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Abstract Optimization plays an important role in solving many inverse problems.
Indeed, the task of inversion often either involves or is fully cast as a solution of an
optimization problem. In this light, the mere non-linear, non-convex, and large-scale
nature of many of these inversions gives rise to some very challenging optimiza-
tion problems. The inverse problem community has long been developing various
techniques for solving such optimization tasks. However, other, seemingly disjoint
communities, such as that of machine learning, have developed, almost in parallel,
interesting alternative methods which might have stayed under the radar of the in-
verse problem community. In this survey, we aim to change that. In doing so, we
first discuss current state-of-the-art optimization methods widely used in inverse
problems. We then survey recent related advances in addressing similar challenges
in problems faced by the machine learning community, and discuss their potential
advantages for solving inverse problems. By highlighting the similarities among
the optimization challenges faced by the inverse problem and the machine learning
communities, we hope that this survey can serve as a bridge in bringing together
these two communities and encourage cross fertilization of ideas.

1 Introduction

Inverse problems arise in many applications in science and engineering. The term
“inverse problem” is generally understood as the problem of finding a specific phys-
ical property, or properties, of the medium under investigation, using indirect mea-
surements. This is a highly important field of applied mathematics and scientific
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computing, as to a great extent, it forms the backbone of modern science and engi-
neering. Examples of inverse problems can be found in various fields within medical
imaging [6, 7, 12, 74, 98] and several areas of geophysics including mineral and oil
exploration [8, 18, 77, 99].

In general, an inverse problem aims at recovering the unknown underlying pa-
rameters of a physical system which produces the available observations/measure-
ments. Such problems are generally ill-posed [55]. This is often solved via two
approaches: a Bayesian approach which computes a posterior distribution of the
models given prior knowledge and the data, or a regularized data fitting approach
which chooses an optimal model by minimizing an objective that takes into account
both fitness to data and prior knowledge. The Bayesian approach can be used for a
variety of downstream inference tasks, such as credible intervals for the parameters;
it is generally more computationally expensive than the data fitting approach. The
computational attractiveness of data fitting comes at a cost: it can only produce a
“point” estimate of the unknown parameters. However, in many applications, such
a point estimate can be more than adequate.

In this review, we focus on the data fitting approach. The approach consists of the
four building blocks: a parametric model of the underlying physical phenomenon, a
forward solver that predicts the observation given the model parameters, an objec-
tive function measuring how well a model fits the observation, and an optimization
algorithm for finding model parameters optimizing the objective function. The first
three components together conceptually defines what an optimal model is, and the
optimization algorithm provides a computational means to find the optimal model
(usually requires solving the forward problem during optimization). Each of these
four building blocks is an active area of research. This paper focuses on the opti-
mization algorithms. While numerous works have been done on the subject, there
are still many challenges remaining, including scaling up to large-scale problems,
dealing with non-convexity. On the other hand, optimization also constitutes a back-
bone of machine learning [17, 35]. Consequently, there are many related develop-
ments in optimization from the machine learning community. However, thus far and
rather independently, the machine learning and the inverse problems communities
have largely developed their own sets of tools and algorithms to address their re-
spective optimization challenges. It only stands to reason that many of the recent ad-
vances by machine learning can be potentially applicable for addressing challenges
in solving inverse problems. We aim to bring out this connection and encourage
permeation of ideas across these two communities.

In Section 2, we present general formulations for the inverse problem, some typ-
ical inverse problems, and optimization algorithms commonly used to solve the data
fitting problem. We discuss recent advances in optimization in Section 3. We then
discuss areas in which cross-fertilization of optimization and inverse problems can
be beneficial in Section 4. We conclude in Section 5. We remark that our review of
these recent developments focus on iterative algorithms using gradient and/or Hes-
sian information to update current solution. We do not examine global optimization
methods, such as genetic algorithms, simulated annealing, particle swarm optimiza-
tion, which have also received increasing attention recently (e.g. see [101]).
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2 Inverse Problems

