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Abstract A new approach was recently introduced for the task of estimation of
parameters of chaotic dynamical systems. Here we apply the method for stochastic
differential equation (SDE) systems. It turns out that the basic version of the ap-
proach does not identify such systems. However, a modification is presented that
enables efficient parameter estimation of SDE models. We test the approach with
basic SDE examples, compare the results to those obtained by usual state-space
filtering methods, and apply it to more complex cases where the more traditional
methods are no more available.

1 Introduction

The difficulty of estimating parameters of chaotic dynamical models is related to
the fact that a fixed model parameter does not correspond to a unique model in-
tegration, but to a set of quite different solutions as obtained by setting slightly
different initial values, selecting numerical solvers used to integrate the system, or
tolerances specified for a given solver. But while all such trajectories are different,
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they approximate the same underlying attractor and should be considered in this
sense equivalent. In [3] we introduced a distance concept for chaotic systems based
on this insight. Modifying one of the fractal dimension definitions, the correlation
dimension, we calculate samples from the phase space of the system and map these
points onto a stochastic vector. The vector turns out to be Gaussian, providing a nat-
ural likelihood concept that quantifies the chaotic variability of points of a chaotic
system within a given setting of observations.

Stochastic differential equation (SDE) systems behave partly in a similar way:
each integration of a given system with fixed model parameters produces a different
realization. This calls for methods that can quantify the variability of the realiza-
tions. On the other hand, the stochastic nature of a SDE system is clearly different
from the chaotic variability of a deterministic chaotic system. Consequently, the
phase space behavior of each type of systems is different as well. The aim of this
work is to study to which extent the parameter estimation approach originally de-
veloped for chaotic systems can be applied to SDE models.

The rest of the paper is organized as follows. In the Background section we
recall the correlation integral likelihood concept and outline the results obtained
for chaotic systems.In Numerical experiments we exhibit the performance of the
method for the Ornstein-Uhlenbeck model and extensions of it, together with com-
parisons to more standard, Kalman filter based methods.

2 Background

The standard way of estimating parameters of dynamical systems is based on the
residuals between the data and the model responses, both given at the time points
of the measurements. Supposing the statistics of the measurement error is known,
a well defined likelihood function can be written. The maximum likelihood point
is typically considered as the best point estimator, and it coincides with the usual
least squares fit in the case of Gaussian noise. The full posterior distribution of
parameters can be sampled by Markov chain Monte Carlo (MCMC) methods. The
approach has become routine for the parameter estimation of deterministic models
in Bayesian inference.

The estimation of the parameters of stochastic models is not so straightforward.
A given model parameter does not correspond to a fixed solution, but a whole range
of possible realizations. Several methods have been proposed to overcome this dif-
ficulty. State-based approaches estimate the joint distribution of the state vector and
the parameters. The likelihood for the parameter is obtained as a marginal distribu-
tion, effectively by ’integrating out’ the state space. This approach is routine in the
context of linear time series modeling, and implemented by the likelihood obtained
by application of the Kalman filter formulas, see [2, 7, 11].

Here we study a different way of characterizing the stochastic variability of the
state space. Supposing that a sufficient amount of data is available, we create a
mapping from it onto a feature vector. The mapping is based on averaging, and
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the vector turns out to be asymptotically Gaussian. From real data, the mean and
covariance of this Gaussian distribution can be empirically estimated. Thus we have
a likelihood available, both for maximum likelihood parameter estimation and for
MCMC sampling of the parameter posterior. The idea is the same as that earlier
used for estimating parameters of chaotic models in [3] , but certain modifications
are needed for SDE systems. We discuss the basic setting of the approach below, as
well as the reasons behind the modifications needed.

2.1 Likelihood via Filtering

A standard way of estimating the parameters with stochastic models is to use filter-
ing methods for constructing the likelihood (see, e.g., [2, 7, 11] for basic references
and implementation, or [8] for recent variant). By using the Kalman filter, the idea
is to build the marginal filter likelihood from the prediction residual rk and its error
covariance matrix Cr

k at each filtering time step k.
The basic linear Kalman filter is written as a pair

xk = Mkxk−1 +ξξξ k, (1)
yk = Hkxk + εεεk, (2)

where xk is the state and yk is the measurement vector. Matrix Mk is the linear state-
space model, and matrix Hk is the observation operator that maps from the state
space to the observation space. The error terms ξξξ k and εεεk are typically assumed
zero mean and Gaussian: ξξξ k ∼ N(0,Qk) and εεεk ∼ N(0,Rk). This dynamical system
is solved using Kalman filter formulas (see, e.g., [11]).

