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Abstract In this paper we describe the asymptotic behavior of the solutions to quasi-
linear parabolic equations with a Hardy potential. We prove that all the solutions
have the same asymptotic behavior: they all tend to the solution of the original
problem which satisfies a zero initial condition. Moreover, we derive estimates on
the “distance” between the solutions of the evolution problem and the solutions
of elliptic problems showing that in many cases (as for example the autonomous
case) these last solutions are “good approximations” of the solutions of the original
parabolic PDE.

1 Introduction

Let us consider the following nonlinear parabolic problem
ut −div(a(x, t,∇u)) = λ

u
|x|2

+ f (x, t) in ΩT ≡ Ω × (0,T ),

u(x, t) = 0 on ∂Ω × (0,T ),
u(x,0) = u0(x) in Ω ,

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain containing the origin and λ and T are
positive constants.

Here a(x, t,ξ ) : Ω ×R+×RN → RN is a Caratheodory function1 satisfying

a(x, t,ξ )ξ ≥ α|ξ |2, α > 0, (2)

Maria Michaela Porzio
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2, 00185 Roma, Italy, e-mail: porzio@mat.uniroma1.it

1 i.e., it is continuous with respect to ξ for almost every (x, t) ∈ ΩT , and measurable with respect
to (x, t) for every ξ ∈ RN

1



2 Maria Michaela Porzio

|a(x, t,ξ )| ≤ β [|ξ |+µ(x, t)], β > 0, µ ∈ L2(ΩT ), (3)

(a(x, t,ξ )−a(x, t,ξ ′)) · (ξ −ξ ′)≥ α|ξ −ξ ′|2 , (4)

and the data satisfy (for example)

u0 ∈ L2(Ω) f ∈ L2(ΩT ) . (5)

The model problem we have in mind is the following
ut −∆u = λ

u
|x|2

+ f (x, t) in ΩT ,

u(x, t) = 0 on ∂Ω × (0,T ),
u(x,0) = u0(x) in Ω .

(6)

We recall that if the data f and u0 are nonnegative and not both identically zero, there
exists a dimension dependent constant ΛN such that (6) has no solution for λ > ΛN
(see [10]). More in details, the constant ΛN is the optimal constant (not attained) in
the Hardy’s inequality

ΛN

∫
Ω

u2

|x|2
dx ≤

∫
Ω
|∇u|2dx for every u ∈ H1

0 (Ω) where ΛN ≡
(

N −2
2

)2

,

(7)
(see [24] and [20]).
Hence, here, in order to guarantee the existence of solutions, we assume λ < ΛN in
the model case (6) and its generalization

λ < αΛN . (8)

in the general case (1).
The main aim of this paper is the study of the asymptotic behavior of the solutions
of (1).

The peculiarity of these problem is the presence of the singular Hardy potential,
also called in literature “inverse-square” potential. This kind of singular potential
arises, for example, in the context of combustion theory (see [11], [49] and the
references therein) and quantum mechanics (see [10], [44], [49] and the references
therein).

There is an extensive literature on problems with Hardy potentials both in the
stationary and evolution cases and it is a difficult task to give a complete bibliogra-
phy. In the elliptic case, more related to our framework are [2]-[5], [14], [41], [35],
[45], [46] and [7]. In the parabolic case, a mile stone is the pioneer paper [10] which
revealing the surprising effects of these singular potentials on the solutions stimu-
lated the study of these problems. More connected to our results are [6], [49], [47],
[19], [25], [26], [1] [43], and [38].

In particular, in [43] it is studied the influence of the regularity of the data f
and u0 on the regularity of the solutions of (1), while in [49] and [38], among other
results, there is a description of the behavior (in time) of the solutions when f ≡ 0.
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Hence, here we want to complete these results studying what is the asymptotic
behavior of the solutions when f is not identically zero.