An inverse problem can be seen as the reverse process of a forward problem, which
concerns with predicting the outcome of some measurements given a complete de-
scription of a physical system. Mathematically, a physical system is often specified
using a set of model parameters m whose values completely characterize the sys-
tem. The model space M is the set of possible values of m. While m usually arises
as a function, in practice it is often discretized as a parameter vector for the ease of
computation, typically using the finite element method, the finite volume method,
or the finite difference method. The forward problem can be denoted as

m → d = f(m), (1)

where d are the error-free predictions, and the above notation is a shorthand for
d = (d1, . . . ,ds) = (f1(m), . . . , fs(m)), with di ∈Rl being the i-th measurement. The
function f represents the physical theory used for the prediction and is called the
forward operator. The observed outcomes contain noises and relate to the system
via the following the observation equation

d = f(m)+ηηη , (2)

where ηηη are the noises occurred in the measurements. The inverse problem aims to
recover the model parameters m from such noisy measurements.

The inverse problem is almost always ill-posed, because the same measurements
can often be predicted by different models. There are two main approaches to deal
with this issue. The Bayesian approach assumes a prior distribution P(m) on the
model and a conditional distribution P(ηηη |m) on noise given the model. The latter is
equivalent to a conditional distribution P(d | m) on measurements given the model.
Given some measurements d, a posterior distribution P(m | d) on the models is then
computed using the Bayes rule

P(m | d) ∝ P(m)P(d | m). (3)

Another approach sees the inverse problem as a data fitting problem that finds an
parameter vector m that gives predictions f(m) that best fit the observed outcomes
d in some sense. This is often cast as an optimization problem

min
m∈M

ψ(m,d), (4)

where the misfit function ψ measures how well the model m fits the data d. When
there is a probabilistic model of d given m, a typical choice of ψ(m,d) is the neg-
ative log-likelihood. Regularization is often used to address the issue of multiple
solutions, and additionally has the benefit of stabilizing the solution, that is, the so-
lution is less likely to change significantly in the presence of outliers [5, 39, 111].
Regularization incorporats some a priori information on m in the form of a regular-
izer R(m) and solves the regularized optimization problem
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min
m∈M

ψR,α(m,d) := ψ(m,d)+αR(m), (5)

where α > 0 is a constant that controls the tradeoff between prior knowledge and
the fitness to data. The regularizer R(m) encodes a preference over the models, with
preferred models having smaller R values. The formulation in Eq. (5) can often
be given a maximum a posteriori (MAP) interpretation within the Bayesian frame-
work [100]. Implicit regularization also exists in which there is no explicit term
R(m) in the objective [30, 32, 56, 57, 89, 90].

The misfit function often has the form ϕ(f(m),d), which measures the difference
between the prediction f(m) and the observation d. For example, ϕ may be chosen to
be the Euclidean distance between f(m) and d. In this case, the regularized problem
takes the form

min
m∈M

ϕR,α(m,d) := ϕ(f(m),d)+αR(m), (6)

This can also be equivalently formulated as choosing the most preferred model sat-
isfying constraints on its predictions

min
m∈M

R(m), s.t. ϕ(f(m),d)≤ ρ. (7)

The constant ρ usually relates to noise and the maximum discrepancy between the
measured and the predicted data, and can be more intuitive than α .

2.1 PDE-Contrained Inverse Problems

For many inverse problems in science and engineering, the forward model is not
given explicitly via a forward operator f(m), but often conveniently specified via a
set of partial differential equations (PDEs). For such problems, Eq. (6) has the form

min
m∈M ,u

ϕ(P ·u,d)+αR(m), s.t. ci(m,ui) = 0, i = 1, . . . ,s, (8)

where P ·u = (P1, . . . ,Ps) · (u1, . . . ,us) = (P1u1, . . . ,Psus) with ui being the field in
the i-th experiment, Pi being the projection operator that selects fields at measure-
ment locations in di (that is, Piui are the predicted values at locations measured in
di), and ci(m,ui) = 0 corresponds to the forward model in the i-th experiment. In
practice, the forward model can often be written as

Li(m)ui = qi, i = 1, . . . ,s, (9)

where Li(m) is a differential operator, and qi is a term that incorporates source
terms and boundary values.

