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Abstract We investigate the use of randomize-then-optimize (RTO) [3] as a pro-
posal for Metropolis-Hastings (MH) – yielding the so-called RTO-MH method – for
sampling from posterior distributions arising in nonlinear, hierarchical-Bayesian in-
verse problems. Specifically, we extend the hierarchical Gibbs sampler of [2] for lin-
ear inverse problems to nonlinear inverse problems by embedding RTO-MH within
the hierarchical Gibbs sampler. We test the method on a nonlinear inverse problem
arising in differential equations.

1 Introduction

In this paper, we focus on inverse problems of the form

y = F(u)+ e, e ∼ N (0,λ−1I), (1)

where y ∈ Rm is the observed data, u ∈ Rn is the unknown parameter, F : Rn → Rm

is the forward operator, and λ is known as the measurement precision parameter.
The likelihood function then has the form

p(y|u,λ ) = (2π)−
m
2 λ m/2 exp

(
−λ

2
∥F(u)−y∥2

)
. (2)

Next, we assume that the prior is a zero-mean Gaussian random vector, u ∼
N (0,(δL)−1), which has distribution
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p(u|δ ) = (2π)−
n
2 δ n/2 exp

(
−δ

2
uT Lu

)
, (3)

where L is defined via a Gaussian Markov random field (GMRF) [1], and n is the
rank of L. In the one-dimensional numerical example considered at the end of the
paper, we choose L to be a discretization of the negative-Laplacian operator. The
hyper-parameter δ , which is known as the prior precision parameter, provides the
relative weight given to the prior as compared to the likelihood function.

In keeping with the Bayesian paradigm, we assume hyper-priors p(λ ) and p(δ )
on λ and δ , respectively. A standard choice in the linear Gaussian case is to choose
Gamma hyper-priors:

p(λ ) ∝ λ αλ−1 exp(−βλ λ ), (4)
p(δ ) ∝ δ αδ−1 exp(−βδ δ ). (5)

This is due to the fact that the conditional densities for λ and δ are then also Gamma-
distributed (a property known as conjugacy), and hence are easy to sample from.
We choose hyper-parameters αλ = αδ = 1 and βλ = βδ = 10−4, making the hyper-
priors exponentially distributed with small decay parameters βλ and βδ . In the test
cases we have considered, these hyper-priors work well, though they should be cho-
sen carefully in a particular situation. Specifically, it is important that they are cho-
sen to be relatively flat over the regions of high probability for λ and δ defined by
the posterior density function, so that they are not overly informative.

Taking into account the likelihood, the prior, and the hyper-priors, the posterior
probability density function over all of the unknown parameters is given, by Bayes’
law, as

p(u,λ ,δ |y)
= p(y|u,λ )p(u|δ )p(λ )p(δ )

/
p(y)

∝λ m/2+αλ−1δ n/2+αδ−1 exp
(
−λ

2
∥F(u)−y∥2 − δ

2
uT Lu−βλ λ −βδ δ

)
, (6)

where p(y) is the normalizing constant for the posterior. Our focus in this paper is to
develop a Gibbs sampler for sampling from the full posterior (6). For this, we need
the full conditionals, which are given by

p(λ |b,u,δ ) ∝ λ m/2+αλ−1 exp
([

−1
2
∥F(u)−y∥2 −βλ

]
λ
)
, (7)

p(δ |y,u,λ ) ∝ δ n/2+αδ−1 exp
([

−1
2

uT Lu−βδ

]
δ
)
, (8)

p(u|y,λ ,δ ) ∝ exp
(
−λ

2
∥F(u)−y∥2 − δ

2
uT Lu

)
. (9)

The Gamma-hyper priors are conjugate, and hence the conditional densities for λ
and δ are also Gamma-distributed:
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λ |u,δ ,b ∼ Γ
(

m/2+αλ ,
1
2
∥F(u)−b∥2 +βλ

)
, (10)

δ |u,λ ,b ∼ Γ
(

n/2+αδ ,
1
2

uT Lu+βδ

)
. (11)

The distributions (10) and (11) are independent so that p(λ ,δ |b,x)= p(λ |b,x)p(δ |b,x).
Hence, computing independent samples from (10) and (11) yields a sample from
p(λ ,δ |b,x). Moreover, in the linear case, F is a matrix and the Gaussian prior is
also conjugate, leading to a Gaussian conditional (9), which can be equivalently
expressed

u ∼ N
(
(λFT F+δL)−1λFT y,(λFT F+δL)−1) .

