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Abstract Given discrete time observations over a fixed time interval, we study a
nonparametric Bayesian approach to estimation of the volatility coefficient of a
stochastic differential equation. We postulate a histogram-type prior on the volatility
with piecewise constant realisations on bins forming a partition of the time interval.
The values on the bins are assigned an inverse Gamma Markov chain (IGMC) prior.
Posterior inference is straightforward to implement via Gibbs sampling, as the full
conditional distributions are available explicitly and turn out to be inverse Gamma.
We also discuss in detail the hyperparameter selection for our method. Our nonpara-
metric Bayesian approach leads to good practical results in a representative simula-
tion examples. Finally, we apply it on a classical data set in change-point analysis:
weekly closings of the Dow-Jones industrial averages.
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1 Introduction

1.1 Problem formulation

Consider a one-dimensional stochastic differential equation (SDE)

dXt = b0(t,Xt)dt + s0(t)dWt , X0 = x, t ∈ [0,T ], (1)

where b0 is the drift coefficient, s0 the deterministic dispersion coefficient or volatil-
ity, and x is a deterministic initial condition. Here W is a standard Brownian motion.
Assume that standard conditions for existence and uniqueness of a strong solution
to (1) are satisfied (see, e.g., [46]), and observations

Xn = {Xt0,n , . . . ,Xtn,n}

are available, where ti,n = iT/n, i = 0, . . . ,n. Using a nonparametric Bayesian ap-
proach, our aim is to estimate the volatility function s0. In a financial context, knowl-
edge of the volatility is of fundamental importance e.g. in pricing financial deriva-
tives; see [4] and [54]. However, SDEs have applications far beyond the financial
context as well, e.g. in physics, biology, life sciences, neuroscience and engineering
(see [1], [25], [39] and [74]). Note that by Itô’s formula, using a simple transforma-
tion of the state variable, also an SDE of the form

dXt = b0(t,Xt)dt + s0(t) f0(Xt)dWt , X0 = x, t ∈ [0,T ],

can be reduced to the form (1), provided the function f0 is known and regular
enough; see, e.g., p. 186 in [68]. Some classical examples that fall under our sta-
tistical framework are the geometric Brownian motion and the Ornstein-Uhlenbeck
process. Note also that as we allow the drift in (1) to be non-linear, marginal distri-
butions of X are not necessarily Gaussian and may thus exhibit heavy tails, which is
attractive in financial modelling.

A nonparametric approach guards one against model misspecification and is an
excellent tool for a preliminary, exploratory data analysis, see, e.g., [67]. Commonly
acknowledged advantages of a Bayesian approach include automatic uncertainty
quantification in parameter estimates via Bayesian credible sets, and the fact that it
is a fundamentally likelihood-based method. In [53] it has been argued that a non-
parametric Bayesian approach is important for honest representation of uncertainties
in inferential conclusions. Furthermore, use of a prior allows one to easily incorpo-
rate the available external, a priori information into the estimation procedure, which
is not straightforward to achieve with frequentist approaches. For instance, this a
priori information could be an increasing or decreasing trend in the volatility.
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1.2 Literature overview

Literature on nonparametric Bayesian volatility estimation in SDE models is scarce.
We can list theoretical contributions [34], [36], [56], and the practically oriented pa-
per [2]. The model in the former two papers is close to the one considered in the
present work, but from the methodological point of view different Bayesian priors
are used and practical usefulness of the corresponding Bayesian approaches is lim-
ited. On the other hand, the models considered in [56] and [2] are rather different
from ours, and so are the corresponding Bayesian approaches. The nearest predeces-
sor of the model and the method in our paper is the one studied in [37]. In the sequel
we will explain in what aspects the present contribution differs from that one and
what the current improvements are. We note in passing that there exists a solid body
of literature on nonparametric Bayesian estimation of the drift coefficient, see, e.g.,
[35], [57], [59], [65], [52], [51] and the review article [76], but Bayesian volatil-
ity estimation requires use of substantially different ideas. We also note existence
of works dealing with parametric Bayesian estimation in discrete-time stochastic
volatility models, see, e.g., [44] and [45], but again, these are not directly related to
the problem we study in this paper.

1.3 Approach and results

The main potential difficulties facing a Bayesian approach to inference in SDE mod-
els from discrete observations are an intractable likelihood and absence of a closed
form expression for the posterior distribution; see, e.g., [21], [25], [64] and [50].
Typically, these difficulties necessitate the use of a data augmentation device (see
[69]) and some intricate form of a Markov chain Monte Carlo (MCMC) sampler
(see [63]). In [37], these difficulties are circumvented by intentionally setting the
drift coefficient to zero, and employing a (conjugate) histogram-type prior on the
diffusion coefficient, that has piecewise constant realisations on bins forming a par-
tition of [0,T ]. Specifically, the (squared) volatility is modelled a priori as a func-
tion s2 = ∑N

k=1 θk1Bk , with independent and identically distributed inverse gamma
coefficients θk’s, and the prior Π is defined as the law of s2. Here B1, . . . ,BN are
bins forming a partition of [0,T ]. With this independent inverse Gamma (IIG) prior,
θ1, . . . ,θN are independent, conditional on the data, and of inverse gamma type.
Therefore, this approach results in a fast and simple to understand and implement
Bayesian procedure. A study of its favourable practical performance, as well as its
theoretical validation was recently undertaken in [37]. As shown there under precise
regularity conditions, misspecification of the drift is asymptotically, as the sample
size n → ∞, harmless for consistent estimation of the volatility coefficient.

