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Abstract We show that small energy curves under a particular sixth order curvature
flow with generalised Neumann boundary conditions between parallel lines con-
verge exponentially in the C∞ topology in infinite time to straight line segments.

1 Introduction

Higher order geometric evolution problems have received increasing attention in the
last few years. Particular geometric fourth order equations occur in physical prob-
lems and enjoy some interesting applications in mathematics. We mention in partic-
ular for curves the curve diffusion flow and L2-gradient flow of the elastic energy,
and for surfaces the surface diffusion and Willmore flows. Flows of higher even or-
der than four have been less thoroughly investigated, but motivation for them and
their elliptic counterparts comes for example from computer design, where higher
order equations are desirable as they allow more flexibility in terms of prescribing
boundary conditions [8]. Such equations have also found applications in medical
imaging [10].

In this article we are interested in curves γ meeting two parallel lines with Neu-
mann (together with other) boundary conditions evolving under the L2 gradient flow
for the energy ∫

γ
k2

s ds.
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Here ks denotes the first derivative of curvature with respect to the arc length pa-
rameter s. Particularly relevant to us is the corresponding consideration of the curve
diffusion and elastic flow in this setting in [12]. Other relevant works on fourth or-
der flow of curves with boundary conditions are [2, 3, 7]. Of course if one instead
considers closed curves without boundary evolving by higher order equations, these
have been more thoroughly studied; we mention in particular [1, 4, 5, 9, 11].

The remainder of this article is organised as follows. In Section 2 we describe
the set-up of our problem, the normal variation of the energy and the boundary con-
ditions. We define our corresponding gradient flow, discuss local existence and give
the relevant evolution equations of various geometric quantities. We also state our
main theorem in this part, Theorem 2.2. In Section 3 we state the relevant tools from
analysis to be used including an interpolation inequality valid in our setting. Under
the small energy condition (7) below, we show that the winding number of curves
under our flow is constant and remains equal to zero. We show further that under this
condition the length of the curve does not increase and the curvature and all curva-
ture derivatives in L2 are bounded under the flow. That these bounds are independent
of time implies solutions exist for all time. In Section 4 we show under a smaller
energy assumption that in fact the L2 norm of the second derivative of curvature
decays exponentially under the flow. As a corollary we obtain uniform pointwise
exponential decay of curvature and all curvature derivatives to zero. A stability ar-
gument shows that the solution converges to a unique horizontal line segment. The
exponential convergence of the flow speed allows us to describe the bounded region
in which the solution remains under the flow.

2 The set-up

Let γ0 : [−1,1]→R2 be a (suitably) smooth embedded (or immersed) regular curve.
Denote by ds the arc length element and k the (scalar) curvature. We consider the
energy functional

E [γ] =
1
2

∫
γ

k2
s ds

where ks is the derivative of curvature with respect to arc length. We are interested
in the L2 gradient flow for curves of small initial energy with Neumann boundary
conditions.

Under the normal variation γ̃ = γ + εFν a straightforward calculation yields

d
dε

E [γ̃]
∣∣∣∣
ε=0

=−2
∫

γ

(
ks4 + k2kss −

1
2

k k2
s

)
F ds

+2
[
ksFss + kssFs +

(
ksss + k2ks

)
F
]

∂γ , (1)

where ks4 = kssss.
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‘Natural boundary conditions’ for the corresponding L2-gradient flow would en-
sure that the above boundary term is equal to zero. However, this term is rather
complicated. In view of the first term in (1), we wish to take

F = ks4 + k2kss −
1
2

k k2
s (2)

and the corresponding gradient flow

∂γ
∂ t

= Fν . (3)

Differentiating the Neumann boundary condition (see also [12, Lemma 2.5] for
example) implies

0 =−Fs (±1, t) =−ks5 − kkskss − k2ksss +
1
2

k3
s . (4)

As in previous work, we will assume the ‘no curvature flux condition’ at the
boundary,

ks (±1, t) = 0. (5)

The boundary terms in (1) then disappear if we choose, for example,

ksss (±1, t) = 0. (6)

This is in a way a natural choice because equation (4) then implies ks5 (±1, t) = 0.
In fact by an induction argument we have

Lemma 2.1 With Neumann boundary conditions and also (5) and (6) satisfied, a
solution to the flow (3) satisfies ks2ℓ+1 = 0 on the boundary for ℓ ∈ N.

Let us now state precisely the flow problem.
Let η± (R) denote two parallel vertical lines in R2, with distance between them

|e|. We consider a family of plane curves γ : [−1,1]× [0,T ) → R2 satisfying the
evolution equation (3) with normal speed given by (2), boundary conditions

γ (±1, t) ∈ η± (R)⟨
ν ,νη±

⟩
(±1, t) = 0

ks (±1, t) = ksss (±1, t) = 0

and initial condition
γ (·,0) = γ0 (·)

for initial smooth regular curve γ0.

