
Number of claims and ruin time for a refracted
risk process

Yanhong Li, Zbigniew Palmowski, Chunming Zhao, Chunsheng Zhang

Abstract In this paper, we consider a classical risk model refracted at given level.
We give an explicit expression for the joint density of the ruin time and the cumula-
tive number of claims counted up to ruin time. The proof is based on solving some
integro-differential equations and employing the Lagrange’s Expansion Theorem.

1 Introduction

Between 20.11.2017 and 8.12.2017 an international research institute MATRIX
in Creswick, Australia, run research program Mathematics of Risk during which
four five-hour workshops were given. In particular, Z. Palmowski presented a work-
shop entitled Ruin probabilities: exact and asymptotic results. This paper is closely
related with the topics introduced during his lectures.

The joint density of the ruin time and the numbers of claims counted until ruin
time has been already studied for a classical risk process over last years. Dickson [3]
derived special expression for it using probabilistic arguments. Landriault et al. [11]
analyzed this object for the Sparre Andersen risk model with the exponential claims.
Later Frostig et al. [6] generalized it to the case of a renewal risk model with the
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phase-type claims and inter-arrival times. The main tool used there was the duality
between the risk model and a workload of a single server queueing model. Zhao
and Zhang [20] considered a delayed renewal risk model, where the claim size is
Erlang(n) distributed and the inter-arrival time is assumed to be infinitely divisible.

Our goal is to derive expression for the joint density of the ruin time and the
numbers of claims counted until ruin time for a refracted classical risk process (see
Kyrianou and Loeffen [9] for a formal definition). It is also called a compound
Poisson risk model under a threshold strategy. The latter process is a classical risk
process whose dynamic is changed by subtracting off a fixed linear drift whenever
the cumulative risk process is above a pre-specified level b. This subtracting of the
linear drift corresponds to the dividend payments and the considered strategy is also
known as a threshold strategy. Dividend strategies for insurance risk models were
first proposed by De Finetti [2] to reflect more realistically the surplus cash flows
in an insurance portfolio. More recently, many kind of risk related quantities under
threshold dividend strategies have been studied by Lin and Pavlova [17], Zhu and
Yang [22], Lu and Li [14], [15], [16], Badescu, Drekic and Landriault [1], Gao and
Yin [7] (see references therein). The case when the drift of the refracted process
is disappearing (everything above threshold b is paid as dividends) is called barrier
strategy, see Lin et al. [18], Li and Garrido [12], Zhou [21] and in the references
therein.

The paper is organized as follows. In Section 2 we define the model we deal
with in this paper. In Section 3 we recall properties of the translation operator
and the root of the Lundberg fundamental equation. In particular, we introduce the
Lagrange’s expansion theorem and some notation. In Section 4 we construct two
integro-differential equations identifying the joint Laplace transform of joint den-
sity of the numbers of claims counted up to ruin time and the ruin time. Analytical
solutions of these two integro-differential equations are given in Section 5. Apply-
ing the Lagrange’s expansion theorem in Section 6 we give the expression for above
mentioned density.

2 Model

The classical risk process is given by

U(t) = u+ c1t −S(t), (1)

where U(0) = u denotes initial capital, c is the premium rate and S(t) = ∑Nt
i=1 Xi

represents the total amount of claims appeared up to time t ≥ 0. That is, {Xi}{i∈N}
are non-negative i.i.d. random variables with pdf f (x) and cdf F(x) and {Nt}{t≥0} is
an independent Poisson process with a parameter λ . To take into account dividend
payments paid when regulated process (after deduction of dividends) is above fixed
threshold level b > 0, we consider so-called refracted process given formally for
c2 < c1 by:
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dUb(t) =
{

c1dt −dS(t), 0 ≤Ub(t)≤ b
c2dt −dS(t), Ub(t)> b (2)

and Ub(0) = u. In this case c1 − c2 denotes intensity of dividend payments, see
Figure 1.

Ub(t)

b

u

0 tτ

c1

c2

Fig. 1 : Graphical representation of the surplus process Ub(t).

