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Abstract The Kalman filter is a data analysis method used in a wide range of engi-
neering and applied mathematics problems. This paper presents a matrix-theoretic
derivation of the method in the linear model, Gaussian measurement error case.
Standard derivations of the Kalman filter make use of probabilistic notation and
arguments, whereas we make use, primarily, of methods from numerical linear al-
gebra. In addition to the standard Kalman filter, we derive an equivalent variational
(optimization-based) formulation, as well as the extended Kalman filter for nonlin-
ear problems.

1 Introduction

We start with the standard linear model with Gaussian measurment error:

b = Ax+ e, (1)

where b ∈ Rm is measured data; A ∈ Rm×n is a known observation matrix; x ∈ Rn

is the unknown parameter vector to be estimated; e ∈ Rm is a zero-mean Gaussian
random vector with covariance matrix Ce, which we denote by e ∼ N (0,Ce); and
x ∈ Rn is the unknown vector that is to be estimated.

The standard technique for estimating x, known as least squares estimation, was
developed by Gauss in his study of planetary motion [1]. The extension of least
squares estimation to the case when the unknown x is also assumed to be a Gaus-
sian random vector, which will be the case for us, is known as minimum variance
estimation [4].

In the study of time varying phenomena, it is natural to generalize (1) as follows:
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xk = Mkxk−1 +Ek, (2)
bk = Akxk + ek, (3)

where equation (3) is defined analogous to (1) for each k; and in (2), Mk ∈
Rn×n is the known evolution matrix, xk−1 is a Gaussian random vector, and Ek ∼
N (0,CEk). The Kalman filter [2, 5] is the extension of minimum variance (and
hence least squares) estimation to the problem of sequentially estimating {x1,x2, . . .}
given data {b1,b2, . . .} arising from the model in (2), (3). For the interested reader,
a discussion of the progression of ideas from Gauss to Kalman is the subject of the
excellent paper [3].

This paper is organized as follows. First, in Section 2, we present the basic sta-
tistical definitions and results that we will need in our later discussion. In Section
3, we define the minimum variance estimator, which we then apply to (2), (3) to
derive the Kalman filter in Section 4. Finally, we present an equivalent formulation
of the Kalman filter, which we call the variational Kalman filter, as well as the ex-
tended Kalman filter for the case when (2), (3) contain nonlinear evolution and/or
observation operators.

2 Statistical Preliminaries

Let x = (x1, . . . ,xn)
T be a random vector with E(xi) the mean of xi and E((xi −

µi)
2), where µi = E(xi), its variance. The mean of x is then defined E(x) =

(E(x1), . . . ,E(xn))
T , while the n×n covariance matrix of x is defined

[cov(x)]i j = E((xi −µi)(x j −µ j)), 1 ≤ i, j ≤ n.

Note that the diagonal of cov(x) contains the variances of x1, . . . ,xn, while the off
diagonal elements contain the covariance values. Thus if xi and x j are independent
[cov(x)]i j = 0 for i ̸= j.

The n×m cross correlation matrix of the random n-vector x and m-vector y,
which we will denote Γxy, is defined

Γxy = E(xyT ), (4)

where [E(xyT )]i j = E(xiy j). If x and y are independent, then Γxy is the zero matrix.
Furthermore,

E(x) = 0 implies Γxx = cov(x). (5)

Finally, given an m× n matrix A and a random n-vector x, it is not difficult to
show that

cov(Ax) = Acov(x)AT . (6)

We end these preliminary comments with the probability density function of pri-
mary interest to us in this paper, the Gaussian distribution. If b is an n×1 Gaussian
random vector, then its probability density function has the form



A Matrix Theoretic Derivation of the Kalman Filter 3

pb(b; µ,C) =
1√

(2π)n det(C)
exp

(
−1

2
(b−µ)T C−1(b−µ)

)
, (7)

where µ ∈ Rn is the mean of b; C is an n× n symmetric positive definite covari-
ance matrix of b; and det(·) denotes matrix determinant. As above, we will use the
notation b ∼ N (µ,C) in this case. For more details on introductory mathematical
statistics, see one of many introductory mathematics statistics texts.

3 Minimum Variance Estimation

First, we consider model (1). When x is assumed to be deterministic, it is a standard
exercise to show that if A has full column rank, the least squares estimator is given
by

xls = (AT A)−1AT b.