We point out that the presence of a singular potential term has a strong influence
not only, as recalled above, on the existence theory, but also on the regularity and on
the asymptotic behavior, even when the datum f is zero. As a matter of fact, it is well
known that if λ ≡ 0 = f and the initial datum u0 is bounded then also the solution
of (1) is bounded; moreover, this result remains true in the more general case of non
zero data f belonging to Lr(0,T ;Lq(Ω)) with r and q satisfying

1
r
+

N
2q

< 1 (9)

(see [9] and the references therein).
Surprisingly, the previous L∞-regularity fails even in the model case (6) as soon

as λ becomes positive if f and u0 are not both identically zero (otherwise u ≡ 0 is a
bounded solution) since every solution (for nonnegative initial data u0) satisfies2

u(x, t)≥ C
|x|α1

for almost every (x, t) ∈ Ω ′× [ε, T̂ ], (10)

for every ε ∈ (0, T̂ ), 0 < T̂ < T and Ω ′ ⊂⊂ Ω , where the constant C depends only
on ε , T̂ , Ω ′ and λ , while α1 is the smallest root of z2 − (N −2)z+λ = 0.

Indeed, the singular potential term influences the solutions also when the summa-
bility coefficients r and q of f do not satisfy (9). As a matter of fact, again the regular-
ity of the solutions in presence of the Hardy potential is different from the classical
semilinear case λ = 0 (see [43] if λ > 0 and [31], [13], [33], [34], [27], [16] and the
references therein if λ = 0).

Great changes appear also in the behavior in time of the solutions. As a matter of
fact, if λ = 0 = f (x, t) it is well known that the solutions of (1) become immediately
bounded also in presence of unbounded initial data u0 belonging only to Lr0(Ω)
(r0 ≥ 1) and satisfy the same decay estimates of the heat equation

∥u(t)∥L∞(Ω) ≤ c
∥u0∥Lr0 (Ω)

t
N

2r0 eσt
for almost every t ∈ (0,T ), (11)

where σ = c

|Ω |
2
N

is a constant depending on the measure of Ω (see [36] and the

references therein). The previous bound, or more in general estimates of the type

∥u(t)∥L∞(Ω) ≤ c
∥u0∥h0

Lr0 (Ω)

th1
h0 ,h1 > 0 , (12)

are often referred as ultracontractive estimates and hold for many different kinds of
parabolic PDE (degenerate or singular) like, for example, the p-Laplacian equation,
the fast diffusion equation, the porous medium equation etc. These estimates are

2 The proof of (10) can be easily obtained following the outline of the proof of (2.5) of Theorem
2.2 in [10]
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widely studied because they describe the behavior in time of the solutions and often
imply also further important properties like, for example, the uniqueness (see for
example [50], [18], [8], [30], [12], [29], [22], [23], [48], [21], [17], [42], [36], [28],
[37] and the references therein).

Unfortunately, by estimate (10) above it follows that estimate (11) together with
(12) fail in presence of a Hardy potential term. Anyway, in [38] it is proved that if
f ≡ 0, λ > 0 and u0 ∈ L2(Ω), then there exists a solution that satisfies

∥u(t)∥L2γ (Ω) ≤ c
∥u0∥L2(Ω)

tδ eσt for almost every t ∈ (0,T ), δ =
N(γ −1)

4γ
,

(13)
for every γ > 1 satisfying

γ ∈
(

1,
1+

√
1−θ

θ

)
where θ =

λ
αΛN

.

Hence an increasing of regularity appears (depending on the “size” λ of the singular
potential), but according with (10), there is not the boundedness of the solutions.

As said above, aim of this paper is to describe what happens when f is not iden-
tically zero.
We will show that under the previous assumptions on the operator a and on the data
f and u0, there exists only one “good” global solution u of (1). Moreover, if v is the
global solution of

vt −div(a(x, t,∇v)) = λ
v
|x|2

+ f (x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),
v(x,0) = v0(x) in Ω ,

(14)

i.e., v satisfies the same PDE of u (with the same datum f) but verifies the different
initial condition v(x,0) = v0 ∈ L2(Ω), then the following estimate holds

∥u(t)− v(t)∥L2(Ω) ≤
∥u0 − v0∥L2(Ω)

eσt for every t > 0 , (15)

where σ is a positive constant which depends on λ (see formula (26) below). In
particular, it results

lim
t→+∞

∥u(t)− v(t)∥L2(Ω) = 0. (16)

Hence, for t large, the initial data do not influence the behavior of the solutions since
by (16) it follows that all the global solutions tend to the solution which assumes the
null initial datum.