Throughout this paper, we will assume that c2 > λEX1, which means refracted
process Ub(t) tends to infinity almost surely. We can then consider the ruin time:

τ = inf{t > 0,Ub(t)< 0},

(τ =∞ if ruin does not occur). Note that Nτ represents the number of claims counted
until the ruin time. The main goal of this paper is identification of the density of
(τ,Nτ). We start from analyzing its Laplace transform:

ϕ(u) = E[rNτ e−δτI(τ < ∞)|Ub(0) = u] (3)

=
∞

∑
n=1

rn
∫ ∞

0
e−δ tw(u,n, t)dt, (4)

where
w(u,n, t) = P(Nτ = n,τ ∈ dt|Ub(0) = u)/dt

is the joint density of (τ,Nτ) when Ub(0) = u. In above definition we have δ > 0
and r ∈ (0,1]. Later we will use the following notation

w1(u,n, t) = w(u,n, t) for u ≤ b
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and
w2(u,n, t) = w(u,n, t) for u > b.

3 Preliminaries

In this section we introduce few facts used further in this paper. We start from
recalling the translation operator Ts; see Dickson and Hipp [4]. For any integrable
real-valued function f it is defined as

Ts f (x) =
∫ ∞

x
e−s(y−x) f (y)dy, x ≥ 0.

The operator Ts satisfies the following properties:

1. Ts f (0) =
∫ ∞

0 e−sx f (x)dx = f̂ (s) which is the Laplcae transform of f ;
2. The operator Ts is commutative, i.e. TsTr = TrTs. Moreover, for s ̸= r and x ≥ 0

TsTr f (x) = TrTs f (x) =
Ts f (x)−Tr f (x)

r− s
. (5)

More properties of the translation operator Ts can be found in Li and Garrido [13]
and Gerber and Shiu [8].

For any function g we will denote by ĝ(s) its Laplace Transform, that is ĝ(s) =∫ ∞
0 e−sxg(x) dx. Next, for i = 1,2 let ρi be the positive root of the Lundberg funda-

mental equation
cis− (λ +δ )+λ r f̂ (s) = 0. (6)

The positive roots always exists for δ > 0; see Figure 2.

Lagrange’s Expansion Theorem. In this paper we will also use the Lagrange’s
Expansion Theorem; see pages 251-326 of Lagrange [10]. Given two functions α(z)
and β (z) which are both analytic on and inside a contour D surrounding a point a,
if r satisfies the inequality

|rβ (z)|< |z−a|, (7)

for every z on the perimeter of D, then z−a− rφ(z), as a function of z, has exactly
one zero η in the interior of D, and we further have:

α(η) = α(a)+
∞

∑
k=1

rk

k!
dk−1

dxk−1

(
α ′(x)β k(x)

)∣∣
x=a. (8)

Finally, we define also the impulse function

δx(t) =
{

0, t ̸= x
∞, t = x
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Fig. 2: Roots for Lundberg’s fundamental equation.

with
∫ ∞

0 δx(t)dt = 1. We denote gk∗,k ≥ 0, with g1∗ = g and g0∗(t) = δ0(t) the k-fold
convolution of g with itself, where

(g∗h)(t) =
∫ t

0
g(x)h(t − x)dx, t ≥ 0

for two functions g and h supported on (0,∞).

4 Integro-differential equations for the joint Laplace transform

In this section, we derive two integro-differential equations identifying ϕ(u) de-
fined in (3). We will follow the idea given in Lin and Pavlova [17]. Denote

ϕ(u) =
{

ϕ1(u), u ≤ b,
ϕ2(u), u > b. (9)

Theorem 1. The joint Laplace transform ϕ satisfies the following integro-differential
equations:
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ϕ ′

1(u)=
λ+δ

c1
ϕ1(u)− λ r

c1

∫ u
0 ϕ1(u− x) f (x)dx− λ r

c1
F̄(u), 0 ≤ u ≤ b

ϕ ′
2(u)=

λ+δ
c2

ϕ2(u)− λ r
c2

(∫ u−b
0 ϕ2(u− x) f (x)dx+

∫ u
u−b ϕ1(u− x) f (x)dx

)
− λ r

c2
F̄(u), u > b
(10)

with the boundary condition

ϕ1(b) = ϕ2(b) := lim
u→b+

ϕ2(u). (11)

Remark 1. Note that from the integro-differential equations (10) follows that the
joint Laplace transform with initial surplus above the barrier depends on the respec-
tive function with initial surplus below the barrier, but the reverse relationship does
not hold true.

