Optimal transport with discrete mean field interaction

Jiakun Liu and Grégoire Loeper

Abstract In this note, we summarise some regularity results recently obtained for an optimal transport problem where the matter transported is either accelerated by an external force field, or self-interacting, at a given intermediate time.

1 Background

This note is a summary of an ongoing work [5]. The motivation comes from a previous work by the second author [6], where he studies the motion of a self-gravitating matter, classically described by the Euler-Poisson system. Letting ρ be the density of the matter, the gravitational field generated by a continuum of matter with density ρ is the gradient of a potential p linked to ρ by a Poisson coupling. The system is thus the following

$$\begin{cases} \partial_{t} \rho + \nabla \cdot (\rho v) = 0, \\ \partial_{t} (\rho v) + \nabla \cdot (\rho v \otimes v) = -\rho \nabla p, \\ \Delta p = \rho. \end{cases}$$
 (1)

A well known problem in cosmology, named the reconstruction problem, is to find a solution to (1) satisfying

$$\rho|_{t=0}=\rho_0, \qquad \rho|_{t=T}=\rho_T.$$

In [6], the reconstruction problem was formulated into a minimisation problem, minimising the action of the Lagrangian which is a convex functional. Through

Jiakun Liu

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, AUSTRALIA e-mail: jiakunl@uow.edu.au

Grégoire Loeper

School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, AUSTRALIA e-mail: gregoire.loeper@monash.edu

this variational formulation, the reconstruction problem becomes very similar to the time continuous formulation of the optimal transportation problem of Benamou and Brenier [1], and the existence, uniqueness of the minimiser was obtained by use of the Monge-Kantorovich duality. In the context of optimal transport as in [6], there holds $v = \nabla \phi$ for some potential ϕ , and the author obtained partial regularity results for ϕ and ρ , as well as the consistency of the minimiser with the solution of the Euler-Poisson system.

The optimal transport problem of [6] was formulated as finding minimisers of the action of the Lagrangian

$$I(\rho, \nu, p) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho(t, x) |\nu(t, x)|^2 + |\nabla p(t, x)|^2 dx dt,$$
 (2)

over all ρ , p, v satisfying

$$egin{aligned} \partial_t
ho +
abla \cdot (
ho
u) &= 0, \
ho(0) =
ho_0, \
ho(T) &=
ho_T, \ \Delta
ho &=
ho, \end{aligned}$$

where \mathbb{T}^d denotes the d-dimensional torus, as the study in [6] was performed in the space-periodic case.

In the work [5] we address the more general problem of finding minimisers for the action

$$I(\rho, \nu, p) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho(t, x) |\nu(t, x)|^2 + \mathscr{F}(\rho(t, x)) dx dt, \tag{3}$$

for more general \mathscr{F} . The problem (2) falls in this class. In [3], Lee and McCann address the case where

$$\mathscr{F}(\rho) = -\int \rho(t,x)V(t,x)dx.$$

(Note that in the context of classical mechanics \mathscr{F} would be the potential energy.) This Lagrangian corresponds to the case of a continuum of matter evolving in an external force field given by $\nabla V(t,x)$. We call this the non-interacting case for obvious reasons. This can be recast as a classic optimal transport problem, where the cost functional is given by

$$c(x,y) = \inf_{\substack{\gamma(0) = x, \gamma(T) = y \\ \gamma \in C^1([0,T], \mathbb{R}^d)}} \int_0^T \frac{1}{2} |\dot{\gamma}(t)|^2 - V(t, \gamma(t)) dt. \tag{4}$$

For a small V satisfying some structure condition, they obtain that c satisfies the conditions found in [8] to ensure the regularity of the optimal map.

2 Time discretisation

In [5] we restrict ourselves to the case where the force field only acts at a single discrete time between 0 and T:

$$V(t,x) = \delta_{t=T/2}V(x).$$

We will call this case the "discrete" case. The minimisation problem therefore becomes

$$I(\rho, v) = \frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{d}} \rho(t, x) |v(t, x)|^{2} dx dt + \int_{\mathbb{R}^{d}} \rho(T/2, x) Q(x) dx, \tag{5}$$

for some potential Q. This will allow to remove the smallness condition on V. Moreover, we will be able to extend our result to the mean-field case, where the force field is given by

$$\nabla V(x) = \int \rho(t, y) \nabla \kappa(x - y) dy. \tag{6}$$

This corresponds to the case where a particle located at x attracts or repels another particle located at y with a force equal to $\nabla \kappa(x-y)$. We will give a sufficient condition on κ to ensure a smooth transport map and intermediate density. Especially, we consider the gravitational case, which corresponds to the Coulomb kernel

$$\kappa(x-y) = \frac{c_d}{|x-y|^{d-2}},$$

that correponds to the potential energy

$$\mathcal{E}(t) = -\mathcal{F}(\rho(t)) = -\frac{1}{2} \int \rho(t, x) \kappa(x - y) \rho(t, y) dx dy$$
$$= -\frac{1}{2} \int ||\nabla p||^2,$$

where $\Delta p = \rho$.