We recall that in absence of the singular potential term we can replace the L2-
norm in the left-hand side of (15) with the L∞-norm and, consequently, together with
(16), the following stronger result holds true

lim
t→+∞

∥u(t)− v(t)∥L∞(Ω) = 0. (17)
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(see [39]). Thus, the presence of the Hardy potential provokes again a change in
the behavior of the solutions since generally the difference of two solutions u and v
cannot be bounded if λ > 0. As a matter of fact, it is sufficient to notice that choosing
f = 0 and v = 0 (which corresponds to the choice v0 = 0) the boundedness of u-v
becomes the boundedness of u which by (10) we know to be false in presence of a
Hardy potential.

Moreover, in the autonomous case

a(x, t,ξ ) = a(x,ξ ) f (x, t) = f (x)

we prove that all the global solutions of (1) (whatever is the value of the initial
datum u0) tend to the solution w ∈ H1

0 (Ω) of the associate elliptic problem{
−div(a(x,∇w)) = λ

w
|x|2

+ f (x) in Ω ,

w(x) = 0 on ∂Ω .

Indeed, we estimate also the difference u−v between the global solutions of (1) and
the global solution v of the different evolution problem (not necessarily of parabolic
type) 

vt −div(b(x, t,∇v)) = λ
v
|x|2

+F(x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),
v(x,0) = v0(x) in Ω ,

looking for conditions which guarantee that this difference goes to zero (letting
t →+∞).

Finally, we estimate also the difference u−w between a global solution of (1)
and the solutions w of the stationary problem{

−div(b(x,∇w)) = λ
w
|x|2

+F(x) in Ω ,

w(x) = 0 on ∂Ω ,
(18)

showing that in the non autonomous case, under suitable “proximity” conditions on
the operators a and b and the data f and F, the global solution of (1) tends to the
solution w of the stationary problem (18).

The paper is organized as follows: in next section we give the statements of our
results in all the details. The proofs can be found in Section 4 and make use of some
“abstract results” proved in [38] and [32] that, for the convenience of the reader, we
recall in Section 3.

2 Main results

Before stating our results, we recall the definitions of solution and global solution
of (1).
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Definition 1. Assume (2)-(5). A function u in L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)) is

a solution of (1) if it results∫ T

0

∫
Ω
{−uφt +a(x, t,∇u)∇φ}dxdt =

∫
Ω

u0φ(x,0)dx+
∫ T

0

∫
Ω

[
λ

u
|x|2

+ f
]

φ dxdt

(19)
for every φ ∈W 1,1(0,T ;L2(Ω))∩L2(0,T ;H1

0 (Ω)) satisfying φ(T ) = 0.

We point out that all the integrals in (19) are well defined. As a matter of fact, by (3)
it follows that a(x, t,∇u)∈ (L2(ΩT ))

N and thanks to Hardy’s inequality (7) it results

∫ T

0

∫
Ω

λ
u
|x|2

φ dxdt ≤ λ
(∫ T

0

∫
Ω

u2

|x|2

) 1
2
(∫ T

0

∫
Ω

φ2

|x|2

) 1
2

≤

λ
ΛN

∥∇u∥L2(ΩT )
∥∇φ∥L2(ΩT )

. (20)

We recall that under the assumptions (2)-(5) and (8) there exists solutions of (1) (see
[43]). Now, to extend the previous notion to that of global solution, we assume

f ∈ L2
loc([0,+∞);L2(Ω)) and µ ∈ L2

loc([0,+∞);L2(Ω)) (21)

where µ is the function that appears in (3).

Definition 2. By a global solution of (1), or (equivalently) of
ut −div(a(x, t,∇u)) = λ

u
|x|2

+ f (x, t) in Ω × (0,+∞)

u(x, t) = 0 on ∂Ω × (0,+∞),
u(x,0) = u0(x) in Ω ,

(22)

we mean a measurable function u that is a solution of (1) for every T > 0 arbitrarily
chosen.