However, we are interested in the case in which x ∼N (0,Cx). We assume, further-
more, that x and e are independent random variables. We now define the minimum
variance estimator of x.

Definition 1. Suppose b is defined as in (1), x∼N (0,Cx), and e and x independent
random vectors. Then the minimum variance estimator of x given b has the form

xest = B̂b,

where B̂ ∈ Rn×m solves the optimization problem

B̂ = arg min
B∈Rn×m

E
(
∥Bb−x∥∥2

2
)
.

Because our model (1) is a linear model with Gaussian measurment error, B̂ has an
elegant closed form, as described in the following theorem.

Theorem 1. If Γbb is invertible, then the minimum variance estimator of x from b is
given by

xest = (ΓxbΓbb
−1)b.

Proof. First, we note that

E(∥Bb−x∥2
2) = trace

(
E[(Bb−x)(Bb−x)T ]

)
,

= trace
(
BE[bbT ]BT −BE[bxT ]−E[xbT ]BT +E[xxT ]

)
.

Then, using the distributive property of the trace function and the identity

d
dB

trace(BT C) =

(
d

dB
trace(BC)

)T

= C,

we see that dE(∥Bb−x∥2)/dB = 0 when
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B̂ = ΓxbΓbb
−1,

which establishes the result.

In the context of (1), and given our assumptions stated above, we can obtain a more
concrete form for the minimum variance estimator. In particular, we note that since
x and e are assumed to be independent, Γxe = Γex = 0. Hence, using (1), we obtain

Γxb = E[x(Ax+ e)T ],

= ΓxxAT .

Similarly,

Γbb = E[(Ax+ e)(Ax+ e)T ],

= AΓxxAT +Γee.

Thus, since Γxx = Cx and Γee = Ce, the minimum variance estimator has the form

xest = B̂b
= CxAT (ACxAT +Ce)

−1b,
= (AT C−1

e A+C−1
x )−1AT C−1

e b. (8)

We note, in passing, that (8) can also be expressed as

xest = argmin
x

{
∥Ax−b∥2

C−1
e

+∥x∥2
C−1

x

}
, (9)

where “argmin” denotes “argument of the minimum” and ∥x∥2
C

def
= xT Cx. This es-

tablishes a clear connection between minimum variance estimation and generalized
Tikhonov regularization [4]. Note in particular that if Ce = σ2

1 I and Cx = σ2
2 I, prob-

lem (9) can be equivalently expressed as

xest = argmin
x

{
∥Ax−b∥2

2 +(σ2
1 /σ2

2 )∥x∥2
2
}
,

which has classical Tikhonov form. This formulation is also equivalent to maximum
a posteriori (MAP) estimation.

4 The Kalman Filter

In the previous section, we considered the stationary linear model (1), but suppose
our model now has the form (2), (3). Equation (2) is the equation of evolution for
xk with Mk the n×n linear evolution matrix, and Ek ∼ N (0,CEk). In equation (3),
bk denotes the m× 1 observed data, Ak the m× n linear observation matrix, and
ek ∼ N (0,Cek). In both equations, k denotes the time index.
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The problem is to estimate xk at time k from bk and an estimate xest
k−1 of the state at

time k−1. We assume xest
k−1 ∼ N (xk−1,Cest

k−1). To facilitate a more straightforward
application of the result of Theorem 1, we rewrite (2), (3). First, define

xa
k = Mkxest

k−1 (10)
zk = xk −xa

k , (11)
rk = bk −Akxa

k . (12)

Then, subtracting (10) from (2) and Akxa
k from both sides of (3), and dropping the k

dependence for notational simplicity, we obtain the stochastic linear equations

z = M(x−xest)+E, (13)
r = Az+ e. (14)

The minimum variance estimator of z from r given (13), (14) is then given, via
Theorem 1 (note that z is a zero mean Gaussian random vector), by

zest = ΓzrΓrr
−1r.