Proof. Let first 0 ≤ u ≤ b. Then conditioning on the occurrence of the first claim we
will have two cases: the first claim occurs before the surplus has reached the barrier
level b or it occurs after reaching this barrier. There are also two other cases at the
moment of the arrival of the first claim: either the risk process starts all over again
with new initial surplus or the first claim leads already to ruin. Hence:

ϕ(u) = ϕ1(u)

=
∫ b−u

c1

0
λ re−λ te−δ t

(∫ u+c1t

0
ϕ(u+ c1t − x) f (x)dx+ F̄(u+ c1t)

)
dt

+
∫ ∞

b−u
c1

λ re−λ te−δ t

(∫ b+c2(t− b−u
c1

)

0
ϕ(b+ c2(t −

b−u
c1

)− x) f (x)dx+ F̄(b+ c2(t −
b−u

c1
))

)
dt

= λ r
∫ b−u

c1

0
e−(λ+δ )tγ(u+ c1t)dt +λ r

∫ ∞

b−u
c1

e−(λ+δ )tγ(b+ c2(t −
b−u

c1
)dt, (12)

where γ(t) =
∫ t

0 ϕ(t − x) f (x)dx+ F̄(t).
Changing variables in (12) and rearranging leads to the following equation for 0 ≤
u ≤ b:

ϕ1(u)=
λ r
c1

e(λ+δ )u/c1

∫ b

u
e−(λ+δ )t/c1γ(t)dt+

λ r
c2

e(λ+δ )u/c1

∫ ∞

b
e−(λ+δ )[t−(c1−c2)b/c1]/c2γ(t)dt.

(13)
Differentiating both sides of (13) with respect to u yields first equation.

Similarly, for u > b we have:

ϕ(u) = ϕ2(u)

=
∫ ∞

0
λ re−λ te−δ t

(∫ u+c2t

0
ϕ(u+ c2t − x) f (x)dx+ F̄(u+ c2t)

)
dt

= λ r
∫ ∞

0
e−(λ+δ )tγ(u+ c2t)dt

=
λ r
c2

e(λ+δ )u/c2

∫ ∞

u
e−(λ+δ )t/c2γ(t)dt. (14)
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Differentiating both sides of (14) with respect to u produces the second equation.
Note also that from equations (13) and (14) it follows that ϕ(u) is continuous at

u = b and hence (11) holds. This completes the proof.

5 The analytical expression for ϕ(u)

In this section, we derive the analytical expression for ϕi(u) (i = 1,2) using the
translation operator introduced in Section 3.

Theorem 2. The function ϕ2(u) can be expressed analytically as follows:

ϕ2(u) =
∞

∑
n=0

(
λ r
c2

)n+1

(Tρ2 f )n∗ ∗h(u−b), u > b, (15)

where

h(u) :=
∫ u+b

u
ϕ1(u+b− x)Tρ2 f (x)dx+Tρ2 F̄(u+b). (16)

Proof. We adopt the approach of Willmot and Dickson [19]. Consider the second
equation in (10) for u > b. For a fixed s > 0, we multiply both sides of this equation
by e−s(u−b) and integrate it with respect to u from b to ∞:

c2

∫ ∞

b
e−s(u−b)ϕ ′

2(u)du

=(λ +δ )Tsϕ2(b)−λ r
∫ ∞

b
e−s(u−b)

∫ u−b

0
ϕ2(u− x) f (x)dxdu

−λ r
∫ ∞

b
e−s(u−b)

∫ b

0
ϕ1(y) f (u− y)dydu−λ rTsF̄(b)

=(λ +δ )Tsϕ2(b)−λ r
∫ ∞

0
e−sx f (x)

∫ ∞

x+b
e−s(u−x−b)ϕ2(u− x)dudx

−λ r
∫ b

0
ϕ1(y)

∫ ∞

b
e−s(u−b) f (u− y)dudy−λ rTsF̄(b)

=(λ +δ )Tsϕ2(b)−λ r f̂ (s)Tsϕ2(b)−λ r
∫ b

0
ϕ1(y)Ts f (b− y)dy−λ rTsF̄(b).

Integrating by parts gives:

c2

∫ ∞

b
e−s(u−b)ϕ ′

2(u)du = c2sTsϕ2(b)− c2ϕ2(b).

Hence

c2sTsϕ2(b)− c2ϕ2(b)

=(λ +δ )Tsϕ2(b)−λ r f̂ (s)Tsϕ2(b)−λ r
∫ b

0
ϕ1(y)Ts f (b− y)dy−λ rTsF̄(b)
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and simple rearranging leads to:

(c2s−(λ +δ )+λ r f̂ (s))Tsϕ2(b) = c2ϕ2(b)−λ r
∫ b

0
ϕ1(y)Ts f (b−y)dy−λ rTsF̄(b).