We point out that (21) together with the previous structure assumptions guarantee
that the integrals in (19) are well defined for every choice of T > 0. Indeed, there
exists only one global solution of (1). In detail, we have:

Theorem 1. Assume (2)-(5), (8) and (21). Then there exists only one global solution
u of (1) belonging to Cloc([0,+∞);L2(Ω))∩L2

loc([0,+∞);H1
0 (Ω)). In particular, for

every t > 0 it results∫ t

0

∫
Ω
{−uφt +a(x, t,∇u)∇φ}dxdt +

∫
Ω
[u(x, t)φ(x, t)−u0φ(x,0)]dx =∫ t

0

∫
Ω

[
λ

u
|x|2

+ f
]

φ dxdt , (23)

for every φ ∈W 1,1
loc ([0,+∞);L2(Ω))∩L2

loc([0,+∞);H1
0 (Ω)).
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As noticed in the introduction, if we change the initial data in (1), all the associated
global solutions (to these different initial data) have the same asymptotic behavior.
In detail, let us consider the following problem

vt −div(a(x, t,∇v)) = λ
v
|x|2

+ f (x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),
v(x,0) = v0(x) in Ω .

(24)

We have the following result:

Theorem 2. Assume (2)-(5), (8) and (21). If v0 ∈ L2(Ω), then the global solu-
tions u and v of, respectively, (1) and (24) belonging to Cloc([0,+∞);L2(Ω))∩
L2

loc([0,+∞);H1
0 (Ω)) satisfy

∥u(t)− v(t)∥L2(Ω) ≤
∥u0 − v0∥L2(Ω)

eσt for every t > 0 , (25)

where

σ =

(
α − λ

ΛN

)
cP (26)

with cP Poincaré’s constant3.
In particular, it results

lim
t→+∞

∥u(t)− v(t)∥L2(Ω) = 0 . (28)

Remark 1. Notice that in the particular case f ≡ 0, choosing as initial datum v0 = 0
we obtain that v ≡ 0 is global solution of (1). With such a choice in (25) it follows
that

∥u(t)∥L2(Ω) ≤
∥u0∥L2(Ω)

eσt for every t > 0 .

In the model case (6) the previous estimate can be found (among other interesting
results) in [49] with σ = µ1 the first eigenvalue (see also [38]). We recall that decay
estimates of the solutions in the same Lebesgue space where is the initial datum
is not a peculiarity of problems with singular potentials since appear also for other
parabolic problems (see [15], [38], [48] and the references therein).

An immediate consequence of Theorem 2 is that in the autonomous case

a(x, t,ξ ) = a(x,ξ ) f (x, t) = f (x) (29)

3 Poincaré’s inequality:

cP

∫
Ω

u2dx ≤
∫

Ω
|∇u|2dx for every u ∈ H1

0 (Ω) , (27)

where cP is constant depending only on N and on the bounded set Ω
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all the global solutions of (1), whatever is the value of the initial datum u0, tend
(letting t →+∞) to the solution w of the associate elliptic problem{

−div(a(x,∇w)) = λ
w
|x|2

+ f (x) in Ω ,

w(x) = 0 on ∂Ω .
(30)

In detail, we have:

Corollary 1 (Autonomous case). Assume (2)-(5), (8), (21) and (29). Let w be the
unique solution of (30) in H1

0 (Ω) and u be the global solution of (1) belonging to
Cloc([0,+∞);L2(Ω))∩L2

loc([0,+∞);H1
0 (Ω)). Then it results

∥u(t)−w∥L2(Ω) ≤
∥u0 −w∥L2(Ω)

eσt for every t > 0 , (31)

where σ is as in (26).
In particular, it results

lim
t→+∞

∥u(t)−w∥L2(Ω) = 0 . (32)

We show now that it is also possible to estimate the distance between the global
solution u of (1) and the global solution v of the different parabolic problem

vt −div(b(x, t,∇v)) = λ
v
|x|2

+F(x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),
v(x,0) = v0(x) in Ω ,

(33)

where b(x, t,ξ ) : Ω ×R+×RN → RN is a Caratheodory function satisfying

b(x, t,ξ )ξ ≥ α0|ξ |2, α0 > 0, (34)

|b(x, t,ξ )| ≤ β0[|ξ |+µ0(x, t)], β0 > 0, µ0 ∈ L2
loc([0,+∞);L2(Ω)), (35)

(b(x, t,ξ )−b(x, t,ξ ′)) · (ξ −ξ ′)≥ α0|ξ −ξ ′|2 . (36)

v0 ∈ L2(Ω) F ∈ L2
loc([0,+∞);L2(Ω)). (37)

