Introduction to Extreme Value Theory.
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Marie Kratz

Abstract We present an overview of Univariate Extreme Value Theory (EVT) pro-
viding standard and new tools to model the tails of distributions. One of the main is-
sues in the statistical literature of extremes concerns the tail index estimation, which
governs the probability of extreme occurrences. This estimation relies heavily on the
determination of a threshold above which a Generalized Pareto Distribution (GPD)
can be fitted. Approaches to this estimation may be classified into two classes, one
qualified as ’supervised’, using standard Peak Over Threshold (POT) methods, in
which the threshold to estimate the tail is chosen graphically according to the prob-
lem, the other class collects unsupervised methods, where the threshold is algorith-
mically determined.

We introduce here a new and practically relevant method belonging to this second
class. It is a self-calibrating method for modeling heavy tailed data, which we de-
veloped with N. Debbabi and M. Mboup. Effectiveness of the method is addressed
on simulated data, followed by applications in nero-science and finance. Results are
compared with those obtained by more standard EVT approaches.

Then we turn to the notion of dependence and the various ways to measure it, in
particular in the tails. Through examples, we show that dependence is also a crucial
topic in risk analysis and management. Underestimating the dependence among ex-
treme risks can lead to serious consequences, as for instance those we experienced
during the last financial crisis. We introduce the notion of copula, which splits the
dependence structure from the marginal distribution, and show how to use it in prac-
tice. Taking into account the dependence between random variables (risks) allows
us to extend univariate EVT to mutivariate EVT. We only give the first steps of the
latter, to motivate the reader to follow or to participate in the increasing research
development on this topic.
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1 Introduction

XXIst Century: a Stochastic World
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Fig. 1 Some of the extreme events that hit the World between 2001 and 2015

Quantitative risk analysis used to rely, until recently, on classical probabilistic
modeling where fluctuations around the average were taken into account. The stan-
dard deviation was the usual way to measure risk, like, for instance, in Markowitz
portfolio theory[17], or in the Sharpe Ratio[25]. The evaluation of “normal” risks
is more comfortable because it can be well modelled and predicted by the Gaus-
sian model and so easily insurable. The series of catastrophes that hit the World at
the beginning of this century (see Figure 1, natural (earthquakes, volcano eruption,
tsunami, ...) or financial (subprime crisis, sovereign crisis) or political (Arab Spring,
ISIS, Ukraine, ...), made it clear that it is crucial nowadays to take also extreme
occurrences into account; indeed, although it concerns events that rarely occur (i.e.
with a very small probability), their magnitude is such that their consequences are
dramatic when they hit unprepared societies.

Including extreme risks in probabilistic models is recognized nowadays as a nec-
essary condition for good risk management in any institution, and not restricted
anymore to reinsurance companies, who are the providers of covers for natural
catastrophes. For instance in finance, minimizing the impact of extreme risks, or
even ignoring them because of a small probability of occurrence, has been consid-
ered by many professionals and supervisory authorities, as a factor of aggravation
of the financial crisis of 2008-09. The American Senate and the Basel Committee



Contents 5

on Banking Supervision confirm this statement in their reports. Therefore, includ-
ing and evaluating correctly extreme risks has become very topical and crucial for
building up the resilience of our societies.

The literature on extremes is very broad; we present here an overview of some stan-
dard and new methods in univariate Extreme Value Theory (EVT) and refer the
reader to books on the topic [1, 8, 9, 15, 22, 23, 24] and also on EVT with applica-
tions in finance or integrated in quantitative risk management [16, 18, 20]. Then we
develop the concept of dependence to extend univariate EVT to multivariate EVT.
All along applications in various fields including finance, insurance and quantitative
risk management, illustrate the various concepts or tools.

1.1 What is Risk?

Risk is a word widely used by many people and not only by professional risk man-
agers. It is therefore useful to spend a bit of time analysing this concept. We start
by looking at its definition in common dictionaries. There, we find that it is mainly
identified to the notion of danger of loss:

The Oxford English Dictionary: Hazard, a chance of bad consequences, loss or
exposure to mischance.

For financial risks: ” Any event or action that may adversely affect an organiza-
tion’s ability to achieve its objectives and execute its strategies” or, alternatively,
’the quantifiable likelihood of loss or less-than-expected returns”.

Webster’s College Dictionary (insurance): "The chance of loss” or ”The degree
of probability of loss” or "The amount of possible loss to the insuring company”
or A person or thing with reference to the risk involved in providing insurance”
or ”The type of loss that a policy covers, as fire, storm, etc.”

However, strictly speaking, risk is not simply associated to a danger. In its modern
acceptance, it can also be seen as an opportunity for a profit. It is the main reason
why people would accept to be exposed to risk. In fact, this view started to develop
already in the 18th century. For instance, the French philosopher, Etienne de Condil-
lac (1714-1780) defined risk as "The chance of incurring a bad outcome, coupled,
with the hope, if we escape it, to achieve a good one”.

Another concept born from the management of risk is the insurance industry. In the
17th Century, the first insurance for buildings is created after the big London fire
(1666). During the 18h century appears the notion that social institutions should
protect people against risk. This contributed to the development of life insurance
that was not really acceptable by religion at the time. In this context, the definition
of ’Insurance’ as the transfer of risk from an individual to a group (company) takes
its full meaning. The 19th century sees the continuous development of private insur-
ance companies.

Independently of any context, risk relates strongly to the notion of randomness
and the uncertainty of future outcomes. The distinction between “uncertainty”’ and
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“risk” was first introduced by the American economist Frank H. Knight (1885-
1972), although they are related concepts. According to Knight, risk can be defined
as randomness with knowable probabilities, contrary to uncertainty, which is ran-
domness with unknowable probabilities. We could then define risk as a measurable
uncertainty, the *’known-unknowns’ according to Donald Rumsfeld’s terminology,
whereas uncertainty is unmeasurable, the *unknown-unknowns’ (D.Rumsfeld). Of
course, research and improved knowledge help to transform some uncertainty into
risk with knowable probabilities.

In what follows, we focus on the notion of risk, in particular extreme risk, and its
quantification. We choose a possible definition of risk, used within probabilistic
framework, namely the variation from the expected outcome over time.

There are numerous ways to measure risk and many risk measures have been devel-
oped in the literature. Most modern measures of the risk in a portfolio are statistical
quantities describing the conditional or unconditional loss distribution of the port-
folio over some predetermined horizon. Here we present only popular ones, used in
particular in regulation. We recall their definition and refer to Emmer et al. ([10])
and references therein for their mathematical properties.

Mean
/ VaR Standard Deviation Standard Deviation o Portfolio theory
° o measures typical (Markowitz)
s size of fluctuations
3 1.60% . .
ﬁ Lo Value-at-Risk (VaR) Value-at-Risk (VaRy) = quantile
c measures position of qa(L) = 1nf{q ER:P(L>¢q)<1-— Ot}
2 0.80% 99th percentile,
= : ~ n
£ 040% shappens once in a Expected Shortfall (ES) (or TVaR)
F hundred years 1 1
2 0.00% ES, (L — L d
o \ —_ [
450 498 517 595 643 6o1 739  EXpected Shortfall (ES; (L) —als qp(L)dp
is the weighted
Gross Losses Incurred (EUR million) average VaR beyond = E[L | L> qa (L)]
the 1% threshold. Fy cont

We will focus on the analysis of extreme risks, related to unexpected, abnormal
or extreme outcomes.

Many questions arise as: How to model extreme risks? How to study the behavior in
the tails of the d.f of the model? How to capture dependency and measure it in risk
models? which methods can be used? What about aggregation of risks?

First we present the main concepts of univariate EVT. Then we introduce the issue
of dependence among random variables (risks).

1.2 Impact of Extreme Risks

When considering financial assets, because of the existence of a finite variance, a
normal approximation is often chosen in practice for the unknown distribution of the
yearly log returns, justified by the use of the Central Limit Theorem (CLT), when
assuming independent and identically distributed (iid) observations. Such a choice
of modeling, in particular using light tail distributions, has shown itself grossly in-
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adequate during the last financial crisis when dealing with risk measures because it
leads to underestimating the risk.
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Fig. 2 QQ-plots of the S&P500 daily (left) and monthly (right) log-returns from 1987 to
2007

On Figure 2, the QQ-plot of the S&P 500 daily returns from 1987 to 2007, helps
to detect a heavy tail. When aggregating the daily returns into monthly returns,
the QQ-plot looks more as a normal one, and the very few observations appearing
above the threshold of VaRgg¢,, among which the financial crises of 1998 and 1987,
could almost be considered as outliers, as it is well known that financial returns are
symmetrically distributed. Now, look at Figure 3. When adding data from 2008 to
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2013, the QQ plot looks pretty the same, i.e. normal, except that another ”outlier”
appears ... with the date of October 2008! Instead of looking again on daily data
for the same years, let us consider a larger sample of monthly data from 1791 to
2013 (as compiled by Global Finance Data). With a larger sample size, the heavy
tail becomes again visible. And now we see that the financial crisis of 2008 does
belong to the heavy tail of the distribution and cannot be considered anymore as an
outlier. Although it is known, by Feller theorem, that the tail index of the underlying
distribution remains constant under aggregation, we clearly see the importance of
the sample size to make the tail visible. The figures on the S&P 500 returns illustrate
very clearly this issue.

2 Univariate EVT

Let (X;)i=1,... » be iid random variables (rv) with parent rv X and continuous cumu-
lative distribution function (cdf) F (that is unknown). The associated order statistics
are denoted by min (X;) =X, <Xp, < - <Xp_1 4 < Xy = max (X;).