We assume that x− xest is independent of E, and that z = x− xa is independent of
e. Then, from (4), (5), (6), (13) and (14), we obtain

Γzz = MCestMT +CE
def
= Ca, (15)

Γzr = CaAT ,

Γrr = ACaAT +Ce.

where Cest and Ca are the covariance matrices for xest and xa, respectively. Thus,
finally, the minimum variance estimator of z is given by

zest = CaAT (ACaAT +Ce)
−1r, (16)

From (16) and (11) we then immediately obtain the Kalman Filter estimate of x
given by

xest
+ = xa +H(b−Axa), (17)

where

H = CaAT (ACaAT +Ce)
−1 (18)

is known as the Kalman Gain matrix.
Finally, in order to compute the covariance of xest

+ , we note that by (17) and (3),

xest
+ = (I−HA)xa +He+HAx,
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where x is the true state. Given our assumptions and using (6), the covariance then
takes the form

Cest
+ = (I−HA)Ca(I−HA)T +HCeHT ,

which can be rewritten, using the identity HCeHT = (I−HA)CaAT HT , in the sim-
plified form

Cest
+ = Ca −HACa. (19)

Incorporating the k dependence again leads directly to the Kalman filter iteration.

The Kalman Filter Algorithm

Step 0: Select initial guess xest
0 and covariance Cest

0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute xa

k = Mkxest
k−1;

B. Compute Ca
k = MkCest

k−1MT
k +CEk := Ca

k .

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the Kalman Gain Hk = Ca

kAT
k (AkCa

kAT
k +Ce)

−1;
B. Compute the estimate xest

k = xa
k +Hk(bk −Akxa

k);
C. Compute the estimate covariance Cest

k = Ca
k −HkAkCa

k .

Step 3: Update k := k+1 and return to Step 1.

4.1 A Variational Formulation of the Kalman Filter

As in the stationary case (see (8), (9)), we can rewrite equation (16) in the form

zest = (AT C−1
e A+(Ca)−1)−1AT C−1

e r,

which, yields, using (11), the Kalman filter estimate

xest
+ = xa +[AT C−1

e A+(Ca)−1]−1AT C−1
e (b−Axa),

= argmin
x

{
ℓ(x) def

=
1
2
(b−Ax)T C−1

e (b−Ax)+
1
2
(x−xa)T (Ca)−1(x−xa)

}
.

It can be shown using a Taylor series argument that

xest
+ = xa −∇2ℓ(xa)−1∇ℓ(xa), (20)

where ∇ℓ and ∇2ℓ denote the gradient and Hessian of ℓ respectively, and are given
by

∇ℓ(x) = AT C−1
e (b−Ax)+(Ca)−1(x−xa),

∇2ℓ(x) = AT C−1
e A+(Ca)−1.
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By the matrix inversion lemma, we have

(AT C−1
e A+(Ca)−1)−1 = Ca −CaAT (ACaAT +Ce)

−1ACa.

Then from equations (18) and (19), we obtain the interesting fact that

Cest
+ = ∇2ℓ(x)−1. (21)

This allows us to define the following equivalent formulation of the Kalman filter,
which we call the variational Kalman filter.

The Variational Kalman Filter Algorithm

Step 0: Select initial guess xest
0 and covariance Cest

0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute xa

k = Mkxest
k−1;

B. Compute Ca
k = MkCest

k MT
k +CEk := Ca

k .

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the estimate xest

k = argminx ℓ(x);
C. Compute the estimate covariance Cest

k = ∇2ℓ(x)−1.

Step 3: Update k := k+1 and return to Step 1.

A natural question is, what is the use of this equivalent formulation of the Kalman
filter? Theoretically there is no benefit gained in using the variational Kalman filter if
the estimate and its covariance are computed exactly. However, with the variational
approach, the filter estimate, and even its covariance, can be computed approxi-
mately using an iterative minimization method, such as conjugate gradient. This
is particularly important for large-scale problems where the exact Kalman filter is
prohibitively expensive to compute.

4.2 The Extended Kalman Filter

The extended Kalman filter is the extension of the Kalman filter when (2), (3) are
replaced by

xk = M (xk−1)+Ek, (22)
bk = A (xk)+ ek, (23)

where M and A are (possibly) nonlinear functions. The extended Kalman filter is
obtained by the following simple modification of either of the above algorithms: in
Step 1, A use, instead, xa

k = M (xest
k ), and define
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Mk =
∂M (xest

k−1)

∂x
, and Ak =

∂A (xa
k)

∂x
, (24)

where ∂ f
∂x denotes the Jacobian of f .

5 Conclusions

We have presented a derivation of the Kalman filter that utilizes matrix analysis
techniques as well as the Bayesian statistical approach of minimum variance esti-
mation. In addition, we presented an equivalent variational formulation, which we
call the variational Kalman filter, as well as the extended Kalman filter for nonlinear
problems.
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