Theorem 3. Assume (2)-(5), (8), (21) and (34)-(37). Then the global solutions u and
v of, respectively, (1) and (33) belonging to Cloc([0,+∞);L2(Ω))∩L2

loc([0,+∞);H1
0 (Ω))

satisfy

∥u(t)− v(t)∥2
L2(Ω) ≤

∥u0 − v0∥2
L2(Ω)

e2σ0t +
∫ t

0
g(s)ds for every t ≥ 0 , (38)

for every choice of
σ0 < σ (39)

where
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g(s)=
cP

σ −σ0

∫
Ω

[
|b(x,s,∇v(x,s))−a(x,s,∇v(x,s))|2 + 1

cP
| f (x,s)−F(x,s)|2

]
dx ,

(40)
with σ and cP are as in (26). Moreover, if g ∈ L1((0,+∞)) then it results

∥u(t)− v(t)∥2
L2(Ω) ≤

Λ
eσ0t +

∫ t

t
2

g(s)ds for every t > 0 , (41)

where

Λ = ∥u0 − v0∥2
L2(Ω)+

∫ +∞

0
g(t)dt .

In particular, we have
lim

t→+∞
∥u(t)− v(t)∥L2(Ω) = 0 . (42)

Remark 2. The proof of Theorem 3 shows that the structure assumptions (34)-(36)
on the operator b can be weakened. In particular, it is sufficient to assume that there
exists a global solution v of (33) in Cloc([0,+∞);L2(Ω))∩ L2

loc([0,+∞);H1
0 (Ω))

satisfying
b(x, t,∇v) ∈ L2

loc([0,+∞);L2(Ω)) .

Hence, also problems (33) which are not of parabolic type are allowed.
Moreover, with slight changes in the proof, it is also possible to choose a

larger class of data f and F. In particular, an alternative option that can be done
is L2

loc([0,+∞);H−1(Ω)).

Examples of operators satisfying all the assumptions of the previous Theorem (and
hence for which (42) holds) are

ut −div(a(x, t,∇u)) = λ
u
|x|2

+ f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)
u(x,0) = u0 in Ω .

and the model case
vt −∆v = λ

u
|x|2

+F(x, t) in Ω × (0,+∞),

v(x) = 0 on ∂Ω × (0,+∞)
v(x,0) = v0 in Ω ,

if we assume

[a(x, t,∇v)−∇v] ∈ L2(Ω × (0,+∞)) [ f (x, t)−F(x, t)] ∈ L2(Ω × (0,+∞)).

Remark 3. We point out that an admissible choice for the parameter λ in Theorem
3 is

λ = 0 ,
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i.e., the case of absence of the singular potential. In this particular but also inter-
esting case, the previous result permits to estimate the difference of solutions of
different evolution problems. Moreover, as noticed in Remark 2, only one of these
two evolution problems is required to be of parabolic type.

A consequence of Theorem 3 is the possibility to estimate also the distance be-
tween global solutions of (1) and solutions of stationary problems, for example of
elliptic type, without assuming to be in the autonomous case (29). These estimates
(see Corollary 2 below) show that if the data and the operators of these different
PDE problems (calculated on the solution of the stationary problem) are “suffi-
ciently near”, then the solutions of the evolution problems tend (for every choice
of the initial data u0) to the stationary solution.
In detail, let us consider the following stationary problem{

−div(b(x,∇w)) = λ
w
|x|2

+F(x) in Ω ,

w(x) = 0 on ∂Ω .
(43)

To stress the assumptions really needed, in what follows we do not assume any
structure condition on b except that b : Ω ×RN → RN is a Caratheodory function.
We have:

Corollary 2. Assume (2)-(5), (8) and (21). Let F be in L2(Ω) and w ∈ H1
0 (Ω) be

such that
b(x,∇w) ∈ (L2(Ω))N . (44)

If w is a solution of (43) and u ∈Cloc([0,+∞);L2(Ω))∩L2
loc([0,+∞);H1

0 (Ω)) is the
global solution of (1), then the following estimate holds true

∥u(t)−w∥2
L2(Ω) ≤

∥u0 −w∥2
L2(Ω)

e2σ0t +
∫ t

0
g(s)ds , (45)

for every t ≥ 0 and for every choice of σ0 as in (39) where

g(s) =
cP

σ −σ0

∫
Ω

[
|b(x,∇w(x))−a(x,s,∇w(x))|2 + 1

cP
| f (x,s)−F(x)|2

]
dx .