1<i<n ’ ’ ’ ? 1<i<n

2.1 CLT versus EVT

> Mean behavior. Assuming the existence of the variance o2 of X, the Central Limit

_ 1 &
Theorem (CLT) tells us that the empirical mean X,, = — ZX,; when normalized
i3

(since var(X,) = %var(X ) — 0), has an asymptotic standard Gaussian distribution
n—soo

(whatever is F):

Xn B E(Xn) n v \/E(Xn B .u) i> ,/V(O, 1)

var(X,) B var(X) (¥ —E(X)) = Vo? N—soo
Le. JHEOP[(Xn - bn)/an < x} = F/V(071>(x) with b, = ]E(X),an = Var;EX) .

> Extreme behavior. Instead of looking at the mean behavior, consider now the ex-
treme behavior, with for instance the maximum. Noticing that

1 0if F(x) <1

< x| = < xl = F"

Plmax Xi <] EP[X’ <A =FG) = { LifF(x) =1,

could we find, as for the CLT, a linear transformation to avoid such degeneracy,
and say that there exist sequences (a,), (b,) and a rv Z with cdf H such that

lgn P[(maxX; — by)/a, < x] = H(x) ? It comes back to look for (a,) and (b,), and

a non-degenerated cdf H s.t.

P [maxX,- —b,

§x} =P[max X; < a,x+b,| = F'(apx+b,) ~ H(x).
ap

1<i<n n—oo
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It can be proved that there is not a unique limit distribution as for the CLT, but three
possible asymptotic distributions (whatever is F'), namely:

Theorem 1 (The ‘three-types theorem’; Fréchet-Fisher-Tippett theorem, 1927-
28; Genedenko 1948). The rescaled sample extreme (max renormalized) has a lim-
iting distribution H that can only be of three types:

Hyq(x) :=exp{—x""} (=) (a > 0) : Fréchet
H o(x) := L) + exp{—(—x)} L(;<) (a>0) : Weibull
Hio(x) :=exp{—e "}, Vx € R : Gumbel

(A similar result holds for the minimum).

We can then classify the distributions according to the three possible limiting dis-
tributions of the (rescaled) maximum, introducing the notion of Maximum Domain
of Attraction (MDA):

FEMDA(H) ¢ 3(an)>0,(by): ¥x € R, lim F"(apx+b,) = H(x).
Nn—yo0

For instance, for Fréchet, a, = F~' (1 — 1/n) and b, = 0. (Note that most of the cdf
F we use, usually belong to a MDA..)

To mimick the CLT, the three types of extreme value distribution have been com-
bined into a single three-parameter family (Jenkinson-Von Mises, 1955; Hosking et
al., 85) known as Generalized Extreme Value Distribution (GEV).

Theorem 2 (The EV theorem). If F € MDA(G) then, necessarily, G is of the same
type as the GEV cdf H (i.e. G(x) = Hg (ax+b), a > 0), defined by

exp | ~(14£0,° | & £0
exp(—e) FE=0

Hé (x) =

where y; = max(0,y). The parameter &, named the tail (or extreme-value) index,
determines the nature of the tail distribution: if &€ > 0 then He is Fréchet, if E=0
then Hg is Gumbel, and if & <0 then He is Weibull.

1
. xX—u ¢ xX—u
We can write G(x) = G, ¢ (x) = exp [ (1 +¢& S ) 1 ,for 1+& s >
0.

Moments of the GEV: the kth moment exits if & < 1/k (in particular if E(X) < oo
if & <landvar(X) <eif & <1/2).
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Example:

Sample cdf MDA

Uniform Weibull
Exponential(1) (F(x) =1—e¢ *,x>0) |Gumbel
Gaussian Gumbel
Log-normal Gumbel
Gamma (A,r) Gumbel
Cauchy (F(x) = % + % arctan.x) Fréchet
Student Fréchet
Pareto (B) (F(x) =1 —x P x>1, B > 0)| Fréchet

Example of tails of distributions: Fréchet and Gumbel versus Gaussian (normal).

4.0% 4.0%
3.5% N 3.5% \

= Fréchet (alpha=3 \
3.0% \ (alpha=3)

3.0%
\ ——Normal \ —— Gumbel
2.5%

2.5%
\ \\ =Normal

2.0% \ \ 2.0%
1.5%

1.0% \ \ - \\\

0.5% \ \ - \\

0.0% \ o \\

3.000 3.500 4.000 4.500 5.000 5.500 35 4.0 45 5.0 5.5 6.0 6.5 7.0

7.5

We observe that the tail can vary substantially according to the type of distributions. Here the tail
of the Fréchet distributions is moderately heavy (o = 3) although it looks much heavier than the
Gaussian distribution.

Exercise: Considering the S&P500 daily log returns from 1987 to 2016, compute
the chances to find a value smaller than the 2nd minimum, i.e. P[X < x(,_p)] =
D (W) (with @ the standard normal cdf), assuming the data are normally

distributed. We obtain the following statistics on S&P500 daily log returns from
1987-2016:

Expected Value (u) 0.029% Maximum Value (x(l)) 11.0%
Standard Deviation (o) 1.192% Minimum Value (x(n)) -22.9%

Probability of finding a
value smaller than (x(n_l))
in a Gaussian Model

2.96E-16 Second Minimum

- 0,
(1 over 13.5 billion years) (x(n—l)) 9.47%

Characteristic Property of the GEV. A distribution is a GEV if and only if it is
max-stable, i.e. that it satisfies 1n<1a<x X; 4 o, X + B, with o, > 0.
<i<n

For the 3 types of the GEV, we have:

Fréchet: max X; 4 nl/éX; Weibull: max X; 4 n_l/’SX; Gumbel: max X; 4 X+
1<i<n 1<i<n 1<i<n

logn.
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2.2 A limit theorem for Extremes: the Pickands theorem

Extracting more information in the tail of the distribution than just that given by the
maximum should help for the evaluation of the tail. So considering the kth (k > 1)
largest order statistics, we introduce the notion of "threshold exceedances’ where all
data are extreme in the sense that they exceed a high threshold.

Picking up a high threshold u < x; (upper-end point of F), we study all ex-
ceedances above u.

Theorem 3 (Pickands Theorem, 1975). If F' does belong to one of the maximum
domains of attraction (i.e. the limit distribution of maxX; is a GEV), then for a
sufficiently high threshold u, 3 B(u) > 0 and & real number such that the General-
ized Pareto Distribution (GPD) Gg gy, defined by Ge g, (y) == 1 — G¢ () () =

—1/&
<1 +& [32;)) Lz o)+ e VB Liz_q), is a very good approximation to the ex-

cesscdf Fy(-) :=P[X —u<-|X > u]

lim sup |Fu (y)— Ge o) ()’)| =0,

1
utx <yt
TF 0<y<xf—u

X denoting the upper endpoint of F

As for the GEV, we have three cases for the GPD, depending on the sign of the
tail index &:

o £>0:Gepgly) ~ ¢y /%, ¢ > 0 (“Pareto” tail) : heavy-tail
(note that E(X¥) = oo for k > 1/&).

o £ <0:x5=PB/|&]| (upper endpoint of G), similar to the Weibull type of the GEV
(short-tailed, Pareto type II distribution)

e £=0: égAﬁ (y) = e V/B. light-tail (exponential distribution with mean f3)

The mean of the GPD is defined for § < 1 by E(X) = b

1-&

2.3 Supervised methods in EVT: standard thresholds methods

Univariate Extreme Value Theory (EVT) focuses on the tail distribution evaluation,
more precisely on the estimation of the tail index. That is why the first and main
question is how to determine the threshold above which observations are considered
as extremes. Various methods have been developed to answer this question. We give
here their main ideas and refer the reader e.g. to [9] for more details (see also the
references therein).

2.3.1 Peak Over Threshold (POT) method

This method developed for the GPD by Davison and Smith ([5]) helps to decide
on an appropriate threshold for exceedance-based methods, when looking at the
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empirical Mean Excess Plot (MEP) . This graphical method can be qualified as
supervised.

The mean excess (ME) function defined by e(u) = E[X — u|X > u] can be com-
puted for any rv X (whenever its expectation exists). For instance, if X is exponen-
tially distributed, then its ME function is a constant. If X is GPD G¢ 5, with o >0
and & < 1, then its ME function is given by e(u) = Gltbfl(ombo)-

Hence, via the Pickands theorem, the MEP of X with unknown cdf f should
stay reasonably close to a linear function from the threshold u at which the GPD
provides a valid approximation to the excess distribution of X: E[X —u| X >
u] = o(u)/(1—&). It will be the way to select u, when considering the empirical

1 ny
MEP (v, - Z(x<i> —v)iv< xn,,,>, where the x(;) correspond to the n, observa-
ny i=1
tions that exceed v.
Then, u being chosen, we can use ML or Moments estimators to evaluate the tail
index & (and the scaling parameter f3).
Hllustration: Example from Embrechts et al’s book ([9])
(®) . 1.04()

64

0.8+

v

0.6

AT AT T N P NN N A
—
==
%
E =
] =
—_—
E ?—E
_———
Mean excess
o
%
"
Flx—u)
f=}
o

(‘) 5 1‘0 1r5 IIO 2‘0 Sb
Threshold x (log scale)
Data set: time series plot (a) of AT&T weekly percentage loss data for the 521 complete weeks in
the period 1991-2000
(b) Sample MEP. Selection of the threshold at a loss value of 2.75% (102 exceedances)
(c) Empirical distribution of excesses and fitted GPD, with ML estimators é =0.22 and B =21
(with Standard Error 0.13 and 0.34, respectively)

2.3.2 Tail index estimators for MDA (Fréchet) distributions

To determine the tail index, other graphical methods than MEP may be used. Various
estimators of the tail index have been (and still are) built, starting with the Hill
estimator (Hill, 1975), a moment estimator (Dekkers et al., 1989), the QQ-estimator
(Kratz & Resnick, 1996), ..., the Hill estimator for truncated data (Beirlant et al.,
2017), ...

For a sample of size n, the tail index estimators are generally built on the k = k(n)
upper order statistics, with k(n) — oo such that k(n)/n — 0, as n — oo.

