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Abstract Optimal Bayesian sequential inference, or filtering, for the state of a de-
terministic dynamical system requires simulation of the Frobenius-Perron operator,
that can be formulated as the solution of an initial value problem in the continuity
equation on filtering distributions. For low-dimensional, smooth systems the finite-
volume method is an effective solver that conserves probability and gives estimates
that converge to the optimal continuous-time values. A Courant-Friedrichs—Lewy
condition assures that intermediate discretized solutions remain positive density
functions. We demonstrate this finite-volume filter (FVF) in a simulated example
of filtering for the state of a pendulum, including a case where rank-deficient obser-
vations lead to multi-modal probability distributions.

1 Introduction

In 2011, one of us (TCAM) offered to improve the speed and accuracy of the Tru-
Test scales for ‘walk over weighing” (WOW) of cattle, and wagered a beer on the
outcome [8]. Tru-Test is a company based in Auckland, New Zealand, that manu-
factures measurement and productivity tools for the farming industry, particularly
for dairy. Tru-Test’s XR3000 WOW system was already in the market, though they
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could see room for improvement in terms of on-farm usage, as well as speed and
accuracy. Indeed, advertising material for the XR3000 stated that WOW

requires that the animals pass the platform regularly and smoothly

which hinted at the existing processing requiring somewhat constrained movement
by the cows for it to deliver a weight.

Figure 1 shows a cow walking over the weigh-bridge in the WOW system located
on the ground in the path from a milking shed. The weigh bridge consists of a
low platform with strain gauges beneath the platform, at each end, that are used to
measure a time series of downward force from which weight (more correctly, mass)
of the cow is derived.

Fig. 1 A dairy cow walking
over a weigh bridge placed
near the milking shed. (Photo-
credit: Wayne Johnson/Pizzini
Productions)

The plan, for improving estimates of cow mass from strain-gauge time series,
was to apply Bayesian modeling and computational inference. Bayesian inference
allows uncertain measurements to be modeled in terms of probability distributions,
and interpreted in terms of physical models that describe how the data is produced.
This leads to estimates of parameters in the model, such as the mass of a cow, and
meaningful uncertainty quantification on those estimates. At the outset we devel-
oped dynamical-systems models for the moving cow, with some models looking
like one or more pogo sticks. Operation in real-time would require developing new
algorithms for performing the inference sequentially — as the data arrives — and new
hardware with sufficient computing speed to implement those algorithms. Figure 2
(right) shows hardware developed for this application, that includes strain-gauge
signal conditioning, digitization, and an embedded ARM processor, alongside the
XR3000 electronics and display (left).

This paper describes an algorithm for optimal sequential Bayesian inference that
we developed in response to this application in cow weighing. We first give a styl-
ized model of WOW, then a method for optimal filtering for tracking the state of
a nonlinear dynamical system, then present numerical examples for the stylized
model.
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Fig. 2 WOW hardware in 2016: existing commercial unit (left), and prototype with embedded
processing (right). (Photocredit and hardware design: Phill Brown)

1.1 A Stylized Problem

A (very) stylized model of WOW is the problem of tracking a simple pendulum of
length [ and mass m when only the force F in the string is measured, as depicted in
Figure 3. For this system the kinematic variables are the angular displacement (from

Fig. 3 A pendulum of length
| with mass m, undergoing
motion with angular displace-
ment 6 and angular velocity
. The force F in the string is
measured.

the vertical downwards) 6 and the angular velocity @. The kinematic state (6, ®)
evolves according to

d
—(0,0) = (a),—§sine)
where g is the acceleration due to gravity, / the length of the pendulum.
The force Fj is measured at times #, k = 1,2,3,..., with the (noise free) value

related to the state variables by
F = mlo* (1) +mgcos (1)
Estimation of the parameter m may be performed by considering the augmented

system

%(G,a),m) = (@,~%5in6,0).

See [7] for a computed example of parameter estimation in this system.
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2 Sequential Bayesian Inference for Dynamical Systems

Consider now a general dynamical system that evolves according to the (autonomous)

differential equation
d

ax:f(x)v ey

where f is a known velocity field and x(¢) is the state vector of the system at time ¢.
Given an initial state x(0) = xo at# = 0, Eq. 1 may be solved to determine the future
state x(t), r > 0, that we also write x(#;x0) to denote this deterministic solution.