Taking these observations all together leads to the two-stage Gibbs sampler given
next, which is also presented in [1, 2].

The Hierarchical Gibbs Sampler, Linear Case

0. Initialize (λ0,δ0), u0 = (λ0FT F+δ0L)−1λ0FT y, set k = 1, define ktotal.
1. Compute (λk,δk)∼ p(λ ,δ |y,uk−1) as follows.

a. Compute λk ∼ Γ
(
m/2+αλ ,

1
2∥Fuk−1 −y∥2 +βλ

)
.

b. Compute δk ∼ Γ
(
n/2+αδ ,

1
2 (u

k−1)T Luk−1 +βδ
)
.

2. Compute uk ∼ N
(
(λkFT F+δkL)−1λkFT y,(λkFT F+δkL)−1

)
.

3. If k = ktotal stop, otherwise, set k = k+1 and return to Step 1.

When F is nonlinear, the conditional density p(u|y,λ ,δ ), defined in (9), is no
longer Gaussian and cannot be sample from it directly. To overcome this, we embed
a Metropolis-Hastings (MH) step within step 2 of hierarchical Gibbs, as advocated
in [4, Algorithm A.43]. For the MH proposal, we use the randomize-then-optimize
(RTO) [3], and thus we begin in Section 2 by describing the RTO proposal. In Sec-
tion 3, we describe RTO-MH and its embedding within hierarchical Gibbs for sam-
pling from the full posterior (6). Finally, we use RTO-MH-within-hierarchical Gibbs
to sample from (6) in a specific nonlinear inverse problem arising in differential
equations. Concluding remarks are provided in Section 5.

2 The Randomize-Then-Optimize Proposal Density

We first define the augmented forward model and observation taking the form

Fλ ,δ (u)
def
=

[
λ 1/2F(u)
δ 1/2L1/2x

]
and yλ ,δ

def
=

[
λ 1/2y

0

]
.

For motivation, note that in the linear case, p(u|y,λ ,δ ) is Gaussian and can be
sampled by solving the stochastic least squares problem
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u|y,λ ,δ = argminψ ∥Fλ ,δ ψ − (yλ ,δ + ε)∥2, ε ∼ N (0,I). (12)

This follows from the fact that if Fλ ,δ = Qλ ,δ Rλ ,δ is the thin (or condensed) QR-
factorization of Fλ ,δ , and Fλ ,δ has full column rank, then Qλ ,δ ∈ R(M+N)×N has
orthonormal columns spanning the column space of Fλ ,δ ; Rλ ,δ ∈ RN×N is upper-
triangular and invertible; and the solution of (12) is unique and can be expressed

QT
λ ,δ Fλ ,δ (u|b,λ ,δ ) = QT

λ ,δ (yλ ,δ + ε), ε ∼ N (0,I). (13)

Note that in the linear case QT
λ ,δ Fλ ,δ = Rλ ,δ , and it follows that (13) yields samples

from p(u|y,λ ,δ ).
In the nonlinear case, equation (13) can still be used, but the resulting samples

do not have distribution p(u|y,λ ,δ ). To derive the form of the distribution, we first
define

rλ ,δ (u)
def
= Fλ ,δ (u)−yλ ,δ

and denote the Jacobian of Fλ ,δ , evaluated at u, by Jλ ,δ (u). Then, provided QT
λ ,δ Fλ ,δ

is a one-to-one function with continuous first partial derivatives, and its Jacobian,
QT

λ ,δ Jλ ,δ , is invertible, the probability density function for u|b,λ ,δ defined by (13)
is

pRTO(u|b,λ ,δ ) ∝
∣∣∣det(QT

λ ,δ Jλ ,δ (u))
∣∣∣exp

(
−1

2
∥QT

λ ,δ rλ ,δ (u)∥2
)

= cλ ,δ (x)p(u|b,λ ,δ ), (14)

where

cλ ,δ (u) =
∣∣∣det(QT

λ ,δ Jλ ,δ (u))
∣∣∣exp

(
1
2
∥rλ ,δ (u)∥2 − 1

2
∥QT

λ ,δ rλ ,δ (u)∥2
)
. (15)

There is flexibility in how to choose Qλ ,δ ∈ R(M+N)×N , though QT
λ ,δ Fλ ,δ must sat-

isfy the conditions mentioned in the previous sentence. In our implementations of
RTO, we have used Qλ ,δ from the thin QR-factorization Jλ ,δ (uλ ,δ ) = Qλ ,δ Rλ ,δ ,
where uλ ,δ is the MAP estimator, i.e., uλ ,δ = argminu ∥Fλ ,δ (u)−yλ ,δ∥2.