The fields u1, . . . ,us in Eq. (8) and Eq. (9) are generally functions in two or
three dimensional spaces, and finding closed-form solutions is usually not possi-
ble. Instead, the PDE-constrained inverse problem is often solved numerically by
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discretizing Eq. (8) and Eq. (9) using the finite element method, the finite volume
method, or the finite difference method. Often the discretized PDE-constrained in-
verse problem takes the form

min
m∈M ,u

ϕ(Pu,d)+αR(m), s.t. Li(m)ui = qi, i = 1, . . . ,s, (10)

where P is a block-diagonal matrix consisting of diagonal blocks P1, . . . ,Ps rep-
resenting the discretized projection operators, u is the concatenation of the vec-
tors u1, . . . ,us representing the discretized fields, and each Li(m) is a square, non-
singular matrix representing the differential operator Li(m). Each Li(m) is typically
large and sparse. We abuse the notations P, u to represent both functions and their
discretized versions, but the meanings of these notations will be clear from context.

The constrained problem in Eq. (10) can be written in an unconstrained form by
eliminating u using ui = L−1

i qi,

min
m∈M

ϕ(PL−1(m)q,d)+αR(m), (11)

where L is the block-diagonal matrix with L1, . . . ,Ls as the diagonal blocks, and
q is the concatenation of q1, . . . ,qs. Note that, as in the case of (6), here we have
f(m) = PL−1(m)q.

Both the constrained and unconstrained formulations are used in practice. The
constrained formulation can be solved using the method of Lagrangian multipliers.
This does not require explicitly solving the forward problem as in the unconstrained
formulation. However, the problem size increases, and the problem becomes one of
finding a saddle point of the Lagrangian, instead of finding a minimum as in the
constrained formulation.

2.2 Image Reconstruction

Image reconstruction studies the creation of 2-D and 3-D images from sets of 1-D
projections. The 1-D projections are generally line integrals of a function represent-
ing the image to be reconstructed. In the 2-D case, given an image function f (x,y),
the integral along the line at a distance of s away from the origin and having a normal
which forms an angle ϕ with the x-axis is given by the Randon transform

p(s,ϕ) =
∫ ∞

−∞
f (zsinϕ + scosϕ ,−zcosϕ + ssinϕ)dz. (12)

Reconstruction is often done via back projection, filtered back projection, or iter-
ative methods [58, 80]. Back projection is the simplest but often results in a blurred
reconstruction. Filtered back projection (FBP) is the analytical inversion of the
Radon transform and generally yields reconstructions of much better quality than
back projection. However, FBP may be infeasible in the presence of discontinuities



6 Nan Ye, Farbod Roosta-Khorasani, Tiangang Cui

or noise. Iterative methods take noise into account, by assuming a distribution for
the noise. The objective function is often chosen to be a regularized likelihood of the
observation, which is then iteratively optimized using the expectation maximization
(EM) algorithm.

2.3 Objective Function

One of the most commonly used objective function is the least squares crite-
rion, which uses a quadratic loss and a quadratic regularizer. Assume that the
noise for each experiment in (2) is independently but normally distributed, i.e.,
ηηη i ∼ N (0,Σi),∀i, where Σi ∈ Rl×l is the covariance matrix. Let Σ be the block-
diagonal matrix with Σ1, . . . ,Σs as the diagonal blocks. The standard maximum like-
lihood (ML) approach [100], leads to minimizing the least squares (LS) misfit func-
tion

ϕ(m) := ∥f(m)−d∥2
Σ−1 , (13)

where the norm ∥x∥A =
√

x⊤Ax is a generalization of the Euclidean norm (assuming
the matrix A is positive definite, which is true in the case of Σ−1

i ). In the above equa-
tion, we simply write the general misfit function ϕ(f(m),d) as ϕ(m) by taking the
measurements d as fixed and omitting it from the notation. As previously discussed,
we often minimize a regularized misfit function

ϕR,α(m) := ϕ(m)+αR(m). (14)

The prior R(m) is often chosen as a Gaussian regularizer R(m)= (m−mprior)
⊤Σ−1

m (m−
mprior). We can also write the above optimization problem as minimizing R(m) un-
der the constraints

s

∑
i=1

∥fi(m)−di∥ ≤ ρ. (15)

The least-squares criterion belongs to the class of ℓp-norm criteria, which contain
two other commonly used criteria: the least-absolute-values criterion and the mini-
max criterion [107]. These correspond to the use of the ℓ1-norm and the ℓ∞-norm for
the misfit function, while the least squares criterion uses the ℓ2-norm. Specifically,
the least-absolute-values criterion takes ϕ(m) := ∥f(m)−d∥1, and the minimax cri-
terion takes ϕ(m) := ∥f(m)−d∥∞. More generally, each coordinate in the difference
may be weighted. The ℓ1 solution is more robust (that is, less sensitive to outliers)
than the ℓ2 solution, which is in turn more robust than the ℓ∞ solution [25]. The ℓ∞
norm is desirable when outliers are uncommon but the data are corrupted by uniform
noise such as the quantization errors [26].