Despite a good practical performance of the method in [37], there are some limi-
tations associated with it too. Thus, the method offers limited possibilities for adap-
tation to the local structure of the volatility coefficient, which may become an issue
if the volatility has a wildly varying curvature on the time interval [0,T ]. A possible
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fix to this would be to equip the number of bins N forming a partition of [0,T ] with
a prior, and choose the endpoints of bins Bk also according to a prior. However, this
would force one to go beyond the conjugate Bayesian setting as in [37], and poste-
rior inference in practice would require, for instance, the use of a reversible jump
MCMC algorithm (see [32]). Even in the incomparably simpler setting of intensity
function estimation for nonhomogeneous Poisson processes with histogram-type
priors, this is very challenging, as observed in [75]. Principal difficulties include
designing moves between models of differing dimensions that result in MCMC al-
gorithms that mix well, and assessment of convergence of Markov chains (see [22],
p. 204). Thus, e.g., the inferential conclusions in [32] and [33] are different on the
same real data example using the same reversible jump method, since it turned out
that in the first paper the chain was not run long enough. Cf. also the remarks on
Bayesian histograms in [27], p. 546.

Here we propose an alternative approach, inspired by ideas in [7] in the con-
text of audio signal modelling different from the SDE setting that we consider; see
also [8], [9], [15], [16] and [71]. Namely, instead of using a prior on the (squared)
volatility that has piecewise constant realisations on [0,T ] with independent coeffi-
cients θk’s, we will assume that the sequence {θk} forms a suitably defined Markov
chain. An immediately apparent advantage of using such an approach is that it in-
duces extra smoothing via dependence in prior realisations of the volatility function
across different bins. Arguing heuristically, with a large number N of bins Bk it is
then possible to closely mimick the local structure of the volatility: in those parts of
the interval [0,T ], where the volatility has a high curvature or is subject to abrupt
changes, a large number of (narrow) bins is required to adequately capture these
features. However, the grid used to define the bins Bk’s is uniform, and if θ1, . . . ,θN
are a priori independent, a large N may induce spurious variability in the volatility
estimates in those regions of [0,T ] where the volatility in fact varies slowly. As we
will see in the sequel, this problem may be alleviated using a priori dependent θk’s.

In the subsequent sections we detail our approach, and study its practical per-
formance via simulation and real data examples. Specifically, we implement our
method via a straightforward version of the Gibbs sampler, employing the fact that
full conditional distributions of θk’s are known in closed form (and are in fact in-
verse gamma). Unlike [37], posterior inference in our new approach requires the use
of MCMC. However, this is offset by the advantages of our new approach outlined
above, and in fact the additional computational complexity of our new method is
modest in comparison to [37]. The prior in our new method depends on hyperpa-
rameters, and we will also discuss several ways of their choice in practice.

1.4 Organisation of this paper

In Section 2 we supply a detailed description of our nonparametric Bayesian ap-
proach to volatility estimation. In Section 3 we study the performance of our method
via extensive simulation examples. In Section 4 we apply the method on a real data



Nonparametric Bayesian volatility estimation 5

example. Section 5 summarises our findings and provides an outlook on our results.
Finally, Section 6 contains some additional technical details of our procedure.

1.5 Notation

We denote the prior distribution on the (squared) volatility function by Π and write
the posterior measure given data Xn as Π( · | Xn). We use the notation IG(α,β )
for the inverse gamma distribution with shape parameter α > 0 and scale parameter
β > 0. This distribution has a density

x 7→ β α

Γ (α)
x−α−1e−β/x, x > 0. (2)

For two sequences {an}, {bn}, the notation an ≍ bn will be used to denote the fact
that the sequences are asymptotically (as n → ∞) of the same order. Finally, for a
density f and a function g, the notation f ∝ g will mean that f is proportional to
g, with proportionality constant on the righthand side recovered as (

∫
g)−1, where

the integral is over the domain of definition of g (and of f ). The function g can be
referred to as an unnormalised probability density.

2 Nonparametric Bayesian approach

2.1 Generalities

Our starting point is the same as in [37]. Namely, we misspecify the drift coefficient
b0 by intentionally setting it to zero (see also [48] for a similar idea of ‘misspeci-
fication on purpose’). The theoretical justification for this under the ‘infill’ asymp-
totics, with the time horizon T staying fixed and the observation times ti,n = iT/n,
i = 1, . . . ,n, filling up the interval [0,T ] as n → ∞, is provided in [37], to which we
refer for further details (the argument there ultimately relies on Girsanov’s theorem).
Similar ideas are also encountered in the non-Bayesian setting in the econometrics
literature on high-frequency financial data, see, e.g., [55].