Choosing k is usually the Achilles heel of all these (graphical) supervised proce-
dures, including the MEP one, as already observed.
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Nevertheless it is remarkable to notice that for these methods, no extra informa-
tion is required on the observations before the threshold (the » — kth order statistics).
Let us present two tail index estimators under regular variation framework: the
Hill estimator ([11], as it is most probably still the most popular, and the QQ-
estimator ([14]), which is based on a simple and intuitive idea (hence this choice).
Assume F € MDA(Fréchet) with tail index &€ > 0, i.e. F is regularly varying
RV_gq, with € = a~!. (Recall that function f belongs to the class RV, of regularly
varying functions with index p € R if f: Ry — Ry satisfies lim;_,o f(tx)/f(t) =
xP for x > 0 (see Bingham, Goldie and Teugels (1989).) Consider the threshold
u =Xy, with k =k(n) — coand k/n — 0 as n — oo.
e The Hill estimator Hy , of the tail index & = o~

([111)

I'is defined by, and satisfies

1 k] ani‘n P
Hpp 2y log (Xn—k,n) mé
This estimator is asymptotically normal, with a rate of convergence of 1/a?. The
Hill estimator can exhibit outrageous bias and graphical aids are often very difficult
to interpret accurately. So it is wise to consider alternative methods to supplement
information given by the Hill estimator and associated plots. Thus we turn to the
QQ-plot.

e The QQ-estimator (Kratz & Resnick), Q. ,, of the tail index &:

The QQ-method is based on the following simple observation: if we suspect that
the n-sample X comes from the continuous cdf F, then the plot of

{(nilvF(Xi,n>),1§i§"}

should be roughly linear, hence also the QQ-plot of {(F “(ﬁ) Xin),1 <i<n}
- _’H) and the corresponding quantile X; ,

(considering the theoretical quantile F* (
of the empirical distribution function).
If F = Fy o (x) = Fo.1(*55), since F 5(y) = 6F5(y) + . the plot of

i

(G

): Xin), 1 <i<nj
should be approximately a line of slope ¢ and intercept (.

Take the example of a n-sample Pareto(t) distributed (F(x) = x~%); then, for
y >0, Fyo(y) :=PllogX; >y] = e~ * and the plot of

i i
S(—— i <i< = — - i <i<
{(Fo,l(n+1)710gxt,n)71_l_”} {( log(l n+1>,10gX,y,,),1_1_n}

should be approximately a line with intercept 0 and slope .

Now, just use the least squares estimator for the slope (SL), namely
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_ Y Xy — Xy

SL is Vi 71 < ] <
({1 <<y = Eo20

to conclude that, for the Pareto example, an estimator of &~ (= &) is

3 ?:1710g(nTirl){nlogxnfﬂrln*zr; 110g X j 10}
o =
nZ?zl( log(n+1)) _( 10g(n+1))2

which we call the QQ-estimator.
This method can be extended from Pareto to the general case F ~ RV_,; we can

define the QQ-estimator Oy , of the tail index &= o~1, based on the upper k order
statistics, by

)

i .
Okn = SL({(—1log(1 - m)alogxn—k+i,n), 1 <i<k})

Jj=1

:i —log (47))" - (i—log(kil)>2

i=1

k
Z— log (5 {kIOg (X—it1,0) — Y log (an+1.n)}

and we can prove ([14]) that the QQ-estimator is weakly consistent (Q ,, i) &)
7 p—yoo

and asymptotically normal with a rate of convergence of 1/(2a?) (which is larger
than for the Hill, but the Hill estimator exhibits considerable bias in certain cir-
cumstances). Whenever the threshold u is determined (corresponding to a kth order

statistics), we can estimate the parameters, in particular the tail index.
Illustration: Comparison of the Hill plot and the QQ-plot of estimates of c.

e On Pareto(1) simulated data (sample size n = 1000)

10

[}
agesinate ot

8
[

Hlsinale ol ara
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o 200 200 o0 300 1000 5 200 400 600 800 1000
n of order statistics  number of order statistics

The QQ-plot shows o~ a1~ 0.98. It seems a blt less volatile than the Hill plot.
e On real data:

Hilsimate of dgha
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The Hill plot is somewhat mconcluswe whereas the QQ—plot indicates a value of about 0.97
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The QQ-method in practice:
1. Make a QQ-plot of all the data (empirical vs theoretical quantile)

2. Choose k based on visual observation of the portion of the graph that looks linear

3. Compute the slope of the line through the chosen upper k order statistics and the
corresponding exponential quantiles.

Alternatively, for Hill and QQ methods:
1. Plot {(k,a~1(k)),1 <k <n}

2. Look for a stable region of the graph as representing the true value of o~ .

Using those graphical (supervised) methods to determine u or, equivalently £, is an
art as well as a science and the estimate of « is usually rather sensitive to the choice
of k (but this is the price to pay for having a method to fit the tail without using any
information before u).

Let us turn to another method, which answers this concern and provides an auto-
matic (algorithmic) determination of the threshold u (but requiring, in this case, the
data information before u).

2.4 A self-calibrated method for heavy-tailed data

It is based on a paper developed with N. Debbabi and M. Mboup ([6]).

We assume continuous (smooth transitions) and, with no loss of generality, right
heavy tailed data (a similar treatment being possible on the left tail) belonging to
the MDA (Fréchet).

Whereas one of the motivations for this new method is to be able to determine the
threshold above which we fit the GPD in an unsupervised way, it will also provide
a good fit for the entire distribution.

We introduce a hybrid model to fit the whole distribution underlying heavy tailed
data. The idea is to consider both the mean and tail behaviors, and to use limit the-
orems for each one (as suggested and developed analytically in [12]), in order to
make the model as general as possible. Therefore, we introduce a Gaussian distri-
bution for the mean behavior, justified by the Central Limit Theorem (CLT), and a
GPD for the tail (justified by the Pickands theorem). Then we bridge the gap be-
tween mean and asymptotic behaviors by inserting an exponential distribution used
as a leverage to give full meaning of tail threshold to the junction point between the
GPD and its exponential neighbour.

We assume that the hybrid model distribution (which belongs to the Fréchet
MDA) has a density that is C'. It is the only assumption that is needed (no assump-
tion on the dependence of the data). This model, denoted by G-E-GPD (Gaussian-
Exponential-Generalized Pareto Distribution), is characterized by its pdf & ex-
pressed as:
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. . Hybrid probability density function
N fxu, o), if x<u,
. — . 1 0.4 4 ian componen
h(x:0) = { % e((x,l), £.5) }f up <x<uy, S Sommemasrmpanin
Vs 8x—u2ic,p), if x>u, e
0.3

where f is the Gaussian pdf (i, 6?), e is the ex- & 024
ponential pdf with intensity A, g is the GPD pdf
with tail index £ and scaling parameter 3, and
", %, 75 are the weights (evaluated from the as- 0.0 1

24
0
2
4
6
8

sumption).

Combining the facts that we are in the MDA (Fréchet) and that /1 is a C! pdf gives
rise to six equations relating all model parameters:

B=Cuxy A=15u =p+r0%
e(u; A hu Flui;p,0)\ 5,17
71:Yzf(L(”_1” ()F); 7’2:[56 A 2+(1+17f((u11-ﬁ 6))>e A '] 5 B=Bre(usl).

Consequently, the vector of the free parameters is reduced to 6 = [, 6, up, ).

Remark. The main component in this hybrid model is the GPD one (for heavy
tail), the mean behavior having to be adapted to the context. For instance, for in-
surance claims, we have replaced the Gaussian component with a Lognormal one
(lognormal-E-GPD hybrid model).

Pseudo-code of the algorithm for the G-E-GPD parameters estimation

Here we describe the iterative algorithm, which self-calibrates the G-E-GPD model,
in particular the tail threshold above which a Fréchet distribution fits the extremes.
We study its convergence, proving analytically the existence of a stationary point,
then numerically that the stationary point is attractive and unique.

1: Initialization of p(¥) = [/.NL(O) .60, ﬁ(zo)], o, € > 0, and k4, then initialization of
EO (recall that 6 = [, 0,ur,&]):
2

H(y:0 | 5~ )|

E“’) < argmin
£>0

where H,, is the empirical cdf of X (and distance computed on y = (¥;) 1< j<m)
and y = (yj)1<j<m is a generated sequence of synthetic increasing data of size
m (that may be different from n), with a logarithmic step, in order to increase

the number of points above the tail threshold u,: y; = min(x;) + (max(x;) —
1<i<n 1<i<n

min(x;))log (l + 9(1_1)) .

1<i<n m—1

10
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2: Iterative process:

o k+1

Step 1 - Estimation of ek ﬁk) — argmin
(n,0)cRxRY

H(y:0 | 5<"‘1>)*Hn(y)H

upeRy
~ ~ 2
Step 2 - Estimation of E®):  E®) « argmin HH(y; 6| p) —Hn(y)Hz.
>0

o k< k+1
until (d(H(y; 0®),H,(y)) < & and d(H(ys,:0®),H,(y,,)) < g) or (k= kmax)-

where € is a positive real that is small enough, y, represents the observations
above a fixed high quantile g, of arbitrary order & > 80% associated with H
and d(a,b) denotes the distance between a and b, chosen in this study as the
Mean Squared Error (MSE); it can be interpreted as the Cramér-von-Mises test
of goodness of fit.

3: Return 8% = [ﬁ(k%g(k)’ﬁ(zk), ~(I<)].

Performance of the method (algorithm) tested via MC simulations

To study the performance of the algorithm to self-calibrate the G-E-GPD model, we
build on MC simulations. To do so, we proceed in 4 steps:

1. Consider
{X? = (X})1<p<n}1<q<n: training sets of length n
{Y9 = (Y))1<p<i}r1<q<n: test sets of length
with a G-E-GPD parent distribution with a fixed parameters vector 6.