Besides the ℓ2 regularizer discussed above, the ℓ1-norm is often used too. The ℓ1
regularizer induces sparsity in the model parameters, that is, heavier ℓ1 regulariza-
tion leads to fewer non-zero model parameters.
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2.4 Optimization Algorithms

Various optimization techniques can be used to solve the regularized data fitting
problem. We focus on iterative algorithms for nonlinear optimization below as the
objective functions are generally nonlinear. In some cases, the optimization prob-
lem can be transformed to a linear program. For example, linear programming can
be used to solve the least-absolute-values criterion or the minimax criterion. How-
ever, linear programming are considered to have no advantage over gradient-based
methods (see Section 4.4.2 in [107]), and thus we do not discuss such methods here.
Nevertheless, there are still many optimization algorithms that can be covered here,
and we refer the readers to [13, 83].

For simplicity of presentation, we consider the problem of minimizing a function
g(m). We consider iterative algorithms which start with an iterate m0, and compute
new iterates using

mk+1 = mk +λk pk, (16)

where pk is a search direction, and λk a step size. Unless otherwise stated, we focus
on unconstrained optimization. These algorithms can be used to directly solve the
inverse problem in Eq. (5). We only present a selected subset of the algorithms
available and have to omit many other interesting algorithms.

Newton-type methods. The classical Newton’s method starts with an initial iterate
m0, and computes new iterates using

mk+1 = mk −
(
∇2g(mk)

)−1 ∇g(mk), (17)

that is, the search direction is pk = −
(
∇2g(mk)

)−1 ∇g(mk), and the step length
is λk = 1. The basic Newton’s method has quadratic local convergence rate at a
small neighborhood of a local minimum. However, computing the search direction
pk can be very expensive, and thus many variants have been developed. In addition,
in non-convex problems, classical Newton direction might not exist (if the Hessian
matrix is not invertible) or it might not be an appropriate direction for descent (if
the Hessian matrix is not positive definite).

For non-linear least squares problems, where the objective function g(m) is a
sum of squares of nonlinear functions, the Gauss-Newton (GN) method is often
used [104]. Extensions to more general objective functions as in Eq. (13) with co-
variance matrix Σ and arbitrary regularization as in Eq. (14) is considered in [97].
Without loss of generality, assume g(m) = ∑s

i=1(fi(m)−di)
2. At iteration k, the GN

search direction pk is given by(
s

∑
i=1

J⊤i Ji

)
pk =−∇g, (18)

where the sensitivity matrix Ji and the gradient ∇g are given by
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Ji =
∂ fi

∂m
(mk), i = 1, . . . ,s, (19)

∇g = 2
s

∑
i=1

JT
i (fi(mk)−di), (20)

The Gauss-Newton method can be seen as an approximation of the basic Newton’s
method obtained by replacing ∇2g by ∑s

i=1 J⊤i Ji. The step length λk ∈ [0,1] can be
determined by a weak line search [83] (using, say, the Armijo algorithm starting
with λk = 1) ensuring sufficient decrease in g(mk+1) as compared to g(mk).

Often several nontrivial modifications are required to adapt this prototype method
for different applications, e.g., dynamic regularization [31,56,89,90] and more gen-
eral stabilized GN studied [33, 94]. This method replaces the solution of the linear
systems defining pk by r preconditioned conjugate gradient (PCG) inner iterations,
which costs 2r solutions of the forward problem per iteration, for a moderate integer
value r. Thus, if K outer iterations are required to obtain an acceptable solution then
the total work estimate (in terms of the number of PDE solves) is approximated from
below by 2(r+1)Ks.