(46)
Moreover, if g ∈ L1((0,+∞)), then it results

∥u(t)−w∥2
L2(Ω) ≤

Λ
eσ0t +

∫ t

t
2

g(s)ds for every t > 0 , (47)

where

Λ = ∥u0 −w∥2
L2(Ω)+

∫ +∞

0
g(t)dt .

In particular, it follows
lim

t→+∞
∥u(t)−w∥L2(Ω) = 0 . (48)
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Examples of operators satisfying all the assumptions of Corollary 2 (and hence for
which (48) holds) are

ut −div(α(x, t)∇u) = λ
u
|x|2

+ f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)
u(x,0) = u0 in Ω .

and {
−∆w = λ

w
|x|2

+F(x) in Ω ,

w(x) = 0 on ∂Ω .

with

[α(x, t)−1] ∈ L2(Ω × (0,+∞)) [ f (x, t)−F(x)] ∈ L2(Ω × (0,+∞)) (49)

or 
ut −div(α(x, t)b(x,∇u)) = λ

u
|x|2

+ f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)
u(x,0) = u0 in Ω .

and {
−div(b(x,∇w)) = λ

w
|x|2

+F(x) in Ω ,

w(x) = 0 on ∂Ω .

with α(x, t) and the data f and F satisfying (49).

3 Preliminary results

In this section we state two results that will be essential tools in proving the theorems
presented above.

Theorem 4 (Theorem 2.8 in [38]). Let u be in C((0,T );Lr(Ω))∩L∞(0,T ;Lr0(Ω))
where 0 < r ≤ r0 < ∞. Suppose also that |Ω | < +∞ if r ̸= r0 (no assumption are
needed on |Ω | if r = r0). If u satisfies∫

Ω
|u|r(t2)−

∫
Ω
|u|r(t1)+ c1

∫ t2

t1
∥u(t)∥r

Lr(Ω) dt ≤ 0 for every 0 < t1 < t2 < T,

(50)
and there exists u0 ∈ Lr0(Ω) such that

∥u(t)∥Lr0 (Ω) ≤ c2∥u0∥Lr0 (Ω) for almost every t ∈ (0,T ), (51)

where ci, i = 1,2 are real positive numbers, then the following estimate holds true
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∥u(t)∥Lr(Ω) ≤ c4
∥u0∥Lr0 (Ω)

eσt for every 0 < t < T, (52)

where

c4 =

{
c2|Ω |

1
r −

1
r0 if r < r0,

1 if r = r0,
σ =

c1

r
.

Proposition 1 (Proposition 3.2 in [32]). Assume T ∈ (t0,+∞] and let ϕ(t) a con-
tinuous and non negative function defined in [t0,T ) verifying

ϕ(t2)−ϕ(t1)+M
∫ t2

t1
ϕ(t)dt ≤

∫ t2

t1
g(t)dt

for every t0 ≤ t1 ≤ t2 < T where M is a positive constant and g is a non negative
function in L1

loc([t0,T )). Then for every t ≥ t0 we get

ϕ(t)≤ ϕ(t0)e−M(t−t0)+
∫ t

t0
g(s)ds ∀t > t0 . (53)

Moreover, if T =+∞ and g belongs to L1((t0,+∞)) there exists t1 ≥ t0 (for example
t1 = 2t0) such that

ϕ(t)≤ Λe−
M
2 t +

∫ t

t
2

g(s)ds for every t ≥ t1 , (54)

where

Λ = ϕ(t0)+
∫ +∞

t0
g(s)ds .

In particular, we get that
lim

t→+∞
ϕ(t) = 0 .

4 Proofs of the results

4.1 Proof of Theorem 1

Let T > 0 arbitrarily fixed. The existence of a solution u ∈ L∞(0,T ;L2(Ω)) ∩
L2(0,T ;H1

0 (Ω)) of (1) can be found in [43]. We point out that since ut belongs
to L2(0,T ;H−1(Ω)) (thanks to the regularity of u and (20)) it follows that u belongs
also to C([0,T ];L2(Ω)). Consequently, it results∫ T

0

∫
Ω
{−uφt +a(x, t,∇u)∇φ}dxdt +

∫
Ω
[u(x,T )φ(x,T )−u0φ(x,0)]dx =∫ T

0

∫
Ω

[
λ

u
|x|2

+ f
]