At increasing discrete times #;, k = 1,2,3,..., the system is observed, returning
measurement z; that provides noisy and incomplete information about x; = x(#).
We assume that we know the conditional distribution over observed value z;, given
the state xy,

p (zx|xx) -

Let Z, = {z : tx <t} denote the set of observations up to time #, and let (the ran-
dom variable) x, = x(¢) denote the unknown state at time ¢. The formal Bayesian
solution corresponds to determining the time-varying sequence of filtering distribu-
tions

p (x|Z) 2

over the state at time ¢ conditioned on all available measurements to time ¢.

Discrete-time formulation A standard approach [1] is to discretize the system
equation 1 and treat the discrete-time system [3]. When uncertainty in f is included
via ‘process noise’ v, observation errors via ‘observation noise’ ny, the discrete-
time problem is written as

X = fi (Xk—1,v)
2 = hye (X, i)

with functions f; and Ay assumed known.

When the random processes v, and ny are independently distributed from the
current and previous states, the system equation defines a Markov process, as does
Eq. 1, while the observation equation defines the conditional probability p (zi|xx).

We will treat the continuous-time problem directly, defining a family of numeri-
cal approximations that converge in distribution to the desired continuous-time dis-
tributions.

Continuous-time Bayesian filtering Sequential Bayesian inference iterates two
steps to generate the filtering distributions in Eq. 2 [5].

Prediction Between measurements times #; and #; 1, Z; is constant and the continuous-
time evolution of the filtering distribution may be derived from the (forward)
Chapman-Kolmogorov equation
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P (XeatlZivar) = P (XrvarlZe) = /P (Xr+arx1,Z;) p (i Z;) dxy
— [ 802~ x(Ati))p (x12) d
which defines a linear operator on the space of probability distributions,

Sar:p (x| Ze) = p (xiailZs) - 3)
S, is the Frobenius-Perron (or Foias) operator for time increment At.

Update At measurement times #, Z;, changes, from Z;_| to Z;, and the filtering
distribution changes, typically discontinuously, as

P (zxlxi) p (i Zi—1)
P (zk|Zk-1)

p (xk|Zi) = 4)
which is simply Bayes’ rule written at observation time #;. We have written x; = x;,
and Z; = Z,,, and used conditional independence of z; and Z;_; given x;.

2.1 The Frobenius-Perron Operator is a PDE

The Frobenius-Perron operator in Eq. 3, that evolves the filtering density forward in
time, may be written as the solution of an initial value problem (IVP) in a partial
differential equation (PDE) for the probability density function (pdf).

For pdf p(x;1) over state x and depending on time ¢, the velocity field f(x) implies
a flux of probability equal to p(x;¢)f(x). Fig. 4 shows a schematic of the pdf and
probability flux in region (x,x+dx), and for the time interval (¢,¢ +dt). Equating the

Fig. 4 A schematic of proba- p(x;t)
bility flux in region (x,x+dx), : : p(ait+dt)
and for time (7,7 4+ dt). The ’

schematic shows greater flux
exiting the region than enter- p(z)f(z) * q p(z+dz) f(z+dx)

ing, correspondingly the pdf
at ¢ +dr is decreased with ;
respect to the pdf at 7. z z+dx

rate of change in the pdf with the rate at which probability mass enters the region,
and taking dx,dr — 0, gives the continuity equation

d
5P =V (pf). )
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The Frobenius-Perron operator S4,, for time interval A¢, may be simulated by solv-
ing the PDE 5 with initial condition p (x;0) = p (x%|Z;) to evaluate p (x;Ar) =
P (Xe+aelZt).

Eq. 5 is a linear advection equation. When the state equation has additive stochas-
tic forcing, as is often used to represent model error, evolution of the filtering pdf is
governed by a linear advection-diffusion (Fokker-Planck) equation.