One sees straight away that between time 0 and T/2 we are solving the usual optimal transport problem in its "Benamou-Brenier" formulation [1], as well as between T/2 and T. More generally, as done in [6], one can consider multiple-steps time discretisation, where the potential energy term contributes only at time

$$t_i = \frac{iT}{N}, \quad i = 1, \cdots, N-1.$$

Between two time steps, the problem will be an optimal transport problem as in [1, 2] and [9]. Then at each time step, the gravitational effect will be taken into account, and the velocity will be discontinuous. From a Lagrangian point of view,

the velocity of each particle will therefore be a piecewise constant function with respect to time. Then letting the time step go to 0, one will eventually recover the time continuous problem.

3 Main results

Let us consider a two-step time discretisation in the interval [0,T]: At t=T/2, the velocity is changed by an amount equal to ∇Q , the gradient of a potential Q. The initial density ρ_0 is supported on a bounded domain $\Omega_0 \subset \mathbb{R}^d$, and the final density ρ_T is supported on a bounded domain $\Omega_T \subset \mathbb{R}^d$, satisfying the balance condition

$$\int_{\Omega_0} \rho_0(x) dx = \int_{\Omega_T} \rho_T(y) dy. \tag{7}$$

As is always the case in solving problems of the form (3), the velocity v is the gradient of a potential, and we let ϕ be the velocity potential at time 0, i.e. $v(0,x) = \nabla \phi(x)$. At time t = T/2, v will be changed into $v + \nabla Q$ and one can see that for an initial point $x \in \Omega_0$, the final point $y = \mathbf{m}(x) \in \Omega_T$ is given by

$$\mathbf{m}(x) = x + T\nabla\phi + \frac{T}{2}\nabla Q\left(x + \frac{T}{2}\nabla\phi\right).$$

By computing the determinant of the Jacobian D**m** and noting that **m** pushes forward ρ_0 to ρ_T , one can derive the equation for ϕ . To be specific, define a modified potential

$$\tilde{\phi}(x) := \frac{T}{2}\phi(x) + \frac{1}{2}|x|^2, \quad \text{for } x \in \Omega_0.$$
(8)

It is readily seen [1, 2, 9] that the modified potential $\tilde{\phi}$ is a convex function. Since $\mathbf{m}_{\#}\rho_{0} = \rho_{T}$, we obtain that $\tilde{\phi}$ satisfies a Monge-Ampère type equation

$$\det\left[D^{2}\tilde{\phi} - \left(D^{2}\tilde{Q}(\nabla\tilde{\phi})\right)^{-1}\right] = \left(\frac{1}{\det D^{2}\tilde{Q}(\nabla\tilde{\phi})}\right)\frac{\rho_{0}}{\rho_{T} \circ \mathbf{m}},\tag{9}$$

where \tilde{Q} is a modified potential given by

$$\tilde{Q}(z) := \frac{T}{2}Q(z) + |z|^2,$$
(10)

with an associated natural boundary condition

$$\mathbf{m}(\Omega_0) = \Omega_T. \tag{11}$$

For regularity of the solution $\tilde{\phi}$ to the boundary value problem (9) and (11) (equivalently that of ϕ), it is necessary to impose certain conditions on the potential

energy function \tilde{Q} (equivalently on Q) and the domains Ω_0, Ω_T . In [5] we assume that \tilde{Q} satisfies the following conditions:

- **(H0)** The function \tilde{Q} is smooth enough, say at least C^4 ,
- **(H1)** The function \tilde{Q} is uniformly convex, namely $D^2 \tilde{Q} \ge \varepsilon_0 I$ for some $\varepsilon_0 > 0$,
- **(H2)** The function \tilde{Q} satisfies that for all $\xi, \eta \in \mathbb{R}^d$ with $\xi \perp \eta$,

$$\sum_{i,j,k,l,p,q,r,s} \left(D_{ijrs}^4 \tilde{Q} - 2\tilde{Q}^{pq} D_{ijp}^3 \tilde{Q} D_{qrs}^3 \tilde{Q} \right) \tilde{Q}^{rk} \tilde{Q}^{sl} \xi_k \xi_l \eta_i \eta_j \le -\delta_0 |\xi|^2 |\eta|^2, \quad (12)$$

where $\{\tilde{Q}^{ij}\}$ is the inverse of $\{\tilde{Q}_{ij}\}$, and δ_0 is a positive constant. When $\delta_0 = 0$, we call it **(H2w)**, a weak version of (H2).