Set Yi,n = Xti,n −Xti−1,n . With the assumption b0 = 0, the pseudo-likelihood of our
observations is tractable, in fact Gaussian,

Ln(s2) =
n

∏
i=1

 1√
2π
∫ ti,n

ti−1,n
s2(u)du

ψ

 Yi,n√∫ ti,n
ti−1,n

s2(u)du

 , (3)

where ψ(u) = exp(−u2/2). The posterior probability of any measurable set S of
volatility functions can be computed via Bayes’ theorem as
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Π(S | Xn) =

∫
S Ln(s2)Π(ds)∫
Ln(s2)Π(ds)

.

Here the denominator is the normalising constant, the integral over the whole space
on which the prior Π is defined, which ensures that the posterior is a probability
measure (i.e. integrates to one).

2.2 Prior construction

Our prior Π is constructed similarly to [37], with an important difference to be noted
below. Fix an integer m < n. Then n = mN + r with 0 ≤ r < m, where N = ⌊ n

m⌋.
Now define bins Bk = [tm(k−1),n, tmk,n), k = 1, . . . ,N − 1, and BN = [tm(N−1),n,T ].
Thus the first N − 1 bins are of length mT/n, whereas the last bin BN has length
T − tm(N−1),n = n−1(r +m)T < n−12mT . The parameter N (equivalently, m) is a
hyperparameter of our prior. We model s as piecewise constant on bins Bk, thus
s = ∑N

k=1 ξk1Bk . The prior Π on the volatility s can now be defined by assigning a
prior to the coefficients ξk’s.

Let θk = ξ 2
k . Since the bins Bk are disjoint,

s2 =
N

∑
k=1

ξ 2
k 1Bk =

N

∑
k=1

θk1Bk .

As the likelihood depends on s only through its square s2, it suffices to assign the
prior to the coefficients θk’s of s2. This is the point where we fundamentally diverge
from [37]. Whereas in [37] it is assumed that {θk} is an i.i.d. sequence of inverse
gamma random variables, here we suppose that {θk} forms a Markov chain. This
will be referred to as an inverse Gamma Markov chain (IGMC) prior (see [7]),
and is defined as follows. Introduce auxiliary variables ζk, k = 2, . . . ,N, and define
a Markov chain using the time ordering θ1,ζ2,θ2, . . . ,ζk,θk, . . . ,ζN ,θN . Transition
distributions of this chain are defined as follows: fix hyperparameters α1, αζ and α ,
and set

θ1 ∼ IG(α1,α1), ζk+1|θk ∼ IG(αζ ,αζ θ−1
k ), θk+1|ζk+1 ∼ IG(α,αζ−1

k+1). (4)

The name of the chain reflects the fact that these distributions are inverse Gamma.

Remark 1. Our definition of the IGMC prior differs from the one in [7] in the choice
of the initial distribution of θ1, which is important to alleviate possible ‘edge effects’
in volatility estimates in a neighbourhood of t = 0. The parameter α1 determines
the initial distribution of the inverse Gamma Markov chain. Letting α1 → 0 (which
corresponds to a vague prior) ‘releases’ the chain at the time origin. ⊓⊔

Remark 2. As observed in [7], there are various ways of defining an inverse Gamma
Markov chain. The point to be kept in mind is that the resulting posterior should
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be computationally tractable, and the prior on θk’s should have a capability of pro-
ducing realisations with positive correlation structures, as this introduces smoothing
among the θk’s in adjacent bins. This latter property is not possible to attain with
arbitrary constructions of inverse Gamma Markov chains, such as e.g. a natural con-
struction θk|θk−1 ∼ IG(α,θk−1/α). On the other hand, positive correlation between
realisations θk’s can be achieved e.g. by setting θk|θk−1 ∼ IG(α,(αθk−1)

−1), but
this results in intractable posterior computations. The definition of the IGMC prior
in the present work, that employs latent variables ζk’s, takes care of both these im-
portant points. For an additional discussion see [7]. ⊓⊔

Remark 3. Setting the drift coefficient b0 to zero effectively results in pretending that
the process X has independent (Gaussian) increments. In reality, since the drift in
practical applications is typically nonzero, increments of the process are dependent,
and hence all observations Yi,n contain some indirect information on the value of the
volatility s2 at each time point t ∈ [0,T ]. On the other hand, assuming the IGMC
prior on s2 yields a posteriori dependence of coefficients {θk}, which should be of
help in inference with smaller sample sizes n. See Section 4 for an illustration. ⊓⊔

2.3 Gibbs sampler

It can be verified by direct computations employing (4) that the full conditional
distributions of θk’s and ζk’s are inverse gamma,