Though Gauss-Newton is arguable the method of choice within the inverse prob-
lem community, other Newton-type methods exist which have been designed to
suitably deal with the non-convex nature of the underlying optimization problem
include Trust Region [27,113] and the Cubic Regularization [23,113]. These meth-
ods have recently found applications in machine learning [114]. Studying the ad-
vantages/disadvantages of these non-convex methods for solving inverse problems
can be indeed a useful undertaking.

Quasi-Newton methods. An alternative method to the above Newton-type meth-
ods is the quasi-Newton variants including the celebrated limited memory BFGS
(L-BFGS) [71, 82]. BFGS iteration is closely related to conjugate gradient (CG) it-
eration. In particular, BFGS applied to a strongly convex quadratic objective, with
exact line search as well as initial Hessian P, is equivalent to preconditioned CG
with preconditioner P. However, as the objective function departs from being a sim-
ple quadratic, the number of iterations of L-BFGS could be significantly higher than
that of GN or trust region. In addition, it has been shown that the performance of
BFGS and its limited memory version is greatly negatively affected by the high de-
gree if ill-conditioning present in such problems [95, 96, 115]. These two factor are
among the main reasons why BFGS (and L-BFGS) can be less effective compared
with other Newton-type alternatives in many inversion applications [47].

Krylov subspace method. A Krylov subspace method iteratively finds the optimal
solution to an optimization in a larger subspace by making use of the previous solu-
tion in a smaller subspace. One of the most commonly used Krylov subspace method
is the conjugate gradient (CG) method. CG was originally designed to solve convex
quadratic minimization problems of the form g(m)= 1

2 m⊤Am−b⊤m. Equivalently,
this solves the positive definite linear system Am = b. It computes a sequence of
iterates m0,m1, . . . converging to the minimum through the following two set of
equations.
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m0 = 0, r0 = b, p0 = r0, (21)

mk+1 = mk +
||rk||22
p⊤k Apk

pk, rk+1 = rk −
||rk||22
p⊤k Apk

Apk, pk+1 = rk+1 +
||rk+1||22
||rk||22

pk, k ≥ 0.

(22)

This can be used to solve the forward problem of the form Li(m)ui = qi, provided
that Li(m) is positive definite, which is true in many cases.

CG can be used to solve the linear system for the basic Newton direction. How-
ever, the Hessian is not necessarily positive definite and modification is needed [83].

In general, CG can be generalized to minimize a nonlinear function g(m) [28,42].
It starts with an arbitrary m0, and p1 = −∇g(m0), and computes a sequence of
iterates m1,m2, . . . using the equations below: for k ≥ 0,

mk+1 = arg min
m∈{mk+λ pk,λ∈R}

g(m), (23)

pk+1 =−∇g(mk+1)+βk pk, where βk =
||∇g(mk+1)||22
||∇g(mk)||22

. (24)

The above formula for βk is known as the Fletcher-Reeves formula. Other choices of
βk exist. The following two formula are known as the Polak-Ribiere and Hestenes-
Stiefel formula respectively.

βk =
⟨∇g(mk+1)−∇g(mk),∇g(mk+1)⟩

||∇g(mk)||22
, (25)

βk =
⟨∇g(mk+1)−∇g(mk),∇g(mk+1)⟩

p⊤k (∇g(mk+1)−∇g(mk))
. (26)

In practice, nonlinear CG does not seem to work well, and is mainly used together
with other methods, such as in the Newton CG method [83].

Lagrangian method of multipliers. The above discussion focuses on uncon-
strained optimization algorithms, which are suitable for unconstrained formulations
of inverse problems, or unconstrained auxiliary optimization problems in methods
which solves the constrained formulations directly. The Lagrangian method of mul-
tipliers is often used to directly solve the constrained version. Algorithms have been
developed to offset the heavier computational cost and slow convergence rates of
standard algorithms observed on the Lagrangian, which is a larger problem than
the constrained problem. For example, such algorithm may reduce the problem to a
smaller one, such as working with the reduced Hessian of the Lagrangian [50], or
preconditioning [10, 49]. These methods have shown some success in certain PDE-
constrained optimization problems.