3 Finite Volume Solver

The finite volume method (FVM) discretizes the continuity equation in its integral
form, for each ‘cell’ K in a mesh,

%/pdx—i—jl{p(f-ﬁ)dS:O.
K K

Write L ~ K if cells L and K share a common interface, denoted Ek;, and denote
by 7ixy, the unit normal on Ek;, directed from K to L. Define the initial vector of cell
values by P = \IITI Jx P (x;0)dx then form =0,1,--- ,r compute P"*! as

pgtt—py 1
o SEELS SURL P =0
v + X L;{fKL k. = 0,
where
' P oif >0
fxv=| foageds  and P, = K ! oz
ExL Py if fxr <0

is the normal velocity on Eg;, and first-order upwinding scheme, respectively.
In matrix form, the FVM step for time increment Az is

P" = (I-AtA)P™,

where [ is the identity matrix and A is a sparse matrix defined above. This formula
is essentially Euler’s famous formula for the (matrix) exponential.

Since fx;, = — fLk, the FVM conserves probability at each step, i.e., Y x |K \P%H =
Y« |[K|P¥. The FVM also preserves positivity of the pdf when the time step At is
small enough that the matrix / — AzA has all non-negative entries. It is straightfor-
ward to show that positive entries of the matrix A can occur on the diagonal, only.
Hence, the Courant-Friedrichs—Lewy (CFL) type condition, that assures that the
FVM iteration is positivity preserving, may be written

1
At < .
maxiAi,-

(6)
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With this condition, the FVM both conserves probability and is positivity preserv-
ing, hence is a (discrete) Markov operator. In contrast, the numerical method for the
matrix exponential in MATLAB, for example, does not preserve positivity for the
class of matrices considered here.

4 Continuous-Time Frobenius-Perron Operator and
Convergence of the FVM Approximation

In this section we summarize results from [7], to develop some analytic properties
of the continuous-time solution, and establish properties and distributional conver-
gence of the numerical approximations produced by the FVM solver.

Let X(-,#) : RY — R? denote the map from initial condition to the solution of
Eq. I at time t > 0, and Y (-,¢) = X (-,#)~'. If X(-,1) is non-singular (|Y (E,t)| =0
if |[E| = 0 V Borel subsets E C Rd), then V¢ > 0, the associated Frobenius-Perron
operator [6] S, : L' (RY) — L'(R?) is defined by

/ S;pdx = / pdx  V Borel subsets E C R9.
JE JY(E )

Given an initial pdf py, the pdf p(-;¢) at some future time, r > 0, may be computed
by solving (see, e.g., [6, Def. 3.2.3 and §7.6])

9 p+div(fp) =0 VxeRe, 1 >0 o

p(:0) =po(x) ~ VxeR?
Then, V¢ > 0, the Frobenius-Perron operator S, : L' (R?) — L' (R?) is defined such
that for any p € L!(R9),

Sip = p(';t)7

where p is a solution to the IVP 7 with py = p. Existence of a Frobenius-Perron
operator and (weak) solutions to the IVP depends on the regularity of f.

Definition 1. (Definition 3.1.1. in [6]) A linear operator S : L' (RY) — L'(R9) is a
Markov operator (or satisfies the Markov property) if for any f € L'(R?) such that
f=0,

Sf=0 and HSf”Ll(Rd) = ||f||L1(JRd)~

If f has continuous first order derivatives and solutions to Eq. 1 exist for all initial
points xo € R< and all t > 0 then the Frobenius-Perron operator is well-defined,
satisfies the Markov property, and {S; : t > 0} defines a continuous semigroup of
Frobenius-Perron operators.

FVM Approximation For computational purposes it is necessary to numerically
approximate the Frobenius-Perron operators. We use piece-wise constant function
approximations on a mesh and the FVM.
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Define a mesh .7 on R? as a family of bounded, open, connected, polygonal,
disjoint subsets of R such that R? = Ugc » K. We assume that the common interface
between two cells is a subset of a hyperplane of RY, and the mesh is admissible, i.e.,

ohd <|K
Ja>0: *|1|d71 VKe T
0K| < &h

where i = sup{diam(K) : K € .7}, |K]| is the d-dimensional Lebesgue measure of
K, and |dK]| is the (d — 1)-dimensional Lebesgue measure of dK.

We will use superscript 4 to denote numerical approximations (though, strictly,
we should use 7 as h does not uniquely define the mesh).

The following gives the CFL condition for the (unstructured) mesh 7. Suppose
that for some & € [0,1) and ¢ > 0, we say that Az satisfies the CFL condition if

ArY max{0, fg } < (1-&)|K| VK€ Z and At < coh. (®)
L~K

Lemma 1. If At satisfies the CFL condition in Eq. 8 and po > 0 then
Pl >0 VxeRYr>0,

and S!" is a Markov operator.

