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Abstract Recent advances in biology, economics, engineering and physical sci-
ences have generated a large number of mathematical models for describing the
dynamics of complex systems. A key step in mathematical modelling is to estimate
model parameters in order to realize experimental observations. However, it is dif-
ficult to derive the analytical density functions in the Bayesian methods for these
mathematical models. During the last decade, approximate Bayesian computation
(ABC) has been developed as a major method for the inference of parameters in
mathematical models. A number of new methods have been designed to improve
the efficiency and accuracy of ABC. Theoretical studies have also been conducted
to investigate the convergence property of these methods. In addition, these meth-
ods have been applied to a wide range of deterministic and stochastic models. This
chapter gives a brief review of the main ABC algorithms and various improvements.

1 Introduction

Since more and more natural and social science problems involve the uncertainty
in observations, statistical models and parameter inference play an important role
in the development of mathematical methods for studying real-world problems. In
particular, the era of big data has generated huge amount of data whose volume is
increasing at a very fast speed. Mathematical and statistical models are becoming
more and more complex in terms of the network size and regulatory relationships.
Thus effective and efficient methods are strongly needed to infer unknown parame-
ters in these models in order to reduce the simulation errors against the experimental
data.

There are two major types of inference methods, namely the optimization meth-
ods and Bayesian statistical methods. The optimization methods are designed to
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minimize an objective function by searching for parameters within a given parame-
ter space in a directed manner. The inferred set of parameters produces the best fit to
the experimental data [30]. A variety of effective approaches have been developed
in recent years. Among them, the genetic algorithm is a popular and effective ap-
proach and has been widely applied to various models [50]. These methods all share
two main ingredients: a cost function for specifying the distance between simulated
data and experimental data and an optimization algorithm for searching for param-
eters in order to optimize the cost function. However, when the landscape of the
cost function is complex, it is difficult for these methods to find the global optimum.
To tackle this challenge, the global optimization methods have been proposed to
explore the complex surfaces as widely as possible. Comparison studies have been
conducted to examine the efficiency of several global optimization algorithms for
the test models [21].

Compared with the optimization methods, the Bayesian inference methods can
estimate the probability distributions of parameters by using the Bayes’ rule to up-
date the prior probability estimates. In addition, Bayesian methods are more robust
in dealing with stochastic models and/or experimental data with noise [22, 55]. In
recent years Bayesian methods have been successfully used in a diverse range of
fields and provide the promise to applications [48]. The recent advances in approx-
imate Bayesian computation (ABC) provide effective methods without any restric-
tion on the requirement of the likelihood function. This chapter provides a brief
review for the recent development in ABC, including the rejection ABC, regres-
sion ABC, Markov chain Monte Carlo (MCMC) ABC and sequential Monte Carlo
(SMC) ABC. We also discuss the relevant improvements and extensions of these
methods, such as the choice of summary statistics.

2 Principle of Bayesian Inference

For the Bayesian inference problems, model parameters are treated as random quan-
tities along with the observation data. The Bayesian inference involves the estima-
tion of the posterior probability

p(θ |y) = p(y|θ)π(θ)
p(y)

∝ p(y|θ)π(θ), (1)

where y is the observation data and the parameter vector of the model is θ (θ ∈
Θ ⊆ Rq,q ≥ 1). In addition, π(θ) is the prior distribution representing the prior
beliefs about the parameters under investigation, and p(y|θ) is a likelihood function
of parameter θ . The marginal distribution, defined by

p(y) =
∫

θ∈Θ
p(y|θ)π(θ)dθ (2)
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often involves a high-dimensional integral, and p(θ |y) is the posterior probability
distribution which expresses the uncertainty regarding θ conditional on the observed
experimental data y. All the Bayesian inference about θ will be based on the esti-
mated p(θ |y). However, the integrations which produce the Bayesian quantities of
interest (such as marginal posteriors, marginal moments, and probablitiy intervals)
can only be performed analytically when the density function p(y|θ) is available,
which can be achieved only for relatively simple cases.

When the density function p(y|θ) is available, the classic Metropolis-Hasting
algorithm is applied to find a Markov chain of the parameters, which is given below.

Algorithm 1: Metropolis-Hasting algorithm

Given the observation data yobs, proposal distribution q(·), and an initial sample
from the prior distribution θ (0) ∼ π(θ).