θk|ζk,ζk+1 ∼ IG
(

α +αζ ,
α
ζk

+
αζ

ζk+1

)
, k = 2, . . . ,N −1, (5)

θ1|ζ2 ∼ IG
(

α1 +αζ ,α1 +
αζ

ζ2

)
, (6)

θN |ζN ∼ IG
(

α,
α
ζN

)
, (7)

ζk|θk,θk−1 ∼ IG
(

αζ +α,
αζ

θk−1
+

α
θk

)
, k = 2, . . . ,N. (8)

See Section 6 for details. Next, the effective transition kernel of the Markov chain
{θk} is given by formula (4) in [7], and is a scale mixture of inverse gamma dis-
tributions; however, its exact expression is of no direct concern for our purposes.
As noted in [7], p. 700, depending on the parameter values α,αζ , it is possible for
the chain {θk} to exhibit either an increasing or decreasing trend. We illustrate this
point by plotting realisations of {θk} in Figure 1 for different values of α and αζ .
In the context of volatility estimation this feature is attractive, if prior information
on the volatility trend is available.

Inference in [7] is performed using a mean-field variational Bayes approach, see,
e.g., [5]. Here we describe instead a fully Bayesian approach relying on Gibbs sam-
pling (see, e.g., [26] and [29]), cf. [9].
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Fig. 1 Realisations of the Markov chain {θk} with α = 40, αζ = 20 (left panel) and α = 30,
αζ = 30 (center panel) and α = 20, αζ = 40 (right panel). In all cases, θ1 is fixed to 500 .

The algorithm is initialised at values ζ2, . . . ,ζN , e.g. generated from the prior
specification (4). In order to derive update formulae for the full conditionals of the
θk’s, define

Zk =
km

∑
i=(k−1)m+1

Y 2
i,n, k = 1, . . . ,N −1,

ZN =
n

∑
i=(N−1)m+1

Y 2
i,n.

With this notation, the likelihood from (3) satisfies

Ln(θ) ∝ θ−(m+r)/2
N exp

(
− nZN

2T θN

)N−1

∏
k=1

θ−m/2
k exp

(
− nZk

2T θk

)
.

Using this formula and equation (5), and recalling the form of the inverse gamma
density (2), it is seen that the update distribution for θk, k = 2, . . . ,N −1, is

IG
(

α +αζ +
m
2
,

α
ζk

+
αζ

ζk+1
+

nZk

2T

)
,

whereas by (7) the ones for θ1 and θN are

IG
(

α1 +αζ +
m
2
, α1 +

αζ

ζ2
+

nZ1

2T

)
, IG

(
α +

m+ r
2

,
α
ζN

+
nZN

2T

)
,

respectively.
Next, the latent variables ζk’s will be updated using formula (8). This update step

for ζk’s does not directly involve the data Xn, except through the previous values of
θk’s.

Finally, one iterates these two Gibbs steps for θk’s and ζk’s a large number of
times (until chains can be assessed as reasonably converged), which gives posterior
samples of the θk’s. Using the latter, the posterior inference can proceed in the usual
way, e.g. by computing the sample posterior mean of θk’s, as well as sample quan-
tiles, that provide, respectively, a point estimate and uncertainty quantification via
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marginal Bayesian credible bands for the squared volatility s2. Similar calculations
on the square roots of the posterior samples can be used to obtain point estimates
and credible bands for the volatility function s itself.

2.4 Hyperparameter choice

Like [37], our Bayesian procedure depends on the hyperparameter N. As argued in
[37], in practice it is recommended to use the theoretical results in [37] (that suggest
to take N ≍ nλ/(2λ+1), if the true volatility function s0 is λ -Hölder smooth) and
try several values of N simultaneously. Different N’s all provide information on the
unknown volatility, but at different resolution levels; see Section 5 in [37] for an
additional discussion.

Additionally, we have hyperparameters α , αζ and α1, that govern properties of
the Markov chain prior. In [7], where an IGMC prior was introduced, guidance on
the hyperparameter selection is not discussed. In [8], the hyperparameters are fine-
tuned by hand in specific problems studied there (audio denoising and single channel
audio source separation). Another practical solution is to try several different fixed
combinations of the hyperparameters α , αζ and α1, if only to verify sensitivity
of inferential conclusions with respect to variations in the hyperparameters. Some
further methods for hyperparameter optimisation are discussed in [16]. In [8] opti-
misation of the hyperparameters via the maximum likelihood method is suggested;
practical implementation relies on the EM algorithm (see [13]), and some additional
details are given in [15]. Put in other terms, the proposal in [15] amounts to using
an empirical Bayes method (see, e.g., [20], [61] and [62]). The use of the latter is
widespread and often leads to good practical results, but the method is still insuf-
ficiently understood theoretically, except in toy models like the white noise model
(see, however, [17] and [58] for some results in other contexts). On the practical
side, in our case, given that the dimension of the sequences {ζk} and {θk} is rather
high, namely 2N − 1 with N large, and the marginal likelihood is not available in
closed form, this approach is expected to be computationally intensive. Therefore,
a priori there is no reason not to try instead a fully Bayesian approach by equip-
ing the hyperparameters with a prior, and this is in fact our default approach in the
present work. However, the corresponding full conditional distribution turns out to
be nonstandard, which necessitates the use of a Metropolis-Hastings step within the
Gibbs sampler (see, e.g., [38], [49] and [70]). We provide the necessary details in
Section 6.