Note that conditions (H0) and (H1) imply that the inverse matrix $(D^2\tilde{Q})^{-1}$ exists, and ensure that equation (9) well defined. Condition (H2) is an analogue of the Ma-Trudinger-Wang condition [8] in optimal transportation, which is necessary for regularity results. We also use the notion of Q-convexity of domains as in [8].

Our first main result is the following

Theorem 1. Let ϕ be the velocity potential in the reconstruction problem. Assume the gravitational function \tilde{Q} satisfies conditions (H0), (H1) and (H2), Ω_T is Q-convex with respect to Ω_0 . Assume that $\rho_T \geq c_0$ for some positive constant c_0 , $\rho_0 \in L^p(\Omega_0)$ for some $p > \frac{d+1}{2}$, and the balance condition (7) is satisfied. Then, the velocity potential ϕ is $C^{1,\alpha}(\overline{\Omega}_0)$ for some $\alpha \in (0,1)$.

If furthermore, Ω_0, Ω_T are C^4 smooth and uniformly Q-convex with respect to each other, $\rho_0 \in C^2(\overline{\Omega}_0), \rho_T \in C^2(\overline{\Omega}_T)$, then $\phi \in C^3(\overline{\Omega}_0)$, and higher regularity follows from the theory of linear elliptic equations. In particular, if $\tilde{Q}, \Omega_0, \Omega_T, \rho_0, \rho_T$ are C^{∞} , then the velocity potential $\phi \in C^{\infty}(\overline{\Omega}_0)$.

The proof of Theorem 1 is done by linking the time discretisation problem to a transport problem, where the key observation is that the cost function c(x,y) is given by $\tilde{Q}^*(x+y)$, where \tilde{Q}^* is the Legendre transform of the gravitational function \tilde{Q} . Under this formulation, the regularity then follows from the established theory of optimal transportation, see for example [7, 4, 8, 10] and references therein.

Our second main result is the following:

Theorem 2. Assume that Q is given by

$$Q(x) = \frac{1}{2} \int_{\Omega_{T/2}} \rho(T/2, y) \kappa(x - y) dy, \tag{13}$$

where $\Omega_{T/2}=(\mathrm{Id}+\frac{T}{2}\nabla\phi)(\Omega_0)$ is the intermediate domain at $t=\frac{T}{2}$, and that κ satisfies conditions (H0), (H1) and

(H2C) for any $\xi, \eta \in \mathbb{R}^d$, $x, y \in \Omega_{T/2}$,

$$\sum_{i,j,k,l,p,q,r,s} \left(D_{ijrs}^4 \kappa(x-y) \right) \tilde{\kappa}^{rk} \tilde{\kappa}^{sl} \xi_k \xi_l \eta_i \eta_j \le 0,$$

where $\{\tilde{\kappa}^{ij}\}$ is the inverse of $\{\kappa_{ij} + \frac{2}{T}I\}$,

We also assume some geometric conditions on the domains. Then the results of Theorem 1 remain true.

The proof of Theorem 2 relies on the observation that (H2c) implies (H2), and is preserved under convex combinations, and therefore by convolution with the density $\rho(T/2)$, and on some a priori C^1 estimates on the potential. Full details and further remarks are contained in our work [5].

References

- Benamou, J.-D. and Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. *Numer. Math.*, 84 (2000), 375–393.
- Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44 (1991), 375–417.
- 3. Lee, P. and McCann R. J.: The Ma-Trudinger-Wang curvature for natural mechanical actions. *Calc. Var. PDEs*, 41 (2011), 285–299.
- Liu, J.: Hölder regularity of optimal mappings in optimal transportation. Calc. Var. PDEs, 34 (2009), 435–451.
- 5. Liu, J. and Loeper, G.: Optimal transport with discrete mean field interaction, in progress.
- 6. Loeper, G.: The Reconstruction Problem for the Euler-Poisson System in Cosmology. *Arch. Rational Mech. Anal.*, 179 (2006), 153–216.
- Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math., 202 (2009), 241–283.
- 8. Ma, X.-N.; Trudinger, N. S. and Wang, X.-J.: Regularity of potential functions of the optimal transportation problems. *Arch. Ration. Mech. Anal.*, 177 (2005), 151–183.
- 9. McCann, R. J.: A convexity principle for interacting gases. Adv. Math., 128 (1997), 153–179.
- Trudinger, N. S. and Wang, X.-J.: On the second boundary value problem for Monge-Ampère type equations and optimal transportation. *Ann. Scuola Norm. Sup. Pisa. Cl. Sci.*, 8 (2009), 143–174.