2. On each training set X9, 1 < g < N, evaluate 04 — [ﬁq,?r%u}qfq] using our
algorithm

3. Compute the empirical mean @ and variance S, of estimates of each parameter a
over the N training sets. To evaluate the performance of the estimator d, we use
two criteria:

(i) MSE expressed for any a as: MSE, = % 22’:1 (a% —a)?; a small value of MSE
highlights the reliability of parameters estimation using the algorithm.

HO:a=a

Hl:a#a

(use for instance the normal test for a large sample)

(ii)Test on the mean (with unknown variance):

4. Compare the hybrid pdf /4 (with the fixed 6) with the corresponding estimated
one &, using 69 on each test set Y. To do so, compute the average of the log-
likelihood function 2, over N simulations, between 2(Y?;09) and h(Y4;0): & =

N Lai L1 log (h(Y,?; 0)/h(Ye; 5’1)) . The smallest the value of Z is, the most
trustworthy is the algorithm.

2

2
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Several MC simulations have been performed varying 0 and n, to test the robust-
ness of the algorithm (see [6], §4 and Appendix B).

Application in Neuroscience - Neural data

We consider the data corresponding to twenty seconds, equivalent to n = 3.10° ob-
servations, of real extracellular recording of neurons activities. The information to
be extracted from these data (spikes or action potentials) lies on the extreme behav-
iors (left and right) of the data.

Ampltude

0.0 0.2 0.4 0.6 o.8 1.0
Time in second

Fig. 4 One second of neural data, extracellularly recorded.

Since the neural data can be considered as symmetric, it is sufficient to evaluate
the right side of the distribution with respect to its mode.

In Table 1, we present the results obtained with the self-calibrating method, the
MEP, Hill and QQ methods. Since the three graphical approaches fit only the tail
distribution, the comparison of the methods will focus on the goodness-of-fit of the
GPD component. As observed in this table, the MSE between the estimated cdf and
the empirical one, using only data above the selected threshold, is small enough
for the four methods ensuring a reliable modeling of extremes. The GPD threshold
and the estimated tail index are of the same order of magnitude for all methods; it
confirms that our algorithm works in the right direction.

Table 1 Comparison between the self-calibrating method and the three graphical meth-
ods: MEP, Hill and QQ ones. N,, represents the number of observations above u,. The
distance gives the MSE between the empirical (tail or full respectively) distribution and
the estimated one from a given model (GPD or hybrid G-E-GPD respectively). The neural
data sample size is n =3 x 10°.

Model tail index threshold Ny, distance  distance
(€3] (u2) (tail distr.) ~ (full distr.)

GPD MEP (PWM): 0.3326 1.0855 =gy, ,,, 19260 3.26 1076

GPD Hill-estimator: 0.599 1.0855 = g4y, 19260 2.0710°6

GPD QQ-estimator: 0.5104 1.0671 =gq,, ., 19871 1261073

G-E-GPD  Self-calibrating method: 0.5398  1.0301 = g,,,, 21272 7.7910° 9.3110°5
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We can also notice the good performance of these methods through Figure 5,
where we plot the empirical quantile function and the estimated ones using the self-
calibrating method and the various graphical ones. However, the advantage of our
method is that it is unsupervised, i.e. it does not need the intervention of the user to
select the threshold manually. Moreover it provides a good fit between the hybrid
cdf estimated on the entire data sample (the right side for this data set) and the
empirical cdf, with a MSE of order 107>,

Quantile functions

— Empirical Zoom
—— G-E-GPD
<=+ MEP
Hill-estimator
— - QQ-estimator

0.994 0.995 0.996 0.997 0.998

0.999 1.000

Quantile (log scale)

Probability

Fig. 5 Neural data: Comparison between the empirical quantile function and the estimated
ones via the self-calibrating method and the graphical methods.

Application in Finance - S&P 500 data

Consider the S&P500 log-returns from January 2, 1987 to February 29, 2016, cor-
responding to n = 7348 observations, available in the tseries package of the R pro-
gramming language. It is well known that log-returns of financial stock indices ex-
hibit left and right heavy tails, with a slight different tail index from one to the other.
It is important in such context to evaluate the nature of tail(s) in order to compute
the capital needed by a financial institution to cover their risk, often expressed as a
Value-at-Risk (i.e. a quantile) of high order.

The S&P500 log-returns being essentially symmetric around zero (representing
the data mode), we kept the Gaussian component to model the mean behavior when
applying the self-calibrating method. We modelled the negative log returns and the
positive ones, respectively, then the full data set. When focusing on tails, we also
compare our results with those obtained with MEP, Hill, and QQ methods. We
present them in Tables 2 and 3. We observe that all methods offer a good fit of
the tail distribution. However, the advantage of the self-calibrating method is that it
does not need the intervention of the user to select the threshold manually, which is
a considerable advantage in practice.
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Now, to underline the good performance of the self-calibrating method even in
the case when data are autocorrelated with a long memory, we apply it on the
S&P500 absolute log-returns. Indeed, it is well known that the absolute value of
financial returns are autocorrelated (see Figure 6 ), but also that their extremes are
not (for a thorough discussion of this point and empirical evidences, see Hauksson
et al. (2001)). In time of crisis, as e.g. in 2008-09, we observe an increase of the
dependence between various financial indices, in particular in the extremes. This is
to be distinguished from a dependence of the extremes within a univariate financial
index, which is not observed (Hauksson et al. (2001)).

Table 2 Lower tail modeling of the S&P500 log-returns. Comparison between the self-
calibrating method and the three graphical methods: MEP, Hill and QQ ones, applied
on the right side of the S&P500 opposite log-returns (—X). N,, represents the number of
observations above the tail threshold u,. The distance gives the MSE between the em-
pirical tail (from uy), or positive side (for x > 0) respectively, distribution and the estimated
one from a given model (GPD, or hybrid G-E-GPD respectively).

Model tail index (&) threshold (u;) N,, distance distance
(tail distr.)  (positive distr.)
GPD MEP: 0.3640 0.0270 = qyg 1, 120 1.19 1077
GPD Hill-estimator: 0.3601 0.0301 = gy 44, 86 6431078
GPD QQ-estimator: 0.3813 0.0313 = qyy 0, 74 354 10-8

G-E-GPD  Self-calibrating method: 0.3545 0.0289 = g,. .. 100 2.641077 3.1110°°

Table 3 Upper tail modeling of the S&P500 log-returns. Comparison between the self-
calibrating method and the graphical methods applied on the right side of the S&P500
log-returns.

Model tail index (&) threshold (u;) N,, distance distance
(tail distr.)  (positive distr.)
GPD MEP: 0.2715 0.0209 = qye 0, 229 491 1077
GPD Hill-estimator: 0.3225 0.0288 = qyq 445, 86 4.421077
GPD QQ-estimator: 0.2859 0.0321 = qyy (3, 71  5.06 10-8

G-E-GPD  Self-calibrating method: 0.3360 0.0266 = g,,,, 109 3.891077 2.49 1076

A comparison of the results obtained with our self-calibrating method and the
graphical EVT ones is depicted in Table 4. In Figure 7, we also give a comparison of
the estimated quantile function using the G-E-GPD method and the graphical (MEP,
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Fig. 6 AutoCorrelation Function (ACF) of the S&P500 absolute log-returns.

Hill and QQ) ones. Through Table 4 and Figure 7, we can highlight once again the
good performance of the self-calibrating method to estimate the tail distribution as
well as the entire distribution of autocorrelated data. Note that the estimate of the
tail index is of the same order as those of the upper and lower tail indices evaluated
in the previous section.

Table 4 Comparison between the self-calibrating method and the three graphical meth-
ods: MEP, Hill and QQ ones. The S&P500 absolute log-returns data sample size is
n ="7348.

Model tail index (&) threshold (u;) N,, distance distance
(tail distr.)  (full distr.)

GPD MEP: 0.3025 0.0282 =gq,,,,, 206 1781077
GPD Hill-estimator: 0.3094 0.0382 =gy, (s, 85 4491078
GPD QQ-estimator: 0.3288 0.0323 =gy, ., 137 6.01107%

G-E-GPD  Self-calibrating method: 0.3331 ~ 0.0290 = g,,,,, 184 2.00107 1.0510°°

Quantile functions

— Empirical Zoom
— G-E-GPD
c=r MEP 0.11

Hill-estimator,
— - QQ-estimator]

0.08 0.10

0.06
|

Quantile (log scale)

0.04
|

T T T T T T T
0.970 0.975 0.980 0.985 0.990 0.995 1.000
Probability

Fig. 7 S&P 500 absolute log-returns data: Comparison between the empirical quantile
function and the estimated ones via the self-calibrating method and the graphical meth-
ods.
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3 Dependence
3.1 Motivation

3.1.1 Impact of the dependence on the Diversification Benefit

The diversification performance is at the heart of the strategy of a company. It can be
measured, for a portfolio of N risks, via the diversification benefit D,, ¢ at a threshold

n

o (0 < & < 1) defined by Dy o — 1 PeZiz1 L)
i1 Pa(Li)
This indicator, not universal as it depends on the number of the risks undertaken and
on the chosen risk measure p, helps to determine the optimal portfolio of the com-
pany since the diversification reduces the risk and thus enhances the performance.
This is key to both insurances and financial institutions.

Before developing an example in the insurance context (it would be the same for
investment banks) to point out the impact of the dependence on the diversification
benefit, let us recall some standard notions in insurance.

, where p denotes a risk measure.

Insurance framework.
In insurance, the risk is priced based on the knowledge of the loss probability
distribution. The occurrence of a loss L being random, we define it as a random
variable (rv) on a probability space (Q2,.7,[P) (note that, in insurance context,
we often use risk and loss for one another).
The role of capital for an insurance company is to ensure that the company can
pay its liability even in the worst cases, up to some threshold.
It means to define the capital to put behind the risk. That is why we introduce
a risk measure (say p), defined on the loss distribution, in order to estimate the
capital needed to ensure payment of the claim up to a certain confidence level.