φ dxdt , (55)
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for every φ ∈W 1,1(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)). Moreover, u is the unique solu-

tion of (1) belonging to C([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω)). As a matter of fact, if

there exists an other solution v of (1) in C([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω)), taking

as test function u− v in the equation satisfied by u and in that satisfied by v and
subtracting the results4 we deduce (using (4))

1
2

∫
Ω
[u(x,T )− v(x,T )]2 +α

∫ T

0

∫
Ω
|∇(u− v)|2 ≤

λ
∫ T

0

∫
Ω

[u− v]2

|x|2
. (56)

By the previous estimate and Hardy’s inequality (7) we obtain

1
2

∫
Ω
[u(x,T )− v(x,T )]2 +

(
α − λ

ΛN

)∫ T

0

∫
Ω
|∇(u− v)|2 ≤ 0 .

from which the uniqueness follows since by assumption it results α − λ
ΛN

> 0.
Hence, for every arbitrarily fixed T > 0 there exists a unique solution of (1) in

C([0,T ];L2(Ω))∩L2(0,T ;H1
0 (Ω)) that we denote u(T ).

To conclude the proof, let us construct now the global solution of (1). For ev-
ery t ≥ 0 let us define u(x, t) = u(T )(x, t) where T is arbitrarily chosen satisfying
T > t. We notice that by the uniqueness proved above this definition is well posed.
Moreover, by construction this function satisfies the assertions of the theorem.

⊓⊔

4.2 Proof of Theorem 2

Let u and v be as in the statement of Theorem 2. Taking as test function u− v in
(1) and in (24) and subtracting the equations obtained in this way, we deduce (using
assumption (4)) that for every 0 ≤ t1 < t2 it results

1
2

∫
Ω
[u(x, t2)− v(x, t2)]2 dx− 1

2

∫
Ω
[u(x, t1)− v(x, t1)]2 +α

∫ t2

t1

∫
Ω
|∇(u− v)|2 ≤

λ
∫ t2

t1

∫
Ω

[u− v]2

|x|2
. (57)

Using again Hardy’s inequality (7), from (57) we deduce∫
Ω
[u(x, t2)−v(x, t2)]2 dx−

∫
Ω
[u(x, t1)−v(x, t1)]2+c0

∫ t2

t1

∫
Ω
|∇(u−v)|2 ≤ 0 , (58)

where we have defined

4 the use here and below of these test functions can be made rigorous by means of Steklov averaging
process
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c0 = 2
(

α − λ
ΛN

)
. (59)

Thanks to Poincaré’s inequality (27) by the previous estimate we get for every 0 ≤
t1 < t2∫

Ω
[u(x, t2)− v(x, t2)]2 dx−

∫
Ω
[u(x, t1)− v(x, t1)]2 + c1

∫ t2

t1

∫
Ω
|u− v|2 ≤ 0 , (60)

where c1 = cPc0. Notice that by (60) (choosing t2 = t and t1 = 0) it follows also that

∥u(t)− v(t)∥L2(Ω) ≤ ∥u0 − v0∥L2(Ω) .

Now the assert follows applying Theorem 4 with r = r0 = 2. ⊓⊔

4.3 Proof of Corollary 1

The assertion (31) follows by Theorem 2 once noticed that, thanks to the assumption
(29), the solution w ∈ H1

0 (Ω) of (30) is also the global solution w(x, t) ≡ w(x) ∈
Cloc([0,+∞];L2(Ω))∩L2

loc([0,+∞);H1
0 (Ω)) of the following parabolic problem

wt −div(a(x,∇w)) = λ
w
|x|2

+ f (x) in Ω × (0,+∞),

w(x, t) = 0 on ∂Ω × (0,+∞),
w(x,0) = w(x) in Ω .