At iteration i ≥ 0

1. Generate a sample from the proposal distribution θ ′ ∼ q(θ |θ (i)).
2. Draw a sample from the uniform distribution µ ∼U(0,1) and calculate the

ratio

α = min(1,
π(θ ′

)p(yobs|θ
′
)q(θ (i)|θ ′

)

π(θ (i))p(yobs|θ (i))q(θ ′ |θ (i))
). (3)

3. If µ ≤ α , accept the sample as θ (i+1) = θ ′
; otherwise reject the sample.

4. Repeat steps 1 ∼ 3 until the requeired number of posterior samples is ob-
tained.

Based on the classic Metropolis-Hasting algorithm, a number of more sophisti-
cated methods have been designed, such as the Markov chain Monte Carlo (MCMC),
the importance sampling (IS), and the sequential Monte Carlo (SMC) [20, 42]. The
MCMC sampling methods usually break a high-dimensional problem into a number
of smaller dimensional problems and generate a sample of dependent or correlated
draws which can be treated as a realizetion of a Markov chain with equilibrium dis-
tribution equal to p(θ |y). Once the convergence to p(θ |y) occurs, any subsequent
simulated value can be viewed as a sample from p(θ |y) and all these samples are
used to estimate the posterior quantities of interest.

An alternative approach is the Gibbs sampling if the marginal distribution of each
parameter is available. In the basic version, the Gibbs sampling is a special case of
the Metropolis-Hastings algorithm. However, in its extended versions, these meth-
ods can be considered as a framework for sampling each variable (or more generally,
each group of variables) from a number of variables in turn. It can also be incorpo-
rated into the Metropolis-Hastings algorithm (or other methods) to implement in
one or more sampling steps. The detail of this algorithm is given below.

Algorithm 2: Gibbs Sampling
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Given the observation data yobs, and an initialize sample from the prior distri-
bution θ (0) = (θ (0)

1 , · · · ,θ (0)
p )T ∼ π(θ).

At iteration i ≥ 0

1. Generate a sample for θ (i+1)
1 using

θ (i+1)
1 ∼ π(θ1|θ (i)

2 , · · · ,θ (i)
p ,yobs).

2. For j = 2, ..., p−1, sample for θ (i+1)
j using

θ (i+1)
j ∼ π(θ j|θ (i+1)

1 , ...,θ (i+1)
j−1 ,θ (i)

j+1, · · · ,θ
(i)
p ,yobs).

3. Generate a sample for θ (i+1)
p using

θ (i+1)
p ∼ π(θp|θ (i+1)

1 ,θ (i+1)
2 , · · · ,θ (i+1)

p−1 ,yobs).

4. Repeat steps 1 ∼ 3 until the requeired number of posterior samples is ob-
tained.

Although these Bayesian inference methods are effective, they are based on the
availability of the likelihood function. However, it may be difficult to derive the
likelihood function directly for many complex models. For example, the analyti-
cal density function may not be available, or it may be expensive to calculate the
likelihood. In some cases, the observed experimental data are insufficient to obtain
a tractable likelihood. This intractability prohibits the direct implementation of a
generic MCMC algorithm.

3 Rejection ABC method

To deal with complex models without analytical likelihood, a number of algorithms
have been developed during the past two decades, which are referred to as the
likelihood-free inference or Approximate Bayesian Computation (ABC). The ABC
method is based on the following intuition: namely if a sample of the unknown
parameter produces the simulation that matches the observed dataset, this sample
should be close to the exact value of the parameter. Conversely, if the simulated
dataset differs from the observed data substantially , this sample should not be con-
sidered as the estimate of the parameter. Thus the method strongly relies on the
metric to determine the distance between simulated dataset and observed dataset.
In the late 90’s, ABC was first introduced as a rejection technique bypassing the
computation of the likelihood function [49]. Later, Pritchard et al. proposed a gen-
eralisation based on an approximation of the target [39]. In recent years, the ABC
methods have been proposed with various improvements and have been applied to a
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wide range of application fields, such as population genetics, ecology, epidemiology
and systems biology.

The ABC spirit is based on the following algorithm [44].

Algorithm 3: Likelihood-free rejection sampling

Given the observation data yobs, and prior distribution π(θ).

1. Generate a sample from the prior distribution θ ′ ∼ π(θ).
2. Simulate the model using θ ′ to get a dataset x ∼ p(x|θ ′).
3. Accept the sample θ ′ if x = yobs, otherwise reject it.
4. Repeat the above steps until the required number of posterior samples is

obtained.