In practice, we compute samples from (13) by solving the stochastic optimization
problem

u∗ = argminψ
1
2
∥QT

λ ,δ (Fλ ,δ (ψ)− (yλ ,δ + ε∗))∥2, ε∗ ∼ N (0,I). (16)

The name randomize-then-optimize stems from (16), where yλ ,δ is first ‘random-
ized’, by adding ε∗, and then ‘optimized’, by solving (16). Finally, we note that if
the cost function minimum in (16) is greater than zero, (13) has no solution, and we
must discard the corresponding sample. In practice, we discard solutions x∗ of (16)
with a cost function minimum greater than η = 10−8, though we have found this to
occur very rarely in practice.
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3 RTO-Metropolis-Hastings and its Embedding within
Hiererichical Gibbs

Although RTO does not yield samples from p(u|y,λ ,δ ) for nonlinear problems,
it can be used as a proposal for MH. At step k of the MH algorithm, given the
current sample uk−1, one can use (16) to compute u∗ ∼ pRTO(u|b,λ ,δ ) and then set
uk = uk−1 with probability

rλ ,δ = min
(

1,
p(u∗|y,λ ,δ )pRTO(uk−1|y,λ ,δ )
p(uk−1|y,λ ,δ )pRTO(u∗|y,λ ,δ )

)
= min

(
1,

p(u∗|y,λ ,δ )cλ ,δ (uk−1)p(uk−1|y,λ ,δ )
p(uk−1|y,λ ,δ )cλ ,δ (u∗)p(u∗|y,λ ,δ )

)

= min

(
1,

cλ ,δ (uk−1)

cλ ,δ (u∗)

)
. (17)

Note that it is often advantageous, for numerical reasons, to replace the ratio in (17)
by the equivalent expression

cλ ,δ (uk−1)/cλ ,δ (u∗) = exp
(

lncλ ,δ (uk−1)− lncλ ,δ (u∗)
)
,

where

lncλ ,δ (u)≃ ln
∣∣∣QT

λ ,δ Jλ ,δ (u)
∣∣∣+ 1

2
∥rλ ,δ (x)∥2 − 1

2
∥QT

λ ,δ rλ ,δ (x)∥2,

and ‘≃’ denotes ‘equal up to an additive, unimportant constant.’

The RTO-MH Algorithm

1. Choose initial vector u0, parameter 0 < η ≪ 0, and samples N. Set k = 1.
2. Compute u∗ ∼ pRTO(u|y,λ ,δ ) by solving (16) for a fixed realization ε∗ ∼

N (0,I). If
∥QT

λ ,δ (Fλ ,δ (u∗)− (yλ ,δ + ε∗))∥2 > η ,

then repeat step 2.
3. Set uk = u∗ with probability rλ ,δ defined by (17). Else, set uk = uk−1.
4. If k < N, set k = k+1 and return to Step 2, otherwise stop.

The proposed sample u∗ is independent of uk−1, making RTO-MH an inde-
pendence MH method. Thus, we can apply [4, Theorem 7.8] to obtain the re-
sult that RTO-MH will produce a uniformly ergodic chain that converges in dis-
tribution to p(u|y,λ ,δ ) provided there exists M > 0 such that p(u|y,λ ,δ ) ≤
M · pRTO(u|y,λ ,δ ), for all u ∈ RN . Given (14), this inequality holds if and only
if cλ ,δ (u), defined by (15), is bounded away from zero for all u.
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3.1 RTO-MH-within-Hierarchical Gibbs

In the hierarchical setting, we embed a single RTO-MH step within the hierarchical
Gibbs sampler, to obtain the following MCMC method.

RTO-MH-within-Hierarchical Gibbs

0. Initialize (λ0,δ0), set k = 1, define ktotal, and set

u0 = argmin
u

∥Fλ0,δ0(u)−yλ0,δ0∥
2.