Given a set of observation y1:K and the parameter vector θθθ , the marginal filter
likelihood is written as

p(y1:K |θθθ) = exp

(
−1

2

K

∑
k=1

[
rT

k (C
r
k)

−1rk + log |Cr
k|
])

, (3)

where | · | denotes the matrix determinant. Here the prediction residual and its error
covariance matrix are calculated by the formulas

rk = yk −Hkxprior
k , (4)

Cr
k = HkCprior

k HT
k +Rk, (5)

where xprior
k is the prior estimate computed from the previous state xprior

k = Mkxest
k−1,

and Cprior
k =MkCest

k−1MT
k +Qk is the respective error covariance matrix. Note that the

normalizing “constant” |Cr
k| has to be included, since it depends on the parameters

via the prediction model.
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This approach is well established in the framework of linear time series or linear
SDE systems, where the additive model noise is known or may be estimated, as one
of the unknowns in the vector θθθ . In case the drift part of the system (1) is nonlinear,
one still may use the approach in the extended Kalman filter (EKF) form, based on
the approximation by linearization. Often the EKF approach is also applied to filter-
ing of deterministic systems. In that setting the model error term is rather postulated
and interpreted as a measure of bias. The covariances Q and R represent then our
trust on the model and data, respectively, previous work [5], motivated by closure
parameter estimation in climate research, is an example of this approach. A related
option is to employ ensemble filtering. In [12] this approach was employed in order
to tune the ensemble prediction system parameters. It was observed, however, that
the method resulted in a highly stochastic cost function that prevented a successful
application of parameter optimization algorithms. Moreover, the tuning parameters
of the filter itself may bias the model parameter estimation, see [6]. Recently, some
additional criticism toward using the filtering for estimating the parameters in real-
world applications (other than finance) has been presented see [10].

Next, we present the method developed in [3] for deterministic chaotic systems.
While computationally more demanding, it is free of the pitfalls listed above, and
can be applied to stochastic systems more general than the class of additive noise
given by (1).

2.2 Correlation Integral Likelihood.

In this section we briefly summarize the correlation integral likelihood method used
for creating a likelihood for complex patterns [3].

Let us use the notation s = s(θθθ ,x) for a state vector s that depends on parameters
θθθ and other inputs x such as, e.g., the initial values of a dynamical system. We
consider two different trajectories, s = s(θθθ ,x) and s̃ = s

(
θ̃θθ , x̃xx
)
, evaluated at N ∈

N time points ti, i = 1 : N, with explicit dependency on the respective initial and
parameter values. For R ∈ R, the modified correlation sum is defined as

C(R,N,θθθ ,x, θ̃θθ , x̃) =
1

N2 ∑
i, j

#
(∥∥si − s̃ j

∥∥< R
)
. (6)

In the case θ̃θθ = θθθ and x̃ = x the formula reduces to the well known definition
of correlation sum, the Correlation Integral is then defined as the limit C(R) =
limN→∞ C(R,N), and the Correlation Dimension ν as the limit

ν = lim
R→0

logC(R)/ log(R).

In numerical practice, the limit R → 0 is approximated by the small scale values
of the ratio above, by the log-log plot obtained by computing logC(R) at various
values of logR.
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However, we do not focus on the small-scale limit as in the above definition,
but rather use the expression (6) at all relevant scales R to characterize the dis-
tance between two trajectories. For this purpose, a finite set of decreasing radii
R = (Rk) , k = 1, ...,M, is chosen. The radii values Rk are selected so as to involve
both small and large scale properties of the trajectory samples. Typically, the radii
are chosen as Rk = b−kR0, with R0 = maxi, j

∥∥si − s̃ j
∥∥ or somewhat larger to ensure

that all the values are inside the largest radius. The values of M and b should be
chosen in a way that RM is small enough. For more details see [3].

Consider now the case with given data si, which corresponds to the case of a fixed
but unknown model parameter vector, θ̃θθ = θθθ = θθθ 0. We select two subsets s and s̃ of
size N from the data (see more details below). If we fix the radii values R= (Rk),k =
1, ...,M the expression (6) defines a M dimensional vector with components yk =
C(Rk,θθθ 0,x). A training set of these vectors is created by repeatedly selecting the
subsets s and s̃. The statistics of this vector can then be estimated in a straightforward
way.

Indeed, the expression (6) is an average of distances, so by the Central Limit
Theorem it might be expected to get Gaussian. More exactly, each expression y =
(yk) gives the empirical cumulative distribution function of the respective set of
distances. The basic form of the Donsker’s theorem tells that empirical distribution
functions asymptotically tend to a Brownian bridge. In a more general setting, close
to what we employ here, the Gaussianity was established by Borovkova et.al. [1].

At a pseudo code level the procedure can be summarized as follow:

• Using the measured data, create a training set of the vectors y for fixed radii
values (Rk) by sampling data at measurement times (ti).