In this paper Rubin just exhibited this algorithm as an intuitive way to understand
the posterior distributions from a frequentist perspective rather than using it for in-
terring models where the likelihood function was not available [44]. Then Tavaré et
al. proposed an implementation of the rejection algorithm for the Bayesian infer-
ence of parameters in population genetics. When the data are discrete and of low
dimension, this algorithm is effective. However, the probability of acceptance for a
sample is usually very low.

As mentioned earlier, the rejection algorithm is dependent on a metric to measure
the distance between the simulation and observation data. For inference problems
with continuous distributions, or the datasets are high dimensional, it may be nec-
essary to use summary statistics to reduce the dimensionality. Pritchard et al. sug-
gested the prototype rejection-ABC algorithm as follows in a population genetics
setting [39].

Algorithm 4: Rejection ABC method

Given the observation data data yobs, prior distribution π(θ), summary statistics
s(·), tolerance level ε > 0, and distance function ρ(·, ·)

1. Generate a sample from the prior distribution θ ′ ∼ π(θ).
2. Simulate the model using θ ′ to get a dataset x ∼ p(x|θ ′).
3. Calculate the distance between the simulation and experimental data ρ(s(x),sobs)

based on the given summary statistics s(·).
4. Accept the sample θ ′ if

ρ(s(x),sobs)< ε.

Otherwise reject the sample.
5. Repeat steps 1∼ 4 until the required number of posterior samples is ob-

tained

The basic idea of ABC is to use summary statistics with a small tolerance to
produce a good proximation of the posterior distribution. The output is the samples
of parameters from the distribution p(θ |ρ(s(x),sobs)≤ ε). The choice of summary
statistics is very important which we will discuss later. In addition, the tolerance ε in
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Algorithm 4 may determine the efficiency of ABC. The basic ABC rejection algo-
rithm may result in long computing time when a prior distribution is far away from
posterior distribution. In addition, there is no learning process in this algorithm; and
thus no information could be obtained from the previous accepted samples of pa-
rameters. When the search space is complex, the convergence rate of this algorithm
may be very slow.

4 Regression ABC

To improve the efficiency of the rejection-ABC algorithm, Beaumont et al. [4] intro-
duced the regression approach by explicitly modeling the discrepancy between the
simulated summary statistics and that of the observed data through the following
algorithm.

Algorithm 5: Regression ABC

Given the observation data yobs, prior distribution π(θ), summary statistics s(·),
tolerance level ε , and distance function ρ(·).

1. Generate a sample from the prior distribution θ (i) ∼ π(θ).
2. Simulate the model using θ (i) to get a dataset x(i) ∼ p(x|θ (i)) and compute

the summary statistics s(i) = s(x(i)).
3. Repeat steps 1 and 2, until N pairs {θ (i),s(i)} are obtained.
4. Associate each pair (θ (i),s(i)) with a weight ω(i) ∝ Kε(ρ(s(i)− sobs)). The

weighted kernel can be selected as:

Kε(t) =

{
ε−1(1− (t/ε)2) t ≤ ε,
0 t > ε.

5. Apply a regression model to the n points, which have nonzero weights to
obtain an estimate of E(θ |s(x) = s(i)), denoted as m̂(s(i)).

6. Adjust each sample to

θ ∗(i) = m̂(sobs)+(θ (i)− m̂(s(i))).

7. Use {θ ∗(i),ω(i)} to aproximate the posterior distribution.

Here the samples θ (i) are adjusted with weights ω(i) > 0 to account for the differ-
ence between simulated summary statistics and that of the observed data. Beaumont
et al. [4] suggested a local linear model in the region of sobs, given by

θ (i) = m(s(i))+ e(i),

m(s(i)) = α +β T (s(i)− sobs),
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where e(i) are zero-mean random variates with common variance, m(s) is the condi-
tional expectation of θ given s.

In this approach, the choice of ε involves a bias-variance trade-off, namely the
increase of ε will reduce the variance because of a larger sample size for fitting the
regression. However, this will also increases bias arising from the departure from
the linearity and homoscedasticity [8].