Now let us define some useful quantities, as:

Risk-adjusted-capital. The risk can be defined as the deviation from the expecta-
tion, hence the notion of Risk-Adjusted-Capital (RAC), say K, which is a func-
tion of the risk measure p associated to the risk L, defined by K = p(L) —EI[L].

Risk Loading. An insurance is a company in which shareholders can invest. They
expect a return on investment. So the insurance firm has to make sure that the
investors receive their dividends. It corresponds to the cost of capital, 7, that
the insurance company must charge on its premium. Consider a portfolio of N

K
similar policies. The risk loading per policy, say R, is defined as R =7 =

N
p(L™)
N
LW) = {yzl L; is the total loss of the portfolio, and L; = L is loss incurred by 1
policy (of the portfolio).
Technical risk premium. For one policy case, incurring a loss L, the technical

premium, P, that needs to be paid can be defined by P = E(L) + nK + e, where
n is the return expected by shareholders before tax, K is the RAC (i.e. the capital

— IE[Ll]), where Ky is the capital assigned to the entire portfolio,
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assigned to this risk), nK corresponds to the Risk loading (per policy), and e are
the expenses incurred by the insurer to handle this case.

Assuming that the expenses are a small portion of the expected loss, i.e. e = alE[L]
with 0 < a << 1, then the premium can be written as P = (14 a)E[L] +R.
Generalizing to a portfolio of N similar (iid) policies, the total loss is LW =
N

Z L;, hence the premium for one policy in the portfolio becomes:
i=1

14+ a)E[LW] +nKk; K
p= 179 [N LYY _ (1 4 ay B =,

where N If\,—"’ is the risk loading per policy.

Let us then develop our toy model (see [2, 3]) to show the dependence impact on
the diversification benefit.

Suppose an insurance company has underwritten N policies of a given risk. To
price these policies, the company must know the underlying probability distribution
of this risk. Assume that each policy is exposed n times to this risk, thus in a portfolio
of N policies, the risk may occur n X N times.

Let us introduce a sequence (X;,i = 1,...,Nn) of rv’s X; to model the occurrence
of the risk, with a given severity [ (for simplicity, take it deterministic). Hence the total
Nn

loss amount, say L, associated to this portfolio is given by L =/ ZX,- = 1Sy

i=1
We are going to consider three models for the occurrence of the risk, depending
on the dependence structure.
(a) A first simple model, under the iid assumption
Assume the X;’s are iid (independent, identically distributed) with parent rv denoted
by X, Bernoulli distributed Z(p), i.e. the loss L; = IX occurs with some probability

p: {1 with probability p
0 with probability 1—p

Hence the total loss amount L = [ Sy, follows a binomial distribution %(Nn, p).
We can then deduce the risk loading for an increasing number N of policies in

p(L)

the portfolio: R =1 N lnp), in order to determinate the risk premium the

insurance will ask to a customer if he buys this insurance policy. The relative risk

. - R p(L)

loading per policy is then 0] =1 < Inp 1> .

Numerical application. We choose for instance the number of times one policy
is exposed to the risk as n = 6 and the unit loss / is fixed to / = 10 Euros.

Computing the loss distribution, we obtain the results presented in Table 5. We
observe that the probability that the company will turn out paying more than the
expectation E(L) = Inp = 10, is of more than 26%. It makes then clear why the
technical premium cannot be reduced to E(L).
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Table 5 Distribution of the loss L = IS, for one policy (N =1) withn=6and p=1/6

number of losses Policy Loss Probability Mass Cdf
k lX(CO) P[Sln :k] IP)[Sln Sk]
0 0 33.490% 33.490%
1 10 40.188% 73.678%
2 20 20.094% 93.771%
3 30 5.358% 99.130%
4 40 0.804% 99.934%
5 50 0.064% 99.998%
6 60 0.002% 100.000%

Now we compute the risk loading per policy as a function of the number N of
policies in the portfolio for both risk measures VaR and TVaR, and when taking
p = 1/6 (fair game), 1/4 and 1/2, respectively. We assume that the cost (of capital)
is N = 15%, and that the risk measure is computed at threshold & = 99%. Results
are given in Table 6.

Table 6 The Risk loading per policy as a function of the number N of policies in the port-
folio (with n = 6)

Risk Loading R per policy

Risk measure = Number N with probability
p of Policies p=1/6 p=1/4 p=1/2
VaR
1 3.000 3.750 4.500
5 1.500 1.650 1.800
10 1.050 1.200 1.350
50 0.450 0.540 0.600
100 0.330 0.375 0.420
1’000 0.102 0.117 0.135
10°000 0.032 0.037 0.043
TVaR
1 3.226 3.945 4.500
5 1.644 1.817 1.963
10 1.164 1.330 1.482
50 0.510 0.707 0.675
100 0.372 0.425 0.476
1°000 0.116 0.134 0.154
10°000 0.037 0.042 0.049
E[L]/N 10.00 15.00 30.00

We observe that, in the case of independent risks, the risk loading R is a de-
creasing function of the number of policies N, even with a biased dice. With 10’000
policies, R is divided by 100, whatever is the choice of the risk measure p, with
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slightly higher values for TVaR than VaR.

(b) Introducing a structure of dependence to reveal a systematic risk

We introduce two types of structure of dependence between the risks, in order
to explore the occurrence of a systematic risk and, as a consequence, the limits to
diversification.

We still consider the sequence (X;,i = 1,...,Nn) to model the occurrence of the
risk, with a given severity /, for N policies, but do not assume anymore that the X;’s
are independent (but identically distributed, for sake of simplicity). We assume that
the occurrence of the risks X;’s depends on another phenomenon, represented by a
random variable (rv), say U. Depending on the intensity of the phenomenon, i.e. the
values taken by U, a risk X; has more or less chances to occur.

Suppose that the dependence between the risks is totally captured by U that is
identified to the occurrence of a state of systematic risk. Consider, w.l.0.g., that U

can take two possible values denoted by 1 and 0: U 4 B(p),0< p<< 1, where p
is chosen very small since we want to explore rare events. We present two examples
of models (i.e. two types of dependence).

(i) A dependent model, but conditionally independent
The occurrence of the risks (X;); is modeled by a Bernoulli rv whose parameter is
chosen depending on U and such that the conditional rv’s X; | U are independent.
Since U takes 2 possible values, the same holds for the parameter of the Bernoulli
distribution of the conditionally independent rv’s X; | U, namely
X|(U=1)% Bg) and X|(U=0)< Bp)

where we choose g >> p, so that whenever U occurs (i.e. U = 1 (crisis state)), it
has a big impact in the sense that there is a higher chance of loss. We include this
effect in order to have a systematic risk (non-diversifiable) in our portfolio. Hence
the mass probability distribution fs of the total amount of losses Sy, appears
as a mixture of two mass probability distributions fs and fs of conditional

independent rv’s S, := Sy,| (U = 1) 4 B(Nn,q) and S, := Sn,| (U = 0) £
% (Nn, p), respectively:

fs=pfs, + (1=Dp) fs,

Note that p = 0 gives back the normal state.

Numerical application. As for example (a), we take n = 6 and p = 1/n. More-
over we choose the loss probability during the crisis to be ¢ = 1/2, and explore
different probabilities p of occurrence of a crisis. In Table 7, the results illustrate
well the effect of the non-diversifiable risk. When the probability of occurrence
of a crisis is high, the diversification does not play a significant role anymore
already with 100 contracts in the portfolio. For p > 1%, the risk loading barely
changes when there is a large number of policies (starting at N = 1000) in the
portfolio, for both VaR and TVaR. The non-diversifiable term dominates the risk.
For lower probability p of occurrence of a crisis, the choice of the risk measure
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Table 7 The Risk loading per policy as a function of the probability of occurrence of a sys-
tematic risk in the portfolio using VaR and TVaR measures with a = 99%. The probability
of giving a loss in a state of systematic risk is chosen to be g = 50%.

Risk measure Number N Risk Loading R
P of Policies in a normal state with occurrence of a crisis state
p=0 p=01% p=10% p=50% p=10.0%
VaR
1 3.000 2.997 4.469 4.346 5.693
5 1.500 1.497 2.070 3.450 3.900
10 1.050 1.047 1.770 3.300 3.450
50 0.450 0.477 1.410 3.060 3.030
100 0.330 0.327 1.605 3.000 2.940
1’000 0.102 0.101 2.549 2.900 2.775
10’000 0.032 0.029 2.837 2.866 2.724
TVaR
1 3.226 3.232 4711 4.755 5.899
5 1.644 1.707 2.956 3.823 4.146
10 1.164 1.266 2.973 3.578 3.665
50 0.510 0.760 2.970 3.196 3.141
100 0.372 0.596 2.970 3.098 3.020
1’000 0.116 0.396 2.970 2.931 2.802
10’000 0.037 0.323 2.970 2.876 2.732
E[L|/N 10.00 10.02 10.20 11.00 12.00

matters. For instance, when choosing p = 0.1%, the risk loading, compared to the
normal state, is multiplied by 10 in the case of TVaR, for N = 10’000 policies,
and hardly moves in the case of VaR! This effect remains, but to a lower extend,
when diminishing the number of policies. It is clear that the VaR measure does
not capture well the crisis state, while TVaR is sensitive to the change of state,
even with such a small probability and a high number of policies.