The following theorems establish convergence of solutions of the FVM, and con-
vergence of expectations with respect to the filtering distributions.

Theorem 1. Suppose div f =0, p € BV (R?), and At satisfies the CFL condition for
some & € (0,1). Then ¥t > 0,

15,0 =Sl < CE " p v (112012 + €1/21h).

Convergence of expectations is a consequence of convergence of our FVM.

Theorem 2. Suppose H,T < oo. Under the same assumptions as previous Theorem,
1. g € L*(RY), or
2. g€ L2 (R?) and p has compact support,

loc

then there exists a constant C independent of h and t such that
ESf’p [g] _ESrP [g] < Ch1/2 Vi € [07 T]vh € (OvH]

This guarantees convergence in distribution of the discrete approximation to the
continuous-time filtering pdfs in the limit 7 — 0.

In numerical tests ([7]) we found convergence to be ¢ (h), which is twice the
order predicted by Theorem 2. Since the CFL condition requires the time step is
also O(h), the method is & (Ar) accurate. Thus the FVM method we use achieves
the highest order permitted by the meta theorem of Bolley and Crouzeix [2], that
positivity-preserving Runge-Kutta methods can be first order accurate, at most.
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5 Computed Examples

We now present a computed example of the finite volume filter (FVF) that uses the
FVM for implementing the Frobenius-Perron operator during the prediction phase,
and the update rule, Eq. 4 evaluated using mid-point quadrature.

Further details of these numerical experiments can be found in [4], including
comparison to filtering produced by the unscented Kalman filter (UKF).

5.1 FVF Tracking of a Pendulum From Measured Force

Fig. 5 shows four snapshots of the filtering pdf for the stylized model of Sec. 1.1.
The ‘true’ pendulum was simulated with initial condition (89, @) = (0.27,0).
Eight measured values of the force were recorded, per 27 time, over time period
of 37, with added Gaussian noise having ¢ = 0.2. The FVF was initialized with
N(0,0.821).

2
0
Fig. 5 Initial (+ = 0) and
filtered pdfs in phase-space -2
after measurements at times

t =m/4, m, and 37 (left to

right, top to bottom). 0]
2
0
-2
-2 0 2 -2 0 2
0

Since the initial and filtering pdfs are symmetric about the origin, the means
of angular displacement and velocity are always identically zero. Hence, filtering
methods that such as the UKF, or any extension of the Kalman filter that assumes
Gaussian pdfs, or that focus on the mean as a ‘best’ estimate, will estimate the state
as identically zero, for all time. Clearly, this is uninformative.

In contrast, the FVF has localized the true state after 37 time (about 1.5 periods),
albeit with ambiguity in sign. Properties of the system that do not depend on the
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sign of the state, such as the period, the length of the pendulum, or the mass of the
pendulum, can then be accurately estimated. The computed example in [7] shows
that the length of the pendulum is correctly determined after just 1.5, and that the
accuracy of the estimate improves with further measurements (and time). The same
feature holds for estimating mass. Hence, the FVM is successful in accurately es-
timating the parameters in the stylized model, even when the measurements leave
ambiguity in the kinematic state.

6 Conclusions

Bayes-optimal filtering for a dynamical system requires solving a PDE. It is in-
teresting to view filters in terms of the properties of the implicit, or explicit, PDE
solver, such as the density function representation and technology used in the PDE
solver. This paper develops a FVM solver using the simplest-possible discretization
to implement a Bayes-optimal filter, that turned out to be computationally feasible
for low-dimensional smooth systems.

The reader may be interested to know that TCAM won his wager, and beer, with
new sequential inference algorithms now producing useful results on the farm. In the
interests of full disclosure we should also report that the original notion of utilizing
a simple dynamical-systems model for a walking cow did not perform well, as the
model ‘cow’ would eventually walk upside down, just as the pendulum prefers to
hang downwards. In response, we developed models for cow locomotion based on
energy conservation, that are beyond the scope of this paper. However, the FVF has
found immediate application in other dynamic estimation problems where a dynam-
ical model that evolves a state vector works well, such as estimating the equilibrium
temperature of milk during steaming as a tool for training coffee baristas.
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