When the number of samples is not very large due to the computational con-
straints, the homoscedastic assumption is no longer valid, because the neighbour-
hood of samples where ω(i) ̸= 0 is too large. Thus Blum et al. [9] extended this
algorithm to a nonlinear and heteroscedastic model, given by

θ (i) = m(s(i))+σ(s(i))e(i),

where σ(s(i)) = Var(θ |s(i)) denotes the conditional variance. The variance is then
estimated by using a second regression model for the logarithm of the squared resid-
uals, given by

log(θ (i)− m̂(s(i)))
2
= log(σ(s(i)))+η(i),

where η(i) are independent, zero-mean variates with common variance. The param-
eter adjustment then can be performed as follows:

θ ∗(i) = m̂(sobs)+(θ (i)− m̂(s(i)))× σ̂(sobs)

σ̂(s(i))
, (4)

where σ̂(s) denotes the estimator of σ(s). Here e plays the same role as for ho-
moscedastic model, but it has more flexibility on deviations from homoscedasticty.

5 MCMC-ABC algorithm

In the Rejection-ABC and Regression-ABC algorithms, parameter values are sam-
pled from the prior distribution. Thus the acceptance rate may be low if the prior
and posterior distributions are quite different. In fact, using samples from a non-
informative prior is very inefficient because this scheme does not account for the
data at the proposal stage and thus may lead to proposed values located in low pos-
terior probability regions. To address this issue, Marjoram et al. [33] introduced the
following MCMC-ABC algorithm.

Algorithm 6: MCMC-ABC algorithm

Given the observation data yobs, summary statistics s(·), tolerance level ε , dis-
tance function ρ(·), and proposal distribution q(·).

Initialize the first sample from the prior distribution θ (0) ∼ π(θ).

At iteration i ≥ 0
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1. Generate a sample from the proposal distribution θ ′ ∼ q(θ |θ (i)) .
2. Simulate the model using θ ′

to get a dataset x ∼ p(x|θ ′
).

3. Draw a sample from the uniform distribution µ ∼U(0,1), and calculate the
ratio

α = min(1,
π(θ ′

)q(θ (i)|θ ′
)

π(θ (i))q(θ ′ |θ (i))
× I(ρ(s(x),sobs)≤ ε)).

Here I(A) is an indicator function.
4. If µ ≤ α , accept the sample θ (i+1) = θ ′

; otherwise θ (i+1) = θ (i).
5. Repeat steps 1∼ 4 until the required number of posterior samples is ob-

tained.

This algorithm has a similar structure as that of the standard MCMC. Both algo-
rithms use a proposal distribution and prior distribution to calculate the ratio. The
difference is that the density function is used in MCMC for computing the ratio,
while in MCMC-ABC we treat the ratio of density function as one if the simulation
error satisfies the criterion. Thus the performance of MCMC-ABC strongly depends
on the selection of proposal distribution and prior distribution.

A potential drawback of MCMC-ABC is the selection of tolerance level ε and
proposal distribution q(θ |θ (i)) that may lead to expensive pilot runs [47, 26]. The
convergence property of the generated chain (θ (1), · · · ,θ (n)) is important because
MCMC algorithm may suffer if the proposal distribution is poorly chosen [14]. A
potential issue is that the chain may get stuck in a low probability region of the
posterior and lead to a poor approximation [18]. Since the proposed sample θ ′

must
meet two criteria, the rejection rate of the MCMC ABC may be extremely high.

6 SMC ABC

To tackle the challenges in MCMC-ABC, sequential Monte Carlo sampling tech-
niques have been introduced to ABC. Sequential Monte Carlo sampling differs from
the MCMC approach by using the technique of particle filtering. Rather than draw-
ing one candidate sample θ ′

at a step, this algorithm considers a pool with a large
number of samples (θ ′

1, · · · ,θ
′
N) simultaneously and treats each sample as a particle.

Sisson et al. [45] proposed a method which embed ABC simulation steps in Sequen-
tial Monte Carlo algorithm based on the theoretical work in [15]. This method gen-
erates sample from a sequence of approximate ABC posteriors under successively
smaller acceptance tolerances[5, 46, 51]. SMC-ABC concentrates on simulating a
dataset from the parameter regions with relatively high acceptance probabilities and
can adapt tuning choices such as acceptance tolerances during the computation,
which has potential advantages over the Rejection-ABC or MCMC-ABC. Here we
illustrate the algorithm of Beaumont et al. [5]:

Algorithm 7: SMC-ABC
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Given the observation data yobs, summary statistics s(·), distance function ρ(·),
tolerance thresholds ε1 ≥ ·· · ≥ εT , and density kernel K(·).