• Create the empirical statistical distribution of the training set y as a Gaussian
likelihood, by computing the mean µµµ and the covariance ΣΣΣ of the training set
vectors.

• Find the maximum likelihood model parameter θθθ 0 of the distribution

Pθ0(θ ,x)∼ exp−1
2
(µ − y(θ ,x))T Σ−1(µ − y(θ ,x))

• Sample the likelihood to find those model parameters θθθ for which the vector
y =C(θθθ 000;x;θθθ ; x̃) belongs to the distribution N(µµµ,ΣΣΣ).

The first step will be discussed more in detail in the examples below. Note that in
[3] we assumed a parameter value θθθ 0 given and created the training data by model
simulations, while here we start with given data, create the training set from subsets
of data, and proceed to estimate a maximum likelihood parameter value θθθ 0.

Remark. In all the cases the prior distribution is assumed to be flat uniform.
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3 Numerical experiments

The main objective of this section is to modify the Correlation integral likeli-
hood (CIL) method for identifying SDE system parameters. The new version of
the method is compared with the filter likelihood results. After this validation the
approach is applied to a more complex case.

3.1 Ornstein-Uhlenbeck with modification for dynamics.

We start with a basic SDE example, the Ornstein-Uhlenbeck (OU) process model.
We use it as a benchmark to verify that the CIL method is able to produce results
comparable to standard filter likelihood methods in a setting where these classical
methods perform perfectly well. The OU process equation is given by

dXt =−θXtdt +σdWt . (7)

In the numerical simulations, we use θ = 10 and σ = 1.5 as the ’true’ values. For
simplicity, the mean value of the process is set to zero (but all the results and conclu-
sions are valid for a non-zero mean as well). We create a data signal of 3000 points
on the time interval [0,30], with initial value X = 0.

Figure 1 exhibits the signal used as data, obtained by integration of (7) using
the Euler-Maryama method, with a time step dt = 0.01 and using a fixed Gaus-
sian N(0,σ2) as the diffusion part. The figure presents three different realizations.
Note that essentially the same results as those given below were obtained by any
realizations used.

Let us first apply the CIL method in the basic form. To create the sample sets si
we randomly select 1500 of the data points of the signal in Fig. 1 and use the rest
of the points as s j to get the set of distances needed in (6). This process is repeated
around 2000 times to get a representative set of the feature vectors y. The likelihood
is then obtained by computing the mean and covariance of the training vectors y,
and the Normality of the vectors can be verified by the usual χ2 test.

Next, we find the distribution of the model parameters θ ,σ that follows this
distribution by creating a MCMC chain of length 20000 using adaptive Metropolis
[4]. The result in Fig. 2 shows, however, that the model parameters are not identified
by this likelihood. This situation is different from those reported in [3], and several
unpublished cases, for chaotic systems, where the same likelihood construction is
able to identify the model parameters.

We conclude that too much information is lost in the mapping from data to the
feature vectors y. Indeed, this is not surprising in view of the fact that only the dis-
tances between randomized data points is considered, while the order or differences
between consecutive points is lost. A trivial example is given by any vector or ran-
dom points: sorting it in increasing order gives a definitely different signal, but with
just the same set of points and distances between them.
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Fig. 1: Ornstein-Uhlenbeck signal used for the experiments.

Intuitively, the mean reverting dynamics is lost here, so some additional modifi-
cation of the method is needed. The large posterior in Fig. 2 exhibits only what it is
programmed to do: signals whose distance distributions remain close, which in this
case does not characterize the signals. The feature vector can be modified in various
ways. Here we present the impact of extending it in the obvious way: we include
the differences between consecutive points. We create the feature vectors separately
for the signal and for the differences. The final feature vector is created by con-
catenating the curves, and the Gaussianity of the combined vector can be tested by
the χ2 test. Figure 2 illustrates the posterior obtained using three different levels of
information: only the data signal, only difference between consecutive points, and
both together. We see how the first two are not enough, while the posterior of the
extended case, practically the intersection of the two other posteriors, significantly
improves the identification.

Next, we compare the Correlation Integral Likelihood results with that obtained
by filter likelihood estimation based on Kalman filtering. We use the same data
signal as above, using all the points Xk,k = 1, ...,3000 as exact measurements (no
noise added) of the state vectors, and create MCMC samples of the likelihood given
by the expression (3). The comparison presented in Fig. 3. As expected, the filtering
method is more accurate with this amount of data (we use every Euler-Maryama
integration step as data for filtering), but the results by CIL are comparable.
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Fig. 2: The use of both state and difference information leads to a posterior (yel-
low) that is located around the intersection of the posterior generated by the state
information only (blue) and the one generated using the difference only (orange).