3 Synthetic data examples

Computations in this section have been done in the programming language Julia,
see [3]. In order to test the practical performance of our estimation method, we use
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a challenging example with the blocks function from [18]. As a second example, we
consider the case of the Cox-Ross-Ingersoll model. Precise details are given in the
subsections below.

We used the Euler scheme on a grid with 800 001 equidistant points on the inter-
val [0,1] to obtain realisations of a solution to (1) for different combinations of the
drift and dispersion coefficients. These were then subsampled to obtain n = 4000
observations in each example.

The hyperparameter α1 was set to 0.1, whereas for the other two hyperparameters
we assumed that α = αζ and used a diffuse IG(0.3,0.3) prior, except in specially
noted cases below. Inference was performed using the Gibbs sampler from Sec-
tion 2, with a Metropolis-Hastings step to update the hyperparameter α . The latter
used an independent Gaussian random walk proposal with a scaling to ensure the
acceptance rate of ca. 50%; see Section 6. The Gibbs sampler was run for 200000
iterations and we used a burn-in of 1000 samples. In each example we plotted 95%
marginal credible bands obtained from the central posterior intervals for the coeffi-
cients ξk =

√
θ k.

3.1 Blocks function

As our first example, we considered the case when the volatility function was given
by the blocks function from [18]. With a vertical shift for positivity, this is defined
as follows:

s(t) = 10+3.655606×
11

∑
j=1

h jK(t − t j), t ∈ [0,1], (9)

where K(t) = (1+ sgn(t))/2, and

{t j}= (0.1,0.13,0.15,0.23,0.25,0.4,0.44,0.65,0.76,0.78,0.81),
{h j}= (4,−5,3,−4,5,−4.2,2.1,4.3,−3.1,2.1,−4.2).

The function serves as a challenging benchmark example in nonparametric regres-
sion: it is mostly very smooth, but spatially inhomogeneous and characterised by
abrupt changes (cf. Chapter 9 in [72]). Unlike nonparametric regression, the noise
(Wiener process) in our setting should be thought of as multiplicative and propor-
tional to s rather than additive, which combined with the fact that s takes rather large
values further complicates the inference problem. Our main goal here was to com-
pare the performance of the IGMC prior-based approach to the IIG prior-based one
from [37]. To complete the SDE specification, our drift coefficient was chosen to be
a rather strong linear drift b0(x) =−10x+20.

In Figure 2 we plot the blocks function (9) and the corresponding realisation of
the process X used in this simulation run.

The left and right panels of Figure 3 contrast the results obtained using the IGMC
prior with N = 160 and α = αζ = 20 versus N = 320 and α = αζ = 40. These
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plots illustrate the fact that increasing N has the effect of undersmoothing prior
realisations, that can be balanced by increasing the values of αζ ,α , which has the
opposite smoothing effect. Because of this, in fact, both plots look quite similar.

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15
X

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30 s3

Fig. 2 The sample path of the process X from (9) (left panel) and the corresponding volatility
function s (right panel).

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80
s3
marginal 95% cred. band

0.0 0.2 0.4 0.6 0.8
0

20

40

60

80
s3
marginal 95% cred. band

Fig. 3 Volatility function s from (9) with superimposed 95% marginal credible band for the IGMC
prior, using N = 160, α = αζ = 20 (left panel) and N = 320, α = αζ = 40 (right panel); in both
cases, α1 = 0.1.

The top left and top right panels of Figure 4 give estimation results obtained with
the IIG prior-based approach from [37]. The number of bins was again N = 160 and
N = 320, and in both these cases we used diffuse independent IG(0.1,0.1) priors
on the coefficients of the (squared) volatility function (see [37] for details). These
results have to be contrasted to those obtained with the IGMC prior, plotted in the
bottom left and bottom right panels of Figure 4, where we assumed α1 = 0.1 and
α = αζ ∼ IG(0.3,0.3). The following conclusions emerge from Figure 4:

• Although both the IGMC and IIG approaches recover globally the shape of the
volatility function, the IIG approach results in much greater uncertainty in infer-
ential conclusions, as reflected in wider marginal confidence bands. The effect is
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especially pronounced in the case N = 320, where the width of the band for the
IIG prior renders it almost useless for inference.

• The bands based on the IGMC prior look more ‘regular’ than the ones for the IIG
prior.