1. At iteration t = 1,
a. For i = 1, . . . ,N, repeat:

i. Sample sample θ (1)
i ∼ π(θ), and simulate dataset x ∼ p(x|θ (1)

i ) .
ii. Accept θ (1)

i if ρ(s(x),sobs)≤ ε1, otherwise reject this sample.
iii. Set weight ω(1)

i = 1/N.
b. Take τ2

2 as twice the empirical variance of the θ (1)
i s

2. At iteration 2 ≤ t ≤ T
a. For i = 1, . . . ,N, repeat:

i. Pick θ ∗
i from θ (t−1)

j s with probabilities ω(t−1)
j

ii. Generate sample θ (t)
i ∼ K(θ |θ ∗

i ,τ2
t ), and simulate a dataset x ∼

p(x|θ (t)
i ).

iii. Accept θ (t)
i if ρ(s(x),sobs)≤ εt , otherwise reject this sample.

iv. Set the weight of this accepted particle as

ω(t)
i ∝ π(θ (t)

i )

∑N
j=1ω(t−1)

j K(θ (t)
i |θ (t−1)

j ,τ2
t )

.

b. Take τ2
t+1 as twice the weighted empirical variance of the θ (t)

i s.

At the first iteration, this algorithm draws samples from the prior distribution
π(θ), simulates the model using the sample, calculate summary statistics, and select
N samples that satisfy the error criterion. This step actually is the rejection-ABC
algorithm. However, at the subsequent iterations, samples are drawn from a density
kernel K(θ) based on the previous particle population. A Gaussian kernel is used in
Beaumont et al. [5], given by

K(θ (t)
i |θ (t−1)

j ,τ2
t ) = φ{τ−1

t (θ (t)
i −θ (t−1)

j )},

where φ(·) is the density of a normal distribution. This algorithm effectively per-
forms the repeated importance sampling technique, which is also known as popu-
lation Monte Carlo [12]. Similar algorithms have been proposed by using different
formulas to calculate the weights and different kernel functions [5, 46, 51].

SMC-ABC has addressed a potential drawback of the rejection and regression
approaches. If the data are informative, the posterior distribution may be very narrow
compared with the prior, then the rejection and regression algorithms may become
inefficient. Thus repeatedly sampling from a gradually improving approximation of
the posterior will make the distribution of summary statistics become closer to the
posterior distribution, and increase the density of samples whose summary statistics
is located in the vicinity of the target [6].
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7 Choice of Summary Statistics

As discussed in previous sections, the posterior distribution of dataset p(θ |yobs) is
approximated by

p(θ |sobs)∝ p(sobs|θ)π(θ),

where sobs is the summary statistics which usually has lower dimension than that of
the data yobs. If sobs is sufficient,

p(θ |sobs) = p(θ |yobs).

When sobs is highly informative, p(θ |sobs) ≈ p(θ |yobs) is a good approximation.
However, for many practical problems, it is hard to derive sufficient statistics or
even a highly informative statistics. An appropriate choice of summary statistics is
required to balance the informativeness and low-dimensionality. In some applica-
tion fields, there has been a history of the development of summary statistics within
a model-based framework in recent years. However, it is also possible that empirical
summaries can be used without any strong theory to support them. Thus the selec-
tion of informative summary statistics is one of the important steps in the application
of ABC. In recent years a number of methods have been proposed regarding the se-
lection of summary statistics [19, 38].

Joyce and Marjoram [24] first proposed the ε-sufficiency concept and score of
statistics for selecting an additional summary statistic sk from the candidate set,
when the model already has summary statistics s1, . . . ,sk−1. Later three methods re-
garding the choice of summary statistics have been used in application [31], namely

1. selection of a subset of the summary statistics that maximizes prespecified crite-
ria such as the Akaike Information Criterion [10] or the entropy of a distribution
[35];

2. partial least square regression to get linear combinations of the original sum-
mary statistics that are maximally decorrelated and highly correlated with the
parameters [54]; and

3. summary statistics are chosen by minimizing a loss function under the assump-
tion of a statistical model between parameters and transformed statistics of sim-
ulated data [1, 19].

Blum et al. [10] provided a comprehensive review of the principal methods. How-
ever, this topic still remains as a challenging problem in Bayesian inference.