Theorem 2.2 There exists a universal constant C > 0 such that the following holds.
For the flow problem described above, if the initial curve γ0 satisfies ω = 0 and
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δ =

(√
5129−67

80

)
π3 −∥ks∥2

2 L3
0 > 0 , (7)

where L0 is the length of γ0, then the solution exists for all time T =∞ and converges
exponentially to a horizontal line segment γ∞ with dist(γ∞,γ0)<C/δ .

In the above statement and throughout the article we use ω to denote the winding
number, defined here as

ω :=
1

2π

∫
γ

k ds.

Remarks:

• The condition (7) is not optimal. By a standard argument it can be weakened for
example to the requirement of Lemma 3.4, namely

π3

7
−∥ks∥2

2 L3
0 > 0.

Details of this argument will appear in a future article. It is an open question
whether the requirement can be further weakened.

• The exponential decay facilitates an explicit estimate on the distance of γ∞ to γ0.

Local existence of a smooth regular curve solution γ : [−1,1]× [0,T )→R2 to the
flow problem γ : [−1,1]× [0,T )→ R2 is standard. If γ0 also satisfies compatibility
conditions, then the solution is smooth on [0,T ). In this article we focus on the
case of smooth initial γ0. However, γ0 may be much less smooth; equation (3) is
smoothing. We do not pursue this here.

Similarly as in [12] and elsewhere we may derive the following:

Lemma 2.3 Under the flow (3) we have the following evolution equations

(i) ∂
∂ t ds =−kF ds;

(ii) ∂
∂ t k = Fss + k2F;

(iii) ∂
∂ t ks = Fsss + k2Fs +3kksF;

(iv)

∂tksl = ksl+6 + ∑
q+r+u=l

(c1
qruksq+4ksr ksu + c2

qruksq+3ksr+1ksu

+c3
qruksq+2ksr+2ksu + c4

qruksq+2ksr+1ksu+1)

+ ∑
a+b+c+d+e=l

cabcdeksaksbkscksd kse

for constants c1
qru,c

2
qru,c

3
qru,c

4
qru,cabcde ∈ R with a,b,c,d,e,q,r,u ≥ 0. In partic-

ular,
(v)
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∂
∂ t

kss = ks8 +10ksks3kss +
21
2

k2
s ks4 +12kks5ks +14kks4kss +5kk2

s3 +2k2ks6

+
11
2

k2k2
s kss +8k3ks3ks +5k3k2

ss + k4ks4 −4kk4
s .

3 Controlling the geometry of the flow

We begin with the following standard result for functions of one variable.

Lemma 3.1 (Poincaré-Sobolev-Wirtinger (PSW) inequalities) Suppose f : [0,L]→
R, L > 0 is absolutely continuous.

• If
∫ L

0 f ds = 0 then

∫ L

0
f 2ds ≤ L2

π2

∫ L

0
f 2
s ds and ∥ f∥2

∞ ≤ 2L
π

∫ L

0
f 2
s ds.

• Alternatively, if f (0) = f (L) = 0 then∫ L

0
f 2ds ≤ L2

π2

∫ L

0
f 2
s ds and ∥ f∥2

∞ ≤ L
π

∫ L

0
f 2
s ds.

To state the interpolation inequality we will use, we first need to set up some
notation. For normal tensor fields S and T we denote by S⋆T any linear combination
of S and T . In our setting, S and T will be simply curvature k or its arc length
derivatives. Denote by Pm

n (k) any linear combination of terms of type ∂ i1
s k ⋆ ∂ i2

s k ⋆
. . . ⋆∂ in

s k where m = i1 + . . .+ in is the total number of derivatives.
The following interpolation inequality for closed curves appears in [1], for our

setting with boundary we refer to [3].

Proposition 3.2 Let γ : I → R2 be a smooth curve. Then for any term Pm
n (k) with

n ≥ 2 that contains derivatives of k of order at most ℓ−1,∫
I
|Pm

n (k)|ds ≤ cL1−m−n ∥k∥n−m
2 ∥k∥p

ℓ,2

where p= 1
ℓ

(
m+ 1

2 n−1
)

and c= c(ℓ,m,n). Moreover, if m+ 1
2 < 2ℓ+1 then p< 2

and for any ε > 0,

∫
I
|Pm

n (k)|ds ≤ ε
∫

I

∣∣∣∂ ℓ
s k
∣∣∣2 ds+ cε

−p
2−p

(∫
I
|k|2 ds

) n−p
2−p

+ c
(∫

I
|k|2 ds

)m+n−1

.

Our first result concerns the winding number of the evolving curve γ . In view
of the Neumann boundary condition, in our setting the winding number must be a
multiple of 1

2 .

Lemma 3.3 Under the flow (3), ω(t) = ω(0).
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Proof. We compute using Lemma 2.3 (i)

d
dt

∫
k ds =

∫
Fssds+

∫
k2Fds−

∫
k2Fds = 0,

so ω is constant under the flow. ⊓⊔

Remarks:

• It follows immediately that the average curvature k satisfies

k :=
1
L

∫
γ

k ds ≡ 0

under the flow (3). This is important for applying the inequalities of Lemma 3.1.
• Unlike the situation in [12], here small energy does not automatically imply that

the winding number is close to zero. Indeed, one may add loops (or half-loops)
of circles that contribute an arbitrarily small amount of the energy L3∥ks∥2

2. Note
that such loops must all be similarly oriented, as a change in contribution from
positive to negative winding will necessitate a quantum of energy (for example a
figure-8 style configuration with ω = 0 can not have small energy despite com-
prising essentially only mollified arcs of circles).