(i)A more realistic model setting to introduce a systematic risk
We adapt further the previous setting to a more realistic description of a crisis. At
each of the n exposures to the risk, in a state of systematic risk, the entire portfolio
will be touched by the same increased probability of loss, whereas, in a normal
state, the entire portfolio will be subject to the same equilibrium probability of
loss.
For this modeling, it is more convenient to rewrite the sequence (X;, i=1,...,Nn)
with a vectorial notation, namely (X;, j = 1,...,n) where the vector X is de-
fined by X; = (X joee s XN j)T. Hence the total loss amount Sy, can be rewritten
as

n N
Snn = Z §U) where SU) is the sum of the components of X; : §U) = ZX,-j.
=1 i1
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We keep the same notation for the Bernoulli rv U determining the state and for
its parameter p. But now, instead of defining a normal (U = 0) or a crisis (U = 1)
state on each element of (X;, i=1,...,Nn), we do it on each vector X;, 1 < j <n.
It comes back to define a sequence of iid rv’s (U}, j=1,...,n) with parent rv U.
We deduce that SU) follows a Binomial distribution whose probability depends

onUj;:

S0 | (U;=1)L B(N,q) and SY) | (U;=0)L BN, p),

and these conditional rv’s are independent.
Let us introduce the event A; defined, for [ =0,...,n, as

A; = {lvectors X ;are exposed to a crisis state andn — [ to a normal state}
n
- (§0-9
J=1

whose probability is given by
_ o () A ~\n—I
pay=r(Yui=1)= (1) i a-pr
j=1

We can then write, with, by conditional independence,
() _ v (& d
§ =Y (89 1u=1) L BN1q)

and

that

=0 1=0

Numerical example revisited:

In this case, we cannot directly use an explicit expression for the distributions, so
we go through Monte-Carlo simulations.

At each of the n exposures to the risk, first choose between a normal or a cri-
sis state. Since, we take here n = 6, the chances of choosing a crisis state when
p =0.1% is very small. To get enough of the crisis states, we need to do enough
simulations, and then average over all the simulations. The results shown in Ta-
ble 8 are obtained with 10 million simulations (we ran it also with 1 and 20
million simulations to check the convergence).
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Table 8 The Risk loading per policy as a function of the probability of occurrence of a sys-
tematic risk in the portfolio using VaR and TVaR measures with a = 99%. The probability
of giving a loss in a state of systematic risk is chosen to be g = 50%.

Risk measure Number N Risk Loading R
P of Policies in a normal state with occurrence of a crisis state
p=0 p=01% p=10% p=50% p=10.0%
VaR
1 3.000 2.997 2.969 4.350 4.200
5 1.500 1.497 1.470 1.650 1.800
10 1.050 1.047 1.170 1.350 1.500
50 0.450 0.477 0.690 0.990 1.200
100 0.330 0.357 0.615 0.945 1.170
1’000 0.102 0.112 0.517 0.882 1.186
10’000 0.032 0.033 0.485 0.860 1.196
100’000 0.010 0.008 0.475 0.853 1.199
TVaR
1 3.226 3.232 4.485 4.515 4.448
5 1.644 1.792 1.870 2.056 2.226
10 1.164 1.252 1.342 1.604 1.804
50 0.510 0.588 0.824 1.183 1.408
100 0.375 0.473 0.740 1.118 1.358
1000 0.116 0.348 0.605 1.013 1.295
10’000 0.037 0.313 0.563 0.981 1.276
100’000 0.012 0.301 0.550 0.970 1.269
E[L]/N 10.00 10.02 10.20 11.00 12.00

The diversification due to the total number of policies is more effective for this
model than for the previous one, but we still experience a part which is not di-
versifiable. We also computed the case with 100’000 policies (since via Monte
Carlo simulations). As expected, the risk loading in the normal state continues
to decrease. In this state, it decreases by v/10. However, except for p =0.1% in
the VaR case, the decrease becomes very slow when we allow for a crisis state
to occur. The behavior of this model is more complex than the previous one,
but more realistic, and we reach also the non-diversifiable part of the risk. For a
high probability of occurrence of a crisis (1 every 10 years), the limit with VaR
is reached already at 100 policies, while, with TVaR, it continues to slowly de-
crease. Concerning the choice of risk measure, we see a similar behavior as in the
previous case for the case N = 10’000 and p = 0.1%: VaR is unable to catch the
possible occurrence of a crisis state, which shows its limitation as a risk measure.
Although we know that there is a part of the risk that is non-diversifiable, VaR
does not catch it really when N = 10’000 or 100’000 while TVaR does not de-
crease significantly between 10’000 and 100’000 reflecting the fact that the risk
cannot be completely diversified away.
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Discussion - comparison of the methods.

Table 9 Summary of the analytical results (expectation and variance per policy) for the 3
cases of biased games (L =1Sy,)

Case  Expectation ﬁE(L) Variance #var(L)

12

() Ing ~Nal—q)
b)) 1n(pg+(1=p)p) (a1 =@)p+p(1—p)(1-p))+Pr(g—p)*p(1 - )

w1y n(pqg+ (1-p)p) K (a1 =a)p+p(1=p)(1 =) +Pn (9= p)p(1 - p)

In Table 9, we see in the first case (a) that the variance decreases with increasing
N, while both other cases (b) (i and ii) contain a term in the variance that does not
depend on N. Those two cases are those containing a systematic risk component that
cannot be diversified. Note that the variance vary(L) of L in the case (b)-(i) contains
a non-diversified part that corresponds to n times the non-diversified part of var;(L)
in the case (b)-(if).

To conclude, we have seen the effect of diversification on the pricing of insurance
risk through a simple modeling that allows for a straightforward analytical evalua-
tion of the impact of the non-diversified part. In real life, risk takers have to pay
special attention to the effects that can weaken the diversification benefits, hence
affect greatly the risk loading of the risk premium (as seen here). Various examples
can illustrate this situation, as, for instance, for motor insurance, the appearance of
a hail storm may hit a big number of cars at the same time and thus cannot be di-
versified among the various policies, or for life insurance, pandemic or mortality
trend would affect the entire portfolio and cannot be diversified away, or the finan-
cial crisis suddenly increases the dependence between risks (systemic risk). There is
a saying among traders: “Diversification works the best when you need it the least”.
Understanding the dependence between risks is crucial for solid risk management.
For portfolio management, we need to include both the single risk model and the
dependence model.

3.1.2 Type of dependence

Consider a portfolio of political risks, the two largest ones being those of China and
Hong-Kong, with 22.5% (linear) correlation. A customer asks a reinsurer for a cover
of those extreme risks, providing him their marginal distributions and the following
simulations results:



30 Contents

400

300

100

500 550 600 650 700

X-axis: China; Y-axis: Hong-Kong
(r=122.5%)
Applying the reinsurance structure (rectangle) to the customer’s simulations, we
find 10 relevant events in it. However, in this model, the conditional probability for
Hong-Kong to default on the risk, given that China defaults with probability of 1/200
years (ie 0.5%), would give a probability less than 5% , which is totally unrealistic,
given the political situation of dependence of Hong-Kong on China!

Hence the reinsurer decides to study this portfolio, using the same margins, but
suggesting a dependence structure via a Clayton copula, calibrating it to have the
same linear correlation of 22.5%. He obtains a much more realistic conditional prob-
ability of default of 60%, which gives 21 relevant events in the reinsurance structure.
Applying simply a non-linear dependence structure increases by a factor 2 the num-
ber of events and by a factor 3 the average loss for the reinsurer. Of course, the price
of such a cover would be much higher than what the customer expected given his
model.

10 extreme events
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X-axis: China; Y-axis: Hong-Kong 21 extreme events

(r=22.5%)
This example shows that the type of dependence considered for the modeling

matters a lot when considering the risk!
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3.2 Notion of dependence

How to analyze a phenomenon in view of understanding it better, then modeling it?
Modeling is a simplification but must not be a reduction! It is the fundamental basis
of a scientific approach. *Everything should be made as simple as possible, but not
simpler’ (Saying attributed to Albert Einstein).

We proceed from simplest tools to more elaborated ones, when needed. In terms
of dependence, in a multivariate context, it means to look at the rv’s from inde-
pendence to linear dependence to non-linear dependence. Studying the dependence
between risks is essential for understanding their real impacts and consequences.
There exists many ways of describing dependence or association between rv’s, e.g.
linear correlation coefficient, rank correlations (Kendall’s tau, Spearman’s rho), ...

Let us present a brief historical overview. Dependence has always been a topic in
probability and statistics when looking at what is called a multivariate framework.
Notions like linear correlation or copula, for instance, were introduced to treat this
problem.

Fig. 8 Linear versus Stochastic Independence
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- In 1895: Karl Pearson[21] formalized mathematically the notion of linear cor-
relation (first introduced by Galton in the context of biometric studies). If inde-
pendence implies linear independence, the converse is false (except in the elliptical
case), as illustrated on Figure 8.

- In 1959: Abe Sklar ([26]) introduced (in the context of probability theory to
solve a theoretical problem posed by Fréchet) the more general concept of depen-
dence structure, called also copula, separating this structure from the margins.

For instance, consider two random vectors having the same standard normal mar-
gins and a linear correlation of 70%, but a different dependence structure, a Gaussian
copula and a Gumbel one, respectively. We clearly see in Figure 9 how different they
are.

It emphasizes the fact that knowing the marginal distributions and linear cor-
relation is not enough for determining the joint distribution, except for elliptical
distributions (as e.g. the Gaussian ones).
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Fig. 9 Scatterplots of (X;,X,) with normal margins, linear correlation p = 70%, and, re-
spectively, a Gaussian copula (left plot) and a Gumbel copula (right plot)

~

X2

- In 1984 Paul Deheuvels[7] introduced the notion of extreme-value copula.

- From the 70’s, diverse types of dependence have been studied in mathematical
statistics and probability.

- From the 21st century, those dependence tools have been introduced in the
industry: copulas turn out to become an important tool for applications and the eval-
uation of risks in insurance and reinsurance (and later in finance: non-linear tools
cannot/should not be ignored anymore, especially after the second most severe fi-
nancial crisis starting in 2008)

- After the 2008 financial crisis, Extreme Value Theory (EVT) finally enters the
financial world (academics and professionals). The fact that risks are more interde-
pendent in extreme situations led to the development of the notion of systemic risks,
risks that would affect the entire system as well as the notion of systematic risks,
where components are present in all other risks.

The world has changed a lot, from the end of the 19th-early 20th century, where
using the concept of linear correlation (Pearson) was of great help, to nowadays,
where world is getting more complex, and more and more interconnected (see [4] for
a discussion of this point). In the next few years, research in statistics and probability
will have to make significant progress in this area if we want to master the risk at an
aggregate level. We have seen that societal demand goes in this direction, looking
for protection at a global level.