8 Early rejection ABC

To reduce the simulation time, a number of inference methods have been proposed
based on the idea of early rejection. For example, the delayed ABC divides a method
into two stages [13]. In the first stage, a sample of parameters may be rejected or
accepted by using an approximated posterior distribution. If it is accepted, a standard
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ABC method will be applied in the second stage to evaluate the discrepancy between
the observation data and simulation. This idea has been used in the MCMC-ABC
for inferring stochastic differential equation models, in which the prior distribution
and proposal distribution are used in the first stage for early rejection [41]. Based
on the MCMC-ABC [41], a sample is rejected if the following ratio is less than a
sample ω ∼U(0,1) by using the same notations in Eq. (3)

ω >
π(θ ∗)π(θi|θ ∗)

π(θr)π(θ ∗|θi)
. (5)

In this approach, the kernel density function p(y|θ) is removed from the ratio above.
Thus the performance of this early-rejection technique is fully dependent on the
choice of the proposal density function π(θ ∗|θi).

A recently published approach is the Lazy ABC, which proposes a random stop-
ping rule to abandon simulations with unsatisfactory accuracy [40]. This method
makes ABC more scalable to applications where simulation is expensive. The de-
tailed algorithm is given below

Algorithm 8: Lazy ABC

Input: prior density π(θ) and importance density g(θ), observation data yobs,
summary statistics s(·), tolerance level ε , distance function ρ(·, ·), proposal dis-
tribution q(·), and a continuous probability function α(θ ,x).

At iteration i = 1 : N

1. Generate a sample from importance sampling θ ∗ ∼ g(θ).
2. Simulate the model to get a dataset x∗ ∼ p(x|θ ∗) and let α∗ = α(θ ∗,x∗).
3. With probability α∗ continue to step 4. Otherwise perform early rejection:

namely let l∗ = 0 and go to step 6.
4. Simulate the model to get dataset Y ∗ ∼ p(Y |θ ∗,x∗).
5. Set l∗ABC = 1[d(s(y∗),s(yobs))< ε] and l∗ = l∗ABC/α∗.
6. Set w∗ = l∗π(θ ∗)/g(θ ∗).
7. Repeat steps 1∼ 6 until the required number of posterior samples is ob-

tained.

Output: A set of N pairs of (θ ∗,w∗) values.

The detailed information of Lazy importance sampling and multiple stopping
decision can be found in [40].

9 ABC software packages

A number of computer software packages have been designed in recent years to
implement ABC in different platforms using various computer languages. A soft-
ware package, BioBayes, provides a framework for Bayesian parameter estimation
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and evidential model ranking over models of biochemical systems using ordinary
differential equations. This package is extensible allowing additional modules to be
included [53]. A Python package, ABC-SysBio, implements parameter inference
and model selection for dynamical systems in the ABC framework [29]. This pack-
age combines three algorithms: ABC rejection sampler, SMC ABC for parameter
inference, and SMC ABC for model selection. It is designed to work with models
written in Systems Biology Markup Language (SBML). Deterministic and stochas-
tic models can be analyzed in ABC-SysBio. In addition, a computational tool SYS-
BIONS has been designed for model selection and parameter inference using nested
sampling [23]. Using a data-based likelihood function, this package calculates the
evidence of a model and the corresponding posterior parameter distribution. This is
a C-based, GPU-accelerated implementation of nested sampling that is designed for
biological applications.

Also in the R platform, a number of software packages have been designed.
Among them, package abc implements Rejection ABC with many methods of re-
gression post-processing; while EasyABC implements a wide suite of ABC algo-
rithms but not post-processing [36]. Package abctools has been designed to com-
plement the existing software provision of ABC algorithms by focusing on tools
for tuning them. It implements many previous unavailable methods from literature
and makes them easy available to the research community [36]. In addition, there
are also two ABC packages implemented as MATLAB toolbox. EP-ABC has been
designed for state space models and related models, and ABC-SDE for inferring pa-
rameters in stochastic differential equations [37]. There are still some other software
packages that have been reviewed in [36], including ABCreg, ABCtoolbox, Bayes
SSC, DIY-ABC, and PopABC.

10 Conclusion

In this chapter, we have reviewed a number of algorithms of ABC, together with the
relevant improvements, from choice of summary statistics to early rejection, aim-
ing at increasing the statistical accuracy and computational efficiency. In addition,
we give a few of the widely used software packages for the practical use of ABC
algorithms. In recently years, the ABC methods have been applied to a wide range
of inference problems in biology, economics, engineering and physical sciences.
These applications have also raised more challenging questions for parameter infer-
ence, such as high-dimensional data [34] [28] and stochastic modeling [56], which
provides interesting topics for future research.
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