• Comparing the results to Figure 3, we see the benefits of equipping the hyperpa-
rameters α,αζ with a prior: credible bands in Figure 3 do not adequately cap-
ture two dips of the function s right before and after the point t = 0.2, since s
completely falls outside the credible bands there. Thus, an incorrect amount of
smoothing is used in Figure 3.

• The method based on the IIG prior is sensitive to the bin number selection: com-
pare the top left panel of Figure 4 using N = 160 bins to the top right panel
using N = 320 bins, where the credible band is much wider. On the other hand,
the method based on the IGMC prior automatically rebalances the amount of
smoothing it uses with different numbers of bins N, thanks to the hyperprior on
the parameters α,αζ ; in fact, the bottom two plots in Figure 4 look similar to
each other.
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Fig. 4 Volatility function s with superimposed 95% marginal credible band for the IIG prior
IG(0.1,0.1), using N = 160 (top left panel) and N = 320 bins (top right panel). Volatility func-
tion s from (9) with superimposed 95% marginal credible band for the IGMC prior, using
N = 160 (bottom left panel) and N = 320 bins (bottom right panel); in both cases, α1 = 0.1 and
α = αζ ∼ IG(0.3,0.3).
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3.2 CIR model

Our core estimation procedure, as described in the previous sections, assumes that
the volatility function is deterministic. In this subsection, however, in order to test
the limits of applicability of our method and possibilities for future extensions, we
applied it to a case where the volatility function was stochastic. The study in [55]
lends support to this approach, but here we concentrate on practical aspects and
defer the corresponding theoretical investigation until another occasion.

Specifically, we considered the Cox-Ross-Ingersoll (CIR) model or the square
root process,

dXt = (η1 −η2Xt)dt +η3
√

XtdWt , X0 = x > 0, t ∈ [0,T ]. (10)

Here η1,η2,η3 > 0 are parameters of the model. This diffusion process was intro-
duced in [23] and [24], and gained popularity in finance as a model for short-term
interest rates, see [11]. The condition 2η1 > η2

3 ensures strict positivity and ergod-
icity of X . The volatility function s0 from (1) now corresponds to a realisation of a
stochastic process t 7→ η3

√
Xt , where X solves the CIR equation (10).

We took arbitrary parameter values

η1 = 6, η2 = 3, η1 = 2, x = 1. (11)

A sample path of X is plotted in the left panel of Figure 5, whereas the correspond-
ing volatility is given in the right panel of the same figure. In Figure 6 we display
estimation results obtained with the IGMC prior, using N = 160 and N = 320 bins
and hyperparameter specifications α1 = 0.1 and α = αζ ∼ IG(0.3,0.3). A conclu-
sion that emerges from this figure is that our Bayesian method captures the overall
shape of the realised volatility in a rather satisfactory manner.
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Fig. 5 The sample path of the process X from (10) (left panel) and the corresponding realised
volatility function s(ω) (right panel). The parameter values are given in (11).
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Fig. 6 Volatility function s from (10) with superimposed 95% marginal credible band for the
IGMC prior, using N = 160 (left panel) and N = 320 bins (right panel); in both cases, α1 = 0.1
and α = αζ ∼ IG(0.3,0.3).

4 Dow-Jones industrial averages

In this section we provide a reanalysis of a classical dataset in change-point detec-
tion in time series; see, e.g., [10], [14], [40], [41] and [42]. Specifically, we consider
weekly closing values of the Dow-Jones industrial averages in the period 2 July
1971 – 2 August 1974. In total there are 162 observations available, which consti-
tute a relatively small sample, and thus the inference problem is rather nontrivial.
The data can be accessed as the dataset DWJ in the sde package (see [43]) in R
(see [60]). See the left panel of Figure 7 for a visualisation. In [42] the weekly data
Xti , i = 1, . . . ,n, are transformed into returns Yti = (Xti −Xti−1)/Xti−1 , and the least
squares change-point estimation procedure from [12] has been performed. Repro-
ducing the corresponding computer code in R results in a change-point estimate
of 16 March 1973. That author speculates that this change-point is related to the
Watergate scandal.
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Fig. 7 Dow-Jones weekly closings of industrial averages over the period 2 July 1971 – 2 August
1974 (left panel) and the corresponding returns (right panel).
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Similar to [42], parametric change-point analyses in [10], [14] and [41] give a
change-point in the third week of March 1973. However, as noted in [42], exami-
nation of the plot of the time series Yti (see Figure 7, the right panel) indicates that
another change-point may be present in the data. Then dropping observations after
16 March 1973 and analysing the data for existence of a change-point using only
the initial segment of the time series, the author discovers another change-point on
17 December 1971, which he associates with suspending the convertibility of the
US dollar into gold under President Richard Nixon’s administration.