Augmented Lagrangian methods have also been developed (e.g. [1, 60]). Such
method constructs a series of penalized Lagrangians with vanishing penalty, and
finds an optimizer of the Lagrangian by successively optimizing the penalized La-
grangians.
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2.5 Challenges

Scaling up to large problems. The discretized version of an inverse problem is
usually of very large scale, and working with fine resolution or discretized problems
in high dimension is still an active area of research.

Another challenge is to scale up to large number of measurements, which is
widely believed to be helpful for quality reconstruction of the model in practice,
with some theoretical support. While recent technological advances makes many
big datasets available, existing algorithms cannot efficiently cope with such datasets.
Examples of such problems include electromagnetic data inversion in mining ex-
ploration [36, 48, 81, 84], seismic data inversion in oil exploration [41, 59, 91],
diffuse optical tomography (DOT) [6, 14], quantitative photo-acoustic tomography
(QPAT) [45, 117], direct current (DC) resistivity [33, 52, 54, 86, 103], and electrical
impedance tomography (EIT) [16, 24, 110].

It has been suggested that many well-placed experiments yield practical ad-
vantage in order to obtain reconstructions of acceptable quality. For the special
case where the measurement locations as well as the discretization matrices do
not change from one experiment to another, various approximation techniques have
been proposed to reduce the effective number of measurements, which in turn im-
plies a smaller scale optimization problem, under the unifying category of “simul-
taneous sources inversion” [51, 66, 92, 94, 97]. Under certain circumstances, even
if the Pi’s are different across experiments (but Li’s are fixed), there are methods
to transform the existing data set into the one where all sources share the same
receivers, [93].

Dealing with non-convexity. Another major source of difficulty in solving many in-
verse problems, is the high-degree of non-linearity and non-convexity in (1). This is
most often encountered in problems involving PDE-constrained optimization where
each fi corresponds to the solution of a PDE. Even if the output of the PDE model
itself, i.e., the “right-hand side”, is linear in the sought-after parameter, the solu-
tion of the PDE, i.e., the forward problem, shows a great deal of non-linearity. This
coupled with a great amount of non-convexity can have significant consequences
in the quality of inversion and the obtained parameter. Indeed, in presence of non-
convexity, the large-scale computational challenges are exacerbated, multiple folds
over, by the difficulty of avoiding (possibly degenerate) saddle-points as well as
finding (at least) a local minimum.

Dealing with discontinuity. While the parameter function of the model is often
smooth, the parameter function can be discontinuous in some cases. Such discon-
tinuities arise very naturally as a result of the physical properties of the underlying
physical system, e.g., EIT and DC resistivity, and require non-trivial modifications
to optimization algorithms, e.g., [33, 94]. Ignoring such discontinuities can lead to
unsatisfactory recovery results [33,34,106]. The level set method [85] is often used
to model discontinuous parameter function. This reparametrizes the discontinuous
parameter function as a differentiable one, and thus enabling more stable optimiza-
tion [34].
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3 Recent Advances in Optimization

Recent successes in using machine learning to deal with challenging perception and
natural language understanding problems have spurred many advances in the study
of optimization algorithms as optimization is a building block in machine learn-
ing. These new developments include efficient methods for large-scale optimiza-
tion, methods designed to handle non-convex problems, methods incorporating the
structural constraints, and finally the revival of second-order methods. While these
developments address a different set of applications in machine learning, they ad-
dress similar issues as encountered in inverse optimization and could be useful. We
highlight some of the works below. We keep the discussion brief because numerous
works have been done behind these developments and an indepth and comprehen-
sive discussion is beyond the scope of this review. Our objective is thus to delineate
the general trends and ideas, and provide references for interested readers to dig on
relevant topics.

Stochastic optimization. The development in large-scale optimization methods is
driven by the availability of many large datasets, which are made possible by the
rapid development and extensive use of computers and information technology. In
machine learning, a model is generally built by optimizing a sum of misfit on the
examples. This finite-sum structure naturally invites the application of stochastic
optimization algorithms. This is mainly due to the fact that stochastic algorithms
recover the sought-after models more efficiently by employing small batches of data
in each iteration, as opposed to the whole data-set. The most well-known stochastic
gradient based algorithm is the stochastic gradient descent (SGD). To minimize a
finite-sum objective function

g(m) =
1
n

n

∑
i=1

gi(m), (27)

in the big data regime where n ≫ 1, the vanilla SGD performs an update

mk+1 = mk −λk∇gik(mk), (28)

where ik is randomly sampled from 1, . . . ,n. As compared to gradient descent, SGD
replaces the full gradient ∇g(m) by a stochastic gradient gik(mk) with its expec-
tation being the full gradient. The batch version of SGD constructs a stochastic
gradient by taking the average of several stochastic gradients.