3.3 Copulas

Definition 1. A copula is a multivariate distribution function C: [0,1]¢ — [0, 1] with
standard uniform margins (or a distribution with such a df),i.e. C(1,---,1,u;,1,---, 1)
u;, Vie{1,...,d}, u; € [0,1].

Sklar showed in [26] how a unique copula C fully describes the dependence of X
proving the following theorem.
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Theorem 4 (Sklar’s theorem, 1959).
Let F be a joint cdf with margins (F;;i = 1,--- ,d). There exists a copula C such that

F(xl,--- ,xd) ZC(Fl(xl),“- ,Fd(xd)), Vx;eR, i=1,---,d.

If the margins are continuous then C is unique.
Conversely, if C is a copula and (F;, 1 <i < d) are univariate d.f., then F defined
above is a multivariate df with margins Fy,--- , Fy.

Proof as an exercise.
As a consequence, we can give another definition of a copula.

Definition 2. The copula of (X,---,Xy) (or F) is the cdf C of (Fy (X1),---,Fy(Xy)).
We sometimes refer to C as the dependence structure of F.

Here is a useful way to express Sklar’s theorem in dimension 2:

Theorem 5 (Sklar - dim 2). Let F be a joint cdf with margins (F1,F,). The copula
C associated to F can be written as

C(ur,uz) = C(Fi(x1), F2(x2))
C(ul,ug) = F(xh)Cz)
Clur,uz) = F(F ' (1), Fy ' (u2))

If the margins are continuous then C is unique.

Copulas satisfy a property of invariance, very useful in practice, and which is not
satisfied by the linear correlation.

Property 1 (Property of Invariance). C is invariant under strictly increasing transfor-
mations of the marginals. If Ty, - - - , Ty are strictly increasing, then (T} (X)), , T4(X4))
has the same copula as (X, -+, Xy).

As for probability distributions, we can define the notion of density function,
when existing.

Definition 3. The density function c of a copula C is defined by

24C(uy,- ,u
C(ula"'aud)zﬁ-

The density function of a bivariate distribution can be written in terms of the density
function c of the associated copula and in terms of the density functions f; and f>
of the margins:

fx) = e(Fi(n). Fn)) o) falxa).

Using this definition, we can prove that: the product copula characterize the
independence between two r.v. More generally,
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Xi,...,X, are mutually independent <> their copula C satisfies C(uy,...,uy) =
d

Hui.

i=1

As the linear correlation, which is bounded between -1 and 1, a copula also admits
bounds, named Fréchet-Hoeffding bounds:

1<i<d

d
max(Zu,’Jrlfd;O) < C(u) < min u; =PU <uy, - ,U < uyl
i=1

where u = (uy,...,uy) and U is uniformly distributed on [0,1].

Scatterplot, Lower Fréchet-Hoeffding bound Scatterplot, Indepedent copula random generation Scatterplot, Upper Fréchet-Hoeffding bound

The upper Fréchet-Hoeffding bound C, (u,...,uy) := 121'i<nd u; is a copula for any
S

d. It describes the perfect dependence, named also comotonicity:
X; & Ti(X;), with T; strictly increasing function, i = 2,...,d <= C, satisfies

Cu(ui,...,ug) := min u;.
u( 1, 5 d) [<i<d i

The lower Fréchet-Hoeffding bound C;(u) := max ():?:1 ui+1-d; 0) is a cop-
ula for d = 2, but not for all d > 2. For d = 2, C; describes the perfect negative de-

pendence, named also countercomotonicity: Xo = T(X;), with T strictly decreasing
function <= Cj(u1,uz) := max(u; +up — 1,0).

Examples of copulas. Since any type of dependence structure can exist, the same
can be said about copulas, that is why many new copulas are introduced by re-
searchers. Here let us define three standard classes of copulas, already in use among
practitioners, among which the Extreme Value (EV) copulas (which can overlap the
two other classes).

e FElliptical or normal mixture copulas, as for instance:

— The Gaussian copula (often used in financial modeling); in dimension 2, with
parameter o € (—1,1), it is defined via Sklar’s theorem by

1 27w o) =20y +
C(M,V)—m‘/_m ‘/_m exp{—z(l_az)}dxdy

where & denotes the standard normal distribution.
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— The Student-# copula is the distribution of (T'(X;),i = 1,---,d) where T is
the #-cdf and (X;,i = 1,...,d) has a joint ¢-distribution. For d = 2, it can be
expressed (via Sklar’s theorem) as:

1 7w () 2_9 o\ —(v+2)/2
o= s [ ()
2nV1—0? - 2(1—a?)
for a € (—1,1) and degrees of freedom v > 2.

e Archimedean copulas.
Definition. An Archimedean copula C is defined by

C(ul,...7ud) = l[lil(l[/(ul)-‘r""Fl,U(ud))

where y :]0, 1] — [0,0) is continuous, strictly decreasing, convex, and satisfies
w(1) =0 and lin(l)y/(t) = +oo; set Y1 (¢) = 0 if y(0) <t < +oo. We call y the
t—

strict generator of C.
Archimedean copulas are exchangeable, i.e. invariant under permutation.

Examples:

— Gumbel copula, defined in dimension 2 by:
Cg“(u,v) =exp{ — ((—logu)? + (—logv)P) I/B}, with > 1.

When 8 = 1: CP*(u,v) = uv pointing out the independence of the variables.
When 8 — oo, the variables tend to be comonotonic: CS*(u,v) = min(u,v).
— Clayton copula , defined in dimension 2 by:

Cgl(mv) = (uiﬁ +v P 1)71/13, with > 0.

We have lim Cgl (u,v) = uv, independence case, and lim C<! (u,v) = min(u, v),
BNO B—voo

comonotonic case.

e Extreme Value (EV) Copulas
A copula C is said to be an Extreme Value (EV) copula if it satisfies the max-
stability characteristic property:

Vy>0, CY(uy,...,uq) :C(u?,...,uj;).

In dimension 2, an alternative definition is the following:

logu
C = 1 1 Al —————
(u,v) exp{(ogu+ ogv) (10gu+logv>}
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where A, called the dependence (or Pickands) function, is convex on [0, 1] and
satisfies A(0) = A(1) = 1 and max(1 — 0, 0) < A(w) <1, Vo € [0,1].
The function A can be defined from the EV copula C by setting

Aw)=—InC(e ™, e 1)) welo,1].

Bounds have also been provided for A. If the upper bound is reached, i.e. if
A(w) =1, Yw, then C is the independence copula. If the lower bound is reached,
i.e. if A(w) = max(w, 1 —w), then it is a comonotonicity copula.

Examples of EV copulas: independence copula, comonotonicity copula, Gumbel
copula (it is a parametric EV copula; the Gumbel copula model is sometimes
known as the logistic model), Galambos copula (as defined below).
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Fig. 10 Plot of dependence function for (c) the symmetric Galambos (@ = 8 = 1), spanning
the whole range from independence to comonotonicity, and (d) the asymmetric Galambos
copula with o« = 0.9 and 8 = 0.8; the limit as 8 — 0 is the independence model, whereas
as 6 — o, it is no longer the comonotonicity model. Dashes lines show boundaries of
the triangle in which the dependence function must reside; solid lines show dependence
functions for a range of 6 values running from 0.2 to 5 in steps of size 0.1

Let us consider the dependence function A, introduced by Galambos and defined,
for0<w<1,with0 <, <1and8 >0,by

~1/6

Alw) = 1= ((@w) ™+ (B(1-w)) *)

We can check that A is a convex function having the right bounds for the defini-
tion of an EV copula, so that we can create an EV copula from A. We obtain the
bivariate EV copula, named Galambos copula (this copula model is sometimes
known as the negative logistic model),

Cgfg.ﬁ(u,v) = uvexp{((_alnuye + (—ﬁlnv)’e)fl/e}.

It is represented in Figure 10 ([18], p. 313).
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3.4 Notion of Rank Correlation

Let us introduce two rank correlations, the Spearman’s rho pg and the Kendall’s tau
Pz, which can also be expressed in terms of copulas (see e.g. [18], §5.2).

Let C denote the copula of (X;,X,), and p the Pearson (linear) correlation of X;
and X».

o The Spearman’s rho ps is defined by
ps(X1,X2) = p(Fi(X1), F2(X2)) = p(copula)
and also by
1,1
ps(X1,X5) = 12/0 /0 (C(ul,uz) 7M1u2)du1du2.
o The Kendall’s tau pr is defined by
pe(X1,X2) =2P[(X, — X)) (X2 — X;) > 0] — 1

with (X1, X;) an independent copy of (X;,X>), and also by

1 1
pT(Xl,X2)=4/O /0 C(ul,uz)dC(ul,uz)—l.

Case of elliptical models: Suppose X = (X;,X») has any elliptical distribution
2
(e.g. X has a Student distribution £2(v, u,T")). Then p¢ (X1, X3) = - arcsin (p (X1, X2)).

Iip
VZIRUEY

Note that if X; has infinite variance, then p(X;,X>) can be interpreted as

Properties of rank correlations.

We can enunciate the following properties for the Spearman’s rho ps. The same
holds true for Kendall’s tau p;. But those properties are not shared by the linear
correlation.

1. ps depends only on the copula of (X,X>);

2. ps is invariant under strictly increasing transformations of the rv’s;
3. ps(X1,X2) =1 < C(X;,X;) is comonotonic;

4. ps(X1,X2) = —1 & C(X1,X,) is countermonotonic.

3.5 Ranked Scatterplots

Let us draw ranked scatterplots with different copulas.