From the above discussion it should be clear that nonparametric modelling of
the volatility may provide additional insights for this dataset. We first informally
investigated the fact whether an SDE driven by the Wiener process is a suitable
model for the data at hand. Many of such models, e.g. the geometric Brownian mo-
tion, a classical model for evolution of asset prices over time (also referred to as the
Samuelson or Black-Scholes model), rely on an old tenet that returns of asset prices
follow a normal distribution. Although the assumption has been empirically dis-
proved for high-frequency financial data (daily or intraday data; see, e.g., [6], [19]
and [47]), its violation is less severe for widely spaced data in time (e.g. weekly data,
as in our case). In fact, the Shapiro-Wilk test that we performed in R on the returns
past the change-point 16 March 1973 did not reject the null hypothesis of normal-
ity (p-value 0.4). On the other hand, the quantile-quantile (QQ) plot of the same
data does perhaps give an indication of a certain mild deviation from normality, see
Figure 8, where we also plotted a kernel density estimate of the data (obtained via
the command density in R, with bandwidth determined automatically through
cross-validation).

Fig. 8 QQ plot of the returns of Dow-Jones weekly closings of industrial averages over the period
16 March 1973 – 2 August 1974 (left panel) and a kernel density estimate of the same data (right
panel).

In Figure 9 we plot the sample autocorrelation and partial autocorrelation func-
tions based on returns Yti ’s past the change-point 16 March 1973. These do not give
decisive evidence against the assumption of independence of Yti ’s. Neither does the
Ljung-Box test (the test is implemented in R via the command Box.test), which
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yields a p-value 0.057 when applied with 10 lags (the p-value is certainly small, but
not overwhelmingly so).

Fig. 9 Sample autocorrelation (left panel) and partial autocorrelation functions of the returns of
Dow-Jones weekly closings of industrial averages over the period 16 March 1973 – 2 August 1974.

Summarising our findings, we detected only a mild evidence against the assump-
tion that the returns of the Dow-Jones weekly closings of industrial averages (over
the period 16 March 1973 – 2 August 1974, but similar conclusions can be reached
also over the other subperiods covered by the DWJ dataset) are approximately in-
dependent and follow a normal distribution. Thus there is no strong a priori rea-
son to believe that a geometric Brownian motion is an outright unsuitable model in
this setting: it can be used as a first approximation. To account for time-variability
of volatility (as suggested by the change-point analysis), we incorporate a time-
dependent volatility function in the model, and for additional modelling flexibility
we also allow a state-dependent drift. Setting Zt = log(Xt/X0), our model is thus
given by

dZt = b0(t,Zt)dt + s0(t)dWt , Z0 = 0. (12)

An alternative here is to directly (i.e. without any preliminary transformation)
model the Dow-Jones data using equation (1). We consider both possibilities, start-
ing with the model (12).

As in our simulation examples in Section 3, we used a vague prior on θ1 cor-
responding to the limit α1 → 0, whereas for the other two hyperparameters we as-
sumed α = αζ ∼ IG(0.3,0.3). The scaling in the independent Gaussian random
walk proposal in the Metropolis-Hastings step was chosen in such a way so as to
yield an acceptance rate of ca. 50%. The Gibbs sampler was run for 200000 itera-
tions, and the first 1000 samples were dropped as a burn-in. We present the estima-
tion results we obtained using N = 13 and N = 26 bins, see Figure 10. Although the
sample size n is quite small in this example, the data are informative enough to yield
nontrivial inferential conclusions even with diffuse priors. Both plots in Figure 10
are qualitatively similar and suggest:
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• A decrease in volatility at the end of 1971, which can be taken as corresponding
to the change-point in December 1971 identified in [42]. Unlike that author, we
do not directly associate it with suspending the convertibility of the US dollar
into gold (that took place in August 1971 rather than December 1971).

• A gradual increase in volatility over the subsequent period stretching until the end
of 1973. Rather than only the Watergate scandal (and a change-point in March
1973 as in [42]), there could be further economic causes for that, such as the
1973 oil crisis and the 1973–1974 stock market crash.

• A decrease in volatility starting in early 1974, compared to the immediately pre-
ceding period.

In general, in this work we do not aim at identifying causes for changes in volatility
regimes, but prefer to present our inference results, that may subsequently be used
in econometric analyses.
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Fig. 10 Marginal 90% credible bands for the volatility function of the log Dow-Jones industrial
averages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26 bins.

Now we move to the Bayesian analysis of the data using model (1). The prior
settings were as in the previous case, and we display the results in Figure 11. The
overall shapes of the inferred volatility functions are the same in both Figure 10 and
Figure 11, and hence similar conclusions apply.

Finally, we stress the fact that our nonparametric Bayesian approach and change-
point estimation are different in their scope: whereas our method aims at estimation
of the entire volatility function, change-point estimation (as its name actually sug-
gests) concentrates on identifying change-points in the variance of the observed
time series, which is a particular feature of the volatility. To that end it assumes the
(true) volatility function is piecewise constant, which on the other hand is not an as-
sumption required in our method. Both techniques are useful, and each can provide
insights that may be difficult to obtain from another.
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Fig. 11 Marginal 90% credible bands for the volatility function of the Dow-Jones industrial aver-
ages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26 bins.