Vanilla SGD is inexpensive per iteration, but suffers from a slow rate of conver-
gence. For example, while full gradient descent achieves a linear convergence rate
for smooth strongly convex problems, SGD only converges at a sublinear rate. The
slow convergence rate can be partly accounted by the variance in the stochastic gra-
dient. Recently, variance reduction techniques have been developed, e.g. SVRG [64]
and SDCA [102]. Perhaps surprisingly, such variants can achieve linear conver-
gence rates on convex smooth problems as full gradient descent does, instead of
sublinear rates achieved by the vanilla SGD. There are also a number of variants
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with no known linear rates but have fast convergence rates for non-convex prob-
lems in practice, e.g., AdaGrad [37], RMSProp [108], ESGD [29], Adam [65], and
Adadelta [118]. Indeed, besides efficiency, stochastic optimization algorithms also
seem to be able to cope with the nonconvex objective functions well, and play a key
role in the revival of neural networks as deep learning [46, 63, 69].

Recently, it has also been shown that SGD can be used as a variational algorithm
for computing the posterior distribution of parameters given observations [75]. This
can be useful in the Bayesian approach for solving inverse problems.

Nonconvex optimization. There is also an increasing interest in non-convex op-
timization in the machine learning community recently. Nonconvex objectives not
only naturally occur in deep learning, but also occur in problems such as tensor
decomposition, variable selection, low-rank matrix completion, e.g. see [46, 62, 76]
and references therein.

As discussed above, stochastic algorithms have been found to be capable of ef-
fectively escaping local minima. There are also a number of studies which adapt
well-known acceleration techniques for convex optimization to accelerate the con-
vergence rates of both stochastic and non-stochastic optimization algorithms for
nonconvex problems, e.g., [4, 70, 88, 105].

Dealing with structural constraints. Many problems in machine learning come
with complex structural constraints. The Frank-Wolfe algorithm (a.k.a. conditional
gradient) [44] is an algorithm for optimizing over a convex domain. It has gained a
revived interest due to its ability to deal with many structural constraints efficiently.
It requires solving a linear minimization problem over the feasible set, instead of a
quadratic program as in the case of proximal gradient algorithms or projected gra-
dient descent. Domains suitable for the Frank-Wolfe algorithm include simplices,
ℓp-balls, matrix nuclear norm ball, matrix operator norm ball [61].

The Frank-Wolfe algorithm belongs to the class of linear-optimization-based al-
gorithms [67,68]. These algorithms share with the Frank-Wolfe algorithm the char-
acteristic of requiring a first-order oracle for gradient computation and an oracle for
solving a linear optimization problem over the constraint set.

Second-order methods. The great appeal of the second-order methods lies mainly
in the observed empirical performance as well as some very appealing theoretical
properties. For example, it has been shown that stochastic Newton-type methods
in general, and Gauss-Newton in particular, can not only be made scalable and
have low per-iteration cost [33, 50, 53, 93, 94, 97], but more importantly, and un-
like first-order methods, are very resilient to many adversarial effects such as ill-
conditioning [95, 96, 115]. As a result, for moderately to very ill-conditioned prob-
lems, commonly found in scientific computing, while first-order methods make ef-
fectively no progress at all, second-order counterparts are not affected by the degree
of ill-conditioning. A more subtle, yet potentially more severe draw-back in using
first-order methods, is that their success is tightly intertwined with fine-tunning (of-
ten many) hyper-parameters, most importantly, the step-size [11]. In fact, it is highly
unlikely that many of these methods exhibit acceptable performance on first try, and
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it often takes many trials and errors before one can see reasonable results. In con-
trast, second-order optimization algorithms involve much less parameter tuning and
are less sensitive to the choice of hyper-parameters [11, 114].