First we consider archimedean copulas, namely Clayton, Clayton-mirror (i.e.
when we flip it) and Gumbel, and elliptical ones, namely Student copula with v =1
and Gaussian one. For all of them, we choose the Kendall’s tau p; = 50%.
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Then we consider the same margins and play with the parameters of the copulas
to see their impact.
Gaussian copula with p = 0,30,60,90 % from left to right

e £6

Gumbel copula with 6 = 1,1.5,2,3 from left to right

Survival (Mirror) Clayton copula with 8 = 0.1,0.5,1,2 from left to right

7z

3.6 Other type of dependence: Tail or Extremal dependence

The objective is to measure the dependence in joint tail of bivariate distribution. Let
C denote the copula of the random vector (X;,X3).

o Coefficient of upper tail dependence. When the limit exists, it is defined as

A(X1,X0) = lim P[X2 > VaRa(X2) | X1 > VaRe (X1)]



Contents 39

and, as function of the copula C,

1 -20+C(a, )

)Lu(XhXQ) :&‘1511 I—a

o Coefficient of lower tail dependence. When the limit exists, it is defined as

A(X1,X) = 3‘13%) P[X2 < VaRa(X2) | X1 < VaRe(X1)]

and, as function of C,

. Cla,a

Properties and terminology

1. A, €1[0,1] and A; € [0,1] ;

2. For elliptical copulas, A, = A; := A. Note that this is true for all copulas with
radial symmetry, i.e. such that (Uy,Up) =4 (1 —U;,1—Us);

3. If A, € (0,1], then there exits an upper tail dependence and if A; € (0,1], there
exits a lower tail dependence;

4. A, = 0 means that there is asymptotic independence in the upper tail and ; =0
means that there is asymptotic independence in lower tail.

Fig. 11 Gaussian (left) and Student 3 (right) copulas with same margins and parameter
p =70%. Quantiles lines are given for 0.5% and 99.5%.

X2
0

Examples.

1. We can prove that a Gaussian copula with parameter p is asymptotically inde-
pendent (i.e. A = 0) whenever |p| < 1;
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2. A t-copula with parameter p is tail dependent whenever p > —1, whatever is
the number of degrees of freedom v. Its coefficient of (lower and upper) tail

- 1—
dependence is given by: A = 27,4 <\/m ﬁ ) :

3. The Gumbel copula with parameter f3 is upper tail dependent for § > 1, and this
upper tail dependence is measured by A, =2 — 21/B.

4. The Clayton copula with parameter 8 is lower tail dependent for 8 > 0, and
l[ = 271/ B .

The properties of symmetric tail dependence, as well as of asymptotic tail depen-
dence for the Gaussian copula and upper tail dependence for the Student copula, are
well illustrated in Figure 11.

Numerical Example showing the impact of the choice of copula.

We already provided in §3.1.2 an example with political risks where we observed
how much the choice of the dependence structure would impact the results. In that
example we considered a Gaussian dependence versus a Clayton one.

Let us give another example where we compare in Table 10 the joint tail prob-
ability at finite levels of two copulas which are both elliptical. This is an example
developed by McNeil et al. in [18].

Table 10 Left table: Joint Tail Probabilities P[X; > VaRq(X1),X2 > VaRq(X2)] for a =
95,99,99.5,99.9%, respectively. Right table: Joint Tail Probabilities P[X; > VaRgoq, (X;),i =
1,...,d] for d = 2,3,4,5 respectively, when taking equal correlations. For both tables: The
copula C of the random vector is either Gaussian (denoted by N) or Student 7 with 3 pos-
sible degrees of freedom v = 8,4,3 (the smaller is v, the heavier is the tail) and parameter
p =50% or 70%. Note that for the Student cases, only the factor by which Gaussian (N)
joint tail probability must be multiplied, is given.

p C Quantile

95% 99% 99.5% 99.9% r ) 3D'me"s'°" d . 5
05 N |121x1072 1.29x 107 4.96x 10~ 542x10~° 05 N |129x10°% 3.66x10% 149x10F 748x10°5
05 t8 1.20 1.65 1.94 3.01 05 t8 1.65 236 3.09 3.82
0.5 t4 139 2.22 2.79 4.86 05 t4| 222 3.82 5.66 7.68
0.5 t3 150 2.55 3.26 5.83 05 t3| 255 472 7.35 10.34
07 N[195%x1072 2.67x1073 1.14x 10~ 1.60 x 10~* 07 N[267x107% 128x1073 7.77x 10~ 535x10°*
0.7 t8 1.11 1.33 1.46 1.86 0.7 18 133 158 178 1.95
0.7 t4 121 1.60 1.82 252 0.7 t4) 160 210 253 291
07 3| 127 174 2.01 283 07 3] 174 2.39 297 3.45

Let us illustrate those results, giving the financial interpretation suggested in [18].

Consider daily returns on 5 financial instruments and suppose that we believe that
all correlations between returns are equal to 50%. However, we are unsure about the
best multivariate model for these data. On one hand, if returns follow a multivariate
Gaussian distribution then the probability that on any day all returns fall below their
1% quantiles is 7.48 x 107>. In the long run such an event will happen once every
13369 trading days on average, that is roughly once every 51.4 years (assuming
260 trading days in a year). On the other hand, if returns follow a multivariate ¢
distribution with 4 degrees of freedom then such an event will happen 7.68 times
more often, that is roughly once every 6.7 years, which would induce a very different



Contents 41

behavior in terms of risk management! During the subprime crisis, this was the
problem of the too high rating given to the CDOs (Collateralized Debt Obligation)
by the rating agencies, who only considered linear correlation for the dependence
between the risks.

4 Multivariate EVT

Let us end those notes by giving a brief idea about the basis on which EVT has been
extended in the multivariate setting. It is a research domain which has aroused an
increasing interest this past decade, in particular due to its practical use.

4.1 MEYV distribution

Some notation. Let X;,---,X;,---,X, be iid random vectors in R?, each X; (i =
1,--+,n) having its components denoted by X;;,j = 1,--- ,d; they could be inter-
preted as losses of d different types. Let F be the joint df of any random vector X;
and Fi,--- , Fy be its marginal cdf’s. Let M,,; = 111<1?<)(nXij, for j=1,---,d; it is the

maximum of the jth component, and M, be the d-random vector the vector of com-
ponentwise block maxima, i.e. with components M;;,i=1,--- ,n.

The main question that might be asked, when going from univariate EVT to mul-
tivariate one, is which underlying multivariate cdf’s F' are attracted to which MEV
distributions H?

Definition 4. If there exist vectors of normalizing constants (of dimension d) ¢, > 0
and d,, such that (M,, —d,)/c, converges in distribution to a random vector with
joint (non-degenerated) cdf H, i.e.

P |:Mn _dn

Cn

n—soo

§x}:F"(c,,x+dn) —  H(x), x€R?

we say that F is in the Maximum Domain of Attraction of H, written F € MDA(H),
and we refer to H as a MEV (Multivariate Extreme Value) distribution.

If H has non-degenerate margins, then

- these margins are univariate EV distributions of one of the three types, by appli-
cation of univariate EVT;

- via Sklar’s theorem, H has a copula, which is unique if the margins are continu-
ous.

Theorem 6. If F € MDA(H) for some F and H with GEV margins, then the unique
copula C of H satisfies the scaling property:

C’'(u)=C"), YuecR? Vy>O0,

which means that C is an extreme value (EV) copula (as defined previously); it can
then be the copula of a MEV distribution.
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4.2 Copula Domain of Attraction

We can enunciate the following asymptotic theorem.

Theorem 7 (Galambos, 1987).
Let F;,i =1,---,d, be some continuous marginals cdf’s and C some copula. Let
define F(X) = C(F] ()C]), e ,Fd(xd)) and let H(x) = C()(H] (xl), e ,Hd(xd)) be a
MEYV distribution with EV copula Cy. Then we have

F, € MDA(H;) fori=1,--- .d,
F € MDA(H) if and only if { and

lim C' (u'/") = Co(u), ue[0,1]°.

t—yoo
Notice that:

- the marginal distributions of F determine the margins of the MEV limit but are
irrelevant to the determination of its dependence structure;

- the copula Cj of the limiting MEV distribution is determined solely by the copula
C of the underlying distribution.

Definition 5. If lim C'(u'") = Co(u), u € [0,1]%, for some C and some EV cop-
—So0
ula Cyp, then we say that C belongs to the copula domain of attraction of Cy:
C € CDA(Cy).
Upper tail dependence and CDA.

Proposition 1. Let C be a bivariate copula with upper tail-dependence coefficient
Ay. Assume that C € MDA(Cy) for some EV copula Cy with Pickands (dependence)
function A. Then A, is also the upper tail-dependence coefficient of Cy and is related
to its dependence function by A, =2(1 —A(1/2)).

Proof. First, let us prove that C and Cy have the same A,,. To do so, we just need to
1-C(a,a) . 1—-Co(o, o)

check that lim ——— = = lim ————————. We have, using the definition of
a—l - a—1 11—«
C € CDA(Cy),
1— 1 log (1[1 = C(a'/t, oM/
lim CO(OC;(X) — lim OgC()((X,OC) — lim lim og( [ ( )])
a—1 l—-a a—1 l—-a a—11—o0 l—-a
1— S S . S yS o
— lim tim GO0 gy LG 12C6B)
a—1s—0+  —slog(a) a—1s—0+  —log(as) p>1-  1-P

hence the result. The converse is straightforward. a

Consequence: A, =0 = A(1/2) =1 = A =1 (since A convex function) < Cy
is the independence copula.

5 Conclusion

In these notes, we have explored the EVT both in the univariate as well as in the
multivariate case by looking at dependence between rv’s. We have seen that there are
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mature methods for determining accurately the shape of the tail of the distribution.
There are also methods to backtest statistically if the model captures it correctly.
This can be done when choosing Expected Shortfall as a risk measure (see e.g. [13]
and references therein). We pointed out through examples the importance for good
risk management of accounting for extreme risks, but also of correctly modeling the
non-linear dependence when present in the data or in the process to be studied. We
hope to have shown that there is no excuse anymore to ignore EVT in quantitative
risk management.
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