5 Conclusions

Bayesian inference for SDEs from discrete-time observations is a difficult task, ow-
ing to intractability of the likelihood and the fact that the posterior is not available
in closed form. Posterior inference therefore typically requires the use of intricate
MCMC samplers. Designing algorithms that result in Markov chains that mix well
and explore efficiently the posterior surface is a highly nontrivial problem. Inspired
by some ideas from the audio signal processing literature and our earlier work [37],
in this paper we introduced a novel nonparametric Bayesian approach to estima-
tion of the volatility coefficient of an SDE. Our method is easy to understand and
straightforward to implement via Gibbs sampling, and performs well in practice.
Thereby our hope is that our work will contribute to further dissemination and pop-
ularisation of a nonparametric Bayesian approach to inference in SDEs, specifically
with financial applications in mind. Our work can also be viewed as a partial fulfill-
ment of anticipation in [31] that some ideas developed originally in the context of
audio and music processing “will also find use in other areas of science and engi-
neering, such as financial or biomedical data analysis”.

As a final remark, we do not attempt to provide a theoretical, i.e. asymptotic
frequentist analysis of our new approach here (see, e.g., the recent monograph [30],
and specifically [37] for such an analysis in the SDE setting), but leave this as a
topic of future research.

6 Formulae for parameter updates

In this section we present additional details on the derivation of the update formulae
for the Gibbs sampler from Section 2. The starting point is to employ the Markov
property from (4), and using the standard Bayesian notation, to write the joint den-
sity of {ζk} and {θk} as
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p(θ1)
N

∏
k=2

p(ζk|θk−1)p(θk|ζk). (13)

6.1 Full conditional distributions

We first indicate how (5) was derived. Insert expressions for the individual terms
in (13) from (4) and collect separately terms that depend on θk only, to see that the
density of the full conditional distribution of θk, k = 2, . . . ,N −1, is proportional to

θ−α−1
k e−α/(θkζk)θ

−αζ
k e−αζ /(θkζk+1).

Upon normalisation, this expression is the density of the IG(α + αζ ,αζ−1
k +

αζ ζ−1
k+1) distribution, which proves fromula (5). Formula (7) follows directly from

the last expression in (4). Formula (8) is proved analogously to (5). Finally, (6) fol-
lows from (4) and Bayes’ formula. Cf. also [15], Appendix B.6.

6.2 Metropolis-within-Gibbs step

Now we describe the Metropolis-Hastings step within the Gibbs sampler, that is
used to update the hyperparameters of our algorithm, in case the latter are equipped
with a prior. For simplicity, assume α = αζ (we note that such a choice is used in
practical examples in [8]), and suppose α is equipped with a prior, α ∼ π . Let the
hyperparameter α1 be fixed. Obviously, α1 could have been equipped with a prior
as well, but this would have further slowed down our estimation procedure, whereas
the practical results in Sections 3 and 4 we obtained are already satisfactory with
α1 fixed. Using (4) and (13), one sees that the joint density of {ζk}, {θk} and α is
proportional to

π(α)×θ−α1−1
1 × e−α1θ−1

1

×
N

∏
k=2

{
αα

Γ (α)θ α
k−1

ζ−α−1
k e−α/(θk−1ζk)

αα

Γ (α)ζ α
k

θ−α−1
k e−α/(θkζk)

}
.

This in turn is proportional to

q(α) = π(α)×
(

αα

Γ (α)

)2(N−1)

×
N

∏
k=2

(θk−1θkζ 2
k )

−α

× exp

(
−α

N

∑
k=2

1
ζk

(
1

θk−1
+

1
θk

))
.
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The latter expression is an unnormalised full conditional density of α , and can be
used in the Metropolis-within-Gibbs step to update α .

The rest of the Metropolis-Hastings step is standard, and the following approach
was used in our practical examples: pick a proposal kernel g(α ′ | α), for instance
a Gaussian random walk proposal g(α ′ | α) = ϕσ (α ′−α), where ϕσ is the density
of a normal random variable with mean zero and variance σ2. Note that this spe-
cific choice may result in proposing a negative value α ′, which needs to be rejected
straightaway as invalid. Then, for computational efficiency, instead of moving to
another step within the Gibbs sampler, one keeps on proposing new values α ′ until
a positive one is proposed. This is then accepted with probability

A = min
(

1,
q(α ′)

q(α)

Φσ (α)

Φσ (α ′)

)
,

where Φσ (·) is the cumulative distribution function of a normal random variable
with mean zero and variance σ2; otherwise the current value α is retained. See
[73] for additional details and derivations. Finally, one moves to other steps in the
Gibbs sampler, namely to updating ζk’s and θk’s, and iterates the procedure. The
acceptance rate in the Metropolis-Hastings step can be controlled through the scale
parameter σ of the proposal density ϕσ . Some practical rules for determination of
an optimal acceptance rate in the Metropolis-Hastings algorithm are given in [28],
and those for the Metropolis-within-Gibbs algorithm in [66].
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