Remarks. In the above examples we have used the known value of θθθ 0 as the
starting point for the MCMC sampling. However, as the likelihood is created by the
data signal, we can equally well use it as the cost function to estimate θθθ 0 first. We
omit here the details of this step.

Note that there is a difference in computational times of the two methods, in this
particular case they are approximately 20min for CIL and around 6min for KF. The
difference is basically due to the additional computation of the distances needed for
CIL.

Note that using a larger time step between data points would decrease the accu-
racy of the KF estimate. However, it does not impact the CIL estimate, as it is based
on independent samples Xi in random order, not on predicting Xi+1 by Xi.

Finally, we note that the use of the present modification, including the system
’dynamics’ by signal differences, is not limited to the OU example. Rather, it can
be used generally to improve the model parameter identification of both SDE and
deterministic chaotic systems. However, a more detailed discussion is outside the
scope of this work.
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Fig. 3: Illustration of the results obtained by comparing CIL with the Filter likeli-
hood method in parameter estimation for a zero mean Ornstein-Uhlenbeck.

3.2 Stochastic Chaos

Here we study the CIL approach for chaotic dynamics, extended with stochastic per-
turbations. Now the stochasticity is no more of the additive form (1) but is contained
in the model equations in a nonlinear way. The specific forms of of the perturba-
tions discussed here come from meteorology. In the so called Ensemble Prediction
Systems (EPS) an ensemble of weather predictions, with carefully perturbed initial
values, is launched together with the main prediction. The motive is to create prob-
abilistic estimates for the uncertainty of the prediction. However, it is difficult to
create a spread of the ensemble predictions that would match the observed uncer-
tainty; the spread of the model simulations tends to bee too narrow. To increase the
spread the so called stochastic physics is employed: the right hand side of the model
differential equation is multiplied by a random factor (close to one) at every inte-
gration step. More recently, so called stochastic parametrization is used in addition:
certain model parameters are randomized likewise at every integration step of the
system. For more details of these methods see [9].

As a case study for the parameter estimation with stochastic physic and stochas-
tic parametrization a classical chaotic attractor, the Rossler system, is chosen. We
give the Rossler system in the form where the stochastic physics is introduced by
the multiplicative factors 1+ ckε , and the model parameters α,β ,γ are likewise re-
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placed by perturbed terms α + ckε , etc., k = 1 : 6, ε ∼ N(0,1). The system reads
as

 Ẋ = (1+ c1ε1)(−Y −Z)
Ẏ = (1+ c2ε2)(X +(α + c3ε3)Y )
Ż = (1+ c4ε4)((β + c5ε5)+Z (X − (γ + c6ε6)))

(8)

with ’true’ parameters α = β = 0.2 and γ = 5.7. The magnitudes ck were chosen so
that the maximum relative error would not exceed 40% in any of the cases.

Figure 4 shows the time evolutions of one of the components, the values of X
for different combinations of added stochasticity. Each plot consists of 80 runs with
slightly perturbed initial values. We see that the interval of predictable behavior
shrinks to almost one half of that of deterministic chaos when both types of pertur-
bations are added.

The task of parameter estimation is now to try to find the distribution of the mean
value of each of the perturbed parameters. The construction of the likelihood is per-
formed via the standard procedure: from a long enough data signal (here, produced
by simulating (8) ) we sample subsets to calculate the distances, and repeat this for
a number of times to be able to empirically determine the statistics of the feature
vectors. Again, the Gaussianity of the statistics can be verified. Both a maximum
likelihood parameter estimate, and the subsequent MCMC sampling for the poste-
rior can then be performed.

For the examples we create the data by simulating (8) over a total time interval
[0,120000] and select data points at frequency shown in Fig. 4 with the green circles.
To get one feature vector y we select two disjoint sets of 2000 consecutive data
points. To create the statistics for y we repeat this procedure for around 1800 times.
The number of radius values used was 10.

The results of the runs for different setting of the perturbations are given in Fig. 5.
We can conclude that the approach performs as expected: the more stochasticity in
the model, the wider are the parameter posteriors. However, in all cases we get
bounded posteriors, and the algorithm performs without any technical issues.

4 Conclusions

In this work we have applied the recently developed Correlation Integral Likelihood
method to estimate parameters of stochastic differential equation systems. Certain
modifications are needed to get satisfactory results, comparable to those achieved
by standard filter likelihood methods for basic SDE systems. But the main focus is
on situations where the standard methods are not available, such as the stochastic
physics and parametrizations employed in meteorology for uncertainty quantifica-
tion. Several extensions of the approach are left for future work.
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Fig. 4: The X component of the Rossler model with four different options for
stochasticity.
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