⊓⊔

4.4 Proof of Theorem 3

Let u and v be the global solutions in Cloc([0,+∞];L2(Ω))∩L2
loc([0,+∞);H1

0 (Ω))
of, respectively, (1) and (33). Taking u-v in both the problems (1) and (33) and
subtracting the results we obtain for every 0 ≤ t1 < t2

1
2

∫
Ω
[u(x, t2)− v(x, t2)]2 dx− 1

2

∫
Ω
[u(x, t1)− v(x, t1)]2 +∫ t2

t1

∫
Ω
[a(x, t,∇u)−b(x, t,∇v)]∇(u− v)≤

λ
∫ t2

t1

∫
Ω

(u− v)2

|x|2
+

∫ t2

t1

∫
Ω
( f −F)(u− v) ,

which is equivalent to the following estimate
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1
2

∫
Ω
[u(x, t2)− v(x, t2)]2 dx− 1

2

∫
Ω
[u(x, t1)− v(x, t1)]2 +∫ t2

t1

∫
Ω
[a(x, t,∇u)−a(x, t,∇v)]∇(u− v)≤ λ

∫ t2

t1

∫
Ω

(u− v)2

|x|2
+∫ t2

t1

∫
Ω
( f −F)(u− v)+

∫ t2

t1

∫
Ω
[b(x, t,∇v)−a(x, t,∇v)]∇(u− v) . (61)

By assumption (4), Hardy’s inequality (7) and (61) we deduce

1
2

∫
Ω
[u(x, t2)− v(x, t2)]2 dx− 1

2

∫
Ω
[u(x, t1)− v(x, t1)]2 +(

α − λ
ΛN

)∫ t2

t1

∫
Ω
|∇(u− v)|2 ≤ (62)∫ t2

t1

∫
Ω
( f −F)(u− v)+

∫ t2

t1

∫
Ω
[b(x, t,∇v)−a(x, t,∇v)]∇(u− v) .

We estimate the last two integrals in (62). Let θ ∈ (0,1) a constant that we will
choose below. It results (using Young’s and Poincaré’s inequalities)∫ t2

t1

∫
Ω
( f −F)(u− v)≤ θ

2
C0cP

∫ t2

t1

∫
Ω
(u− v)2 +

1
2θC0cP

∫ t2

t1

∫
Ω
| f −F |2 ≤

θ
2

C0

∫ t2

t1

∫
Ω
|∇(u− v)|2 + 1

2θC0cP

∫ t2

t1

∫
Ω
| f −F |2

where cP is Poincaré’s constant defined in (27) and C0 =
(

α − λ
ΛN

)
. Moreover, we

have ∫ t2

t1

∫
Ω
[b(x, t,∇v)−a(x, t,∇v)]∇(u− v)≤ θ

2
C0

∫ t2

t1

∫
Ω
|∇(u− v)|2 +

1
2θC0

∫ t2

t1

∫
Ω
|b(x, t,∇v)−a(x, t,∇v)|2

By the previous estimates we deduce that∫
Ω
[u(x, t2)− v(x, t2)]2 dx−

∫
Ω
[u(x, t1)− v(x, t1)]2 +

2(1−θ)C0

∫ t2

t1

∫
Ω
|∇(u− v)|2 ≤

1
θC0cP

∫ t2

t1

∫
Ω
| f −F |2 ++

1
θC0

∫ t2

t1

∫
Ω
|b(x, t,∇v)−a(x, t,∇v)|2 .

which implies (again by Poincaré’s inequality)
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Ω
[u(x, t2)− v(x, t2)]2 dx−

∫
Ω
[u(x, t1)− v(x, t1)]2 +

M
∫ t2

t1

∫
Ω
|u− v|2 ≤

∫ t2

t1
g(s)ds (63)

where M = 2cP(1−θ)C0 = 2(1−θ)σ (where σ is as in (26)) and

g(s) =
1

θC0

∫
Ω

[
1
cP

| f (x,s)−F(x,s)|2 + |b(x,s,∇v)−a(x,s,∇v)|2
]

dx . (64)

Denoting σ0 = (1−θ)σ (i.e., θ = 1− σ0
σ ) and applying Proposition 1 with ϕ(t) =∫

Ω [u(x, t)− v(x, t)]2 dx and t0 = 0, the assertions follow.
⊓⊔

4.5 Proof of Corollary 2

The asserts follow observing that w(x, t) = w(x) is also a global solution in

Cloc([0,+∞];L2(Ω))∩L2
loc([0,+∞);H1

0 (Ω))

of the following evolution problem
wt −div(b(x,∇w)) = λ

w
|x|2

+F(x) in Ω × (0,+∞),

w(x, t) = 0 on ∂Ω × (0,+∞),
w(x,0) = w(x) in Ω .

⊓⊔
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