Since for the finite-sum problem (27) with n ≫ 1, the operations with the Hes-
sian/gradient constitute major computational bottlenecks, a rather more recent line
of research is to construct the inexact Hessian information using the application of
randomized methods. Specifically, for convex optimization, the stochastic approxi-
mation of the full Hessian matrix in the classical Newton’s method has been recently
considered in [3, 11, 15, 19, 20, 38, 40, 78, 79, 87, 95, 96, 112, 115, 116]. In addition
to inexact Hessian, a few of these methods study the fully stochastic case in which
the gradient is also approximated, e.g., [15,95,96]. For non-convex problems, how-
ever, the literature on methods that employ randomized Hessian approximation is
significantly less developed than that of convex problems. A few recent examples
include the stochastic trust region [113], stochastic cubic regularization [109, 113],
and noisy negative curvature method [72]. Empirical performance of many of these
methods for some non-convex machine learning applications has been considered
in [114].

3.1 A concrete success story

The development of optimization methods in the machine learning community has
been fueled by the need to obtain better generalization performance one future “un-
seen” data. This is in contrast with typical inverse problem applications where fitting
the model to the observations on hand make up of all that matters. These rather strik-
ingly different goals have lead the ML community to develop optimization methods
that can address ML specific challenges. This, in part, has given rise to scalable al-
gorithms that can often deliver far beyond what the most widely used optimization
methods in the inverse problem community can.

As a concrete example, consider L-BFGS and Gauss-Newton, which are, ar-
guably, among the most popular optimization techniques used by the scientific com-
puting community in a variety of inverse problem applications. In fact, unlike Gauss-
Newton method, L-BFGS, due to its low per-iteration costs, has found significant
attraction within the machine learning community as well. Nevertheless, due to the
resurgence of non-convex deep learning problems in ML, there is an increasing
demand for scalable optimization algorithms that can avoid saddle points and con-
verge to a local minimum. This demand has driven the development algorithms that
can surpass the performance of L-BFGS and Gauss-Newton when applied to deep
learning applications, e.g., [114].

These results are not unexpected. Indeed, contrary to popular belief, BFGS is not
quite a “full-fledged” second-order method as it merely employs first-order informa-
tion, i.e. gradients, to approximate the curvature. Similar in spirit, Gauss-Newton
also does not fully utilize the Hessian information. In particular, in exchange for
obtaining a positive definite approximation matrix, GN completely ignores the in-
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formation from negative curvature, which is critical for allowing to escape from
regions with small gradient. Escaping saddle points and converging to a local mini-
mum with lower objective values have surprisingly not been a huge concern for the
inverse problem community. This is in sharp contrast to the machine learning appli-
cations where obtaining lower training errors with deep learning models typically
translates to better generalization performance.

4 Discussion

Optimization is not only used in the data fitting approach to inverse problems, but
also used in the Bayesian approach. An important problem in the Bayesian approach
is the choice of the parameters for the prior. While these were often chosen in a
somewhat ad hoc way, there are studies which use sampling [2, 43], hierarchical
prior models [21, 22], and optimization [9, 73] methods to choose the parameters.
While choosing the prior parameters through optimization has found some success,
such optimization is hard and it remains a challenge to develop effective algorithms
to solve these problems.

For inverse problems with large number of measurements, solving each forward
problem can be expensive, and the mere evaluation of the misfit function may be-
come computationally prohibitive. Stochastic optimization algorithms might be ben-
eficial in this case, because the objective function is often a sum of misfits over
different measurements.

The data fitting problem is generally non-convex and thus optimization algo-
rithms may be trapped in a local optimum. Stochastic optimization algorithms also
provide a means to escape the local optima. Recent results in nonconvex optimiza-
tion, such as those on accelerated methods, may provide more efficient alternatives
to solve the data fitting problem.

While box constraints are often used in inverse problems because they are easier
to deal with, simplex constraint can be beneficial. The Frank-Wolfe algorithm pro-
vides a efficient way to deal with the simplex constraint, and can be a useful tool to
add on to the toolbox of an inverse problem researcher.

5 Conclusion

State-of-the-art optimization methods in the inverse problem community struggle to
cope with important issues such as large-scale problems and nonconvexity. At the
same time, many progresses in optimization have been made in the machine learning
community. Our discussion on the connections has been brief. Nevertheless, we
have highlighted the valuable potential synergies that are to be reaped by bringing
these two communities closer together.
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