2,y)κ(x− y)dy, (13)

where ΩT/2 = (Id+ T
2 ∇ϕ)(Ω0) is the intermediate domain at t = T

2 , and that κ
satisfies conditions (H0), (H1) and

(H2C) for any ξ ,η ∈ Rd , x,y ∈ ΩT/2,

∑
i, j,k,l,p,q,r,s

(
D4

i jrsκ(x− y)
)

κ̃rkκ̃slξkξlηiη j ≤ 0,

where {κ̃ i j} is the inverse of {κi j +
2
T I},
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We also assume some geometric conditions on the domains. Then the results of
Theorem 1 remain true.

The proof of Theorem 2 relies on the observation that (H2c) implies (H2), and is
preserved under convex combinations, and therefore by convolution with the density
ρ(T/2), and on some a priori C1 estimates on the potential. Full details and further
remarks are contained in our work [5].
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