Next we give an estimate on the length of the evolving curve in the case of small
initial energy. Of course, this result does not require the energy as small as (7).

Lemma 3.4 Under the flow (3) with ω(0) = 0,

d
dt

L [γ (t)]≤ 0.

Proof. We compute using integration by parts

d
dt

L [γ (t)] =−
∫

kF ds =−
∫

k2
ssds+

7
2

∫
k2k2

s ds ≤−
[

1− 7L3

π3 ∥ks∥2
2

]∫
k2

ssds

where we have used Lemma 3.1. The result follows by the small energy assumption.
⊓⊔

Thus under the small energy assumption we have the length of the evolving curve
bounded above and below:

|e| ≤ L [γ]≤ L0.

We are now ready to show that the L2-norm of curvature remains bounded, inde-
pendent of time.

Proposition 3.5 Under the flow (3) with ω(0) = 0, there exists a universal C > 0
such that

∥k∥2
2 ≤ |k∥2

2

∣∣∣
t=0

+C.
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Proof. Using integration by parts, Lemma 2.3 and the interpolation inequality
Proposition 3.2

d
dt

∫
k2ds =−2

∫
k2

s3 ds+5
∫

k2
ssk

2ds+5
∫

kssk2
s k ds+

∫
kssk5ds− 1

2

∫
k2

s k4ds

≤ (−2+3ε)
∫

k2
s3ds+C∥k∥14

2 ≤−π6

L6
0

∫
k2ds+

Cπ7

|e|
,

where we have also used Lemma 3.1 and the length bounds. The result follows. ⊓⊔

Moreover, we may show similarly using the evolution equation for ksℓ that all
derivatives of curvature are bounded in L2 independent of time.

Proposition 3.6 Under the flow (3) with ω(0) = 0, there exists a universal C > 0
such that, for all ℓ ∈ N,

∥ksℓ∥
2
2 ≤ |ksℓ∥

2
2

∣∣∣
t=0

+C.

Pointwise bounds on all derivatives of curvature follow from Lemma 3.1. It fol-
lows that the solution of the flow remains smooth up to and including the final time,
from which we may (if T < ∞) apply again local existence. This shows that the flow
exists for all time, that is, T = ∞.

4 Exponential convergence

Using Lemma 2.3 (i) and (v) and integrating by parts to reduce the order of the
derivatives we obtain

Lemma 4.1 Under the flow (3),

d
dt

∫
k2

ssds =−2
∫

k2
s5ds+4

∫
k2k2

s4ds−
∫

k2
s k2

s3ds−8
∫

kkssk2
s3ds−2

∫
k4k2

s3ds

+
1
3

∫
k4

ssds− 1
2

∫
k2k2

s k2
ssds+5

∫
k3k3

ssds+
8
5

∫
k6

s ds.

Further integration by parts, use of Lemma 3.1 and throwing away some negative
terms gives

Corollary 4.2 Under the flow (3) with ω(0) = 0,

d
dt

∫
k2

ssds ≤
[
−2+

67L3

2π3 ∥ks∥2
2 +

20L6

π6 ∥ks∥4
2

]
∥ks5∥2

2 .

Under the small energy condition (7), the coefficient of ∥ks5∥2
2 of Corollary 4.2

is bounded above by −δ . Using also Lemma 3.1 we obtain
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Corollary 4.3 There exists a δ > 0 such that, under the flow,

d
dt

∥kss∥2
2 ≤−δ ∥kss∥2

2 .

It follows that ∥kss∥2
2 decays exponentially to zero.

Proof. Completion of the proof of Theorem 2.2: Exponential decay of ∥kss∥2
2 im-

plies exponential decay of ∥k∥2
2, ∥ks∥2

2, ∥k∥∞, ∥ks∥∞ via Lemma 3.1. Exponential
decay of ∥ksℓ∥2 and ∥ksℓ∥∞ then follows by a standard induction argument involv-
ing integration by parts and the curvature bounds of Propositions 3.5 and 3.6. That
∥ks∥2

2 → 0 implies subsequential convergence to straight line segments (horizontal,
in view of boundary conditions). A stability argument (see [12] for the details of a
similar argument) gives that in fact the limiting straight line is unique; all eigenval-
ues of the linearised operator

L u = ux6

are negative apart from the first zero eigenvalue, which corresponds precisely to
vertical translations. By Hale-Raugel’s convergence theorem [6] uniqueness of the
limit follows. Although we don’t know the precise height of the limiting straight
line segment, we can estimate a-priori its distance from the initial curve, since

|γ (x, t)− γ (x,0)|=
∣∣∣∣∫ t

0

∂γ
∂ t

(x,τ)dτ
∣∣∣∣ ≤ ∫ t

0
|F |dτ ≤ C

δ

(
1− e−δ t

)
.

⊓⊔
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