1. Simulate (λk,δk)∼ p(λ ,δ |y,uk−1) as follows.

a. Compute λk ∼ Γ
(
m/2+αλ ,

1
2∥F(xk−1)−y∥2 +βλ

)
.

b. Compute δk ∼ Γ
(
n/2+αδ ,

1
2 (x

k−1)T Lxk−1 +βδ
)
.

2. Simulate ubk using RTO as follows.

a. Compute u∗ ∼ pRTO(u|y,λk,δk) by solving (16) with (λ ,δ ) = (λk,δk).
b. Set uk = u∗ with probability rλk,δk

defined by (17), else set uk = uk−1.

3. If k = ktotal stop, otherwise, set k = k+1 and return to Step 1.

In step 2a, note that two optimization problems must be solved. First, the MAP
estimator uλk,δk

is computed; then the QR-factorization J(uλk,δk
) = Qλk,δk

Rλk,δk
is computed; and finally, the stochastic optimization problem (16) is solved, with
(λ ,δ ) = (λk,δk), to obtain the RTO sample u∗. One could take multiple RTO-MH
steps in Step 2, within each outer loop, to improve the chances of updating uk−1, but
we do not implement that here.

4 Numerical Experiment

To test RTO-MH-within-hierarchical Gibbs, we consider a nonlinear inverse prob-
lem from [1, Chapter 6]. The inverse problem is to estimate the diffusion coefficient
u(s) from measurements of the solution x(s) of the Poisson equation

− d
ds

(
u(s)

dx
ds

)
= f (s), 0 < s < 1, (18)

with zeros boundary conditions x(0)= x(1)= 0. Assuming a uniform mesh on [0,1],
after numerical discretization, (18) takes the form

B(u)x = f, B(u) def
= DT diag(u)D, (19)

where u ∈ Rn and D ∈ Rn×n−1 is a discrete derivative matrix. To generate data,
we compute numerical solutions corrresponding to two discrete Dirac delta forcing
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functions, f1(s) and f2(s), centered at s = 1/3 and s = 2/3, respectively. After dis-
cretization, f1 and f2 become (n−1)×1 Kronecker delta vectors f1 and f2, and the
measurement model takes the form of (1) with

y def
=

[
y1
y2

]
2n−2

and F(u) def
=

[
B(u)−1f1
B(u)−1f2

]
2n−2,

so that m = 2n− 2. We generate data using (1) with n = 50 and utrue obtained by
discretizing

u(s) = min{1,1−0.5 sin(2π(s−0.25))} ,

and λ−1 chosen so that signal-to-noise ratio, ∥F(utrue)∥/
√

mλ−1, is 100. The data
vectors y1 and y2 are plotted in Figure 1(a) together with the noise-free data
B(x)−1f1 and B(x)−1f2.

With the measurements in hand, we implement RTO-MH-within-hierarchical
Gibbs for sampling from (6). The results are plotted in Figures 1 and 2. In Fig-
ure 1(b), we see the sample median together with 95% credibility intervals com-
puted from the u-chain generated by the MCMC method. In Figure 2(a), we plot the
individual chains for λ , δ , and a randomly chosen element of the u-chain. And fi-
nally, in Figure 2(b), we plot the auto correlation functions and associated integrated
autocorrelation times (τint) for these three parameters [1].

5 Conclusions

In this paper, we have tackled the problem of sampling from the full posterior (6)
when F is a nonlinear function. To do this, we followed the same approach as the
hierarchical Gibbs algorithm of [2], however in that algorithm, F is linear, the condi-
tional density p(u|y,λ ,δ ) is Gaussian, and hence samples from p(u|y,λ ,δ ) can be
computed by solving a linear system of equations. In the nonlinear case, p(u|y,λ ,δ )
is non-Gaussian, but we can use RTO-MH to obtain samples, as described in [3]. We
obtain a MH-within-Gibbs method for sampling from (6) by embedding a single
RTO-MH step with hierarchical Gibbs. We then tested the method on a nonlinear
inverse problem arising in differential equations and found that it worked well.
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Fig. 1 (a) Plots of the measured data b1 and b2, the true state u, and the model fits. (b) Plots of the
true diffusion coefficient x together with the RTO-MH sample median and the element-wise 95%
credibility bounds.
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Fig. 2 (a) Plots of the chains for three randomly selected elements of x. (b) Autocorrelation times
associated with these chains.
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