(17)
Taking s = ρ2 for the solution ρ2 of the Lundberg Fundamental Equation (6) gives

c2ϕ2(b) = λ r
∫ b

0
ϕ1(y)Tρ2 f (b− y)dy+λ rTρ2 F̄(b).

Then equation (17) is equivalent to:

[c2(s−ρ2)+λ r f̂ (s)−λ r f̂ (ρ2)]Tsϕ2(b)

=λ r
∫ b

0
ϕ1(y)[Tρ2 f (b− y)−Ts f (b− y)]dy+λ r[Tρ2 F̄(b)−TsF̄(b)].

Now dividing above equation by s−ρ2 and using property 2 of the translation op-
erator introduced in Section 2 produces:

c2Tsϕ2(b) = λ rTsTρ2 f (0)Tsϕ2(b)+λ r
∫ b

0
ϕ1(y)TsTρ2 f (b− y)dy+λ rTsTρ2 F̄(b).

(18)
Inverting the translation operators of (18) yields the following renewal equation for
ϕ2(u):

ϕ2(u) =
λ r
c2

[∫ u−b

0
ϕ2(u− x)Tρ2 f (x)dx+

∫ u

u−b
ϕ1(u− x)Tρ2 f (x)dx+Tρ2 F̄(u)

]
.

(19)
Taking y = u−b and g(y) = ϕ2(y+b) we can rewrite (19) as follows:

g(y) =
λ r
c2

∫ y

0
g(y− x)Tρ2 f (x)dx+

λ r
c2

h(y), y > 0,

where

h(y) = h(u−b) =
∫ u

u−b
ϕ1(u− x)Tρ2 f (x)dx+Tρ2 F̄(u), u > b.

Hence

ϕ2(u) = g(y)

=
λ r
c2

∫ y

0
g(y− x)Tρ2 f (x)dx+

λ r
c2

h(y)

=
∞

∑
n=0

(
λ r
c2

)n+1

(Tρ2 f )n∗ ∗h(y)

=
∞

∑
n=0

(
λ r
c2

)n+1

(Tρ2 f )n∗ ∗h(u−b)
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which completes the proof.

The expression for ϕ1(u) could be also derived in terms of the translation opera-
tor.

Theorem 3. The function ϕ1(u) can be expressed analytically in the following form:

ϕ1(u) = ϕ∞(u)+
λ r
c2

[
ϕ∞ ∗Tρ2 f (b)+Tρ2 F̄(b)

]
−ϕ∞(b)

ν(b)− λ r
c2

ν ∗Tρ2 f (b)
ν(u), (20)

where

ϕ∞(u) :=
∞

∑
n=0

(
λ r
c1

)n+1

(Tρ1 f )n∗ ∗Tρ1 F̄(u) (21)

and

ν(x) :=
∞

∑
n=0

(
λ r
c1

)n

(Tρ1 f )n∗ ∗ p(x) (22)

with p(x) = eρ1x.

Proof. We will follow Landriault et al. [11]. Note that the first equation in (10) does
not involve the barrier level b:

ϕ ′
1(u) =

λ +δ
c1

ϕ1(u)−
λ r
c1

∫ u

0
ϕ1(u− x) f (x)dx− λ r

c1
F̄(u). (23)

The information about the barrier b is included in the boundary condition:

ϕ1(b) = ϕ2(b) := lim
u→b+

ϕ2(u).

Lin et al. [17] showed that the general solution of (23) is of the form

ϕ1(u) = ϕ∞(u)+ kν(u), (24)

where ϕ∞(u) is the joint Laplace transform of density of the ruin time and number of
claims counted up to ruin time for the classical risk process (1) without any barrier
applied. That is,

ϕ∞(u) :=
∞

∑
n=1

rn
∫ ∞

0
e−δ tw∞(u,n, t)dt (25)

for
w∞(u,n, t) := P(Nτ = n,τ ∈ dt|U(0) = u)/dt. (26)

In above equation (24) the quantity k is a constant which we can specify by
implementing (24) and (19):

k =
λ r
c2

[∫ b
0 ϕ∞(b− x)Tρ2 f (x)dx+Tρ2 F̄(b)

]
−ϕ∞(b)

ν(b)− λ r
c2

∫ b
0 ν(b− x)Tρ2 f (x)dx

. (27)
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We express now the function ϕ∞ in terms of a compound geometric distribution.
Indeed, since ϕ∞ also satisfies equation (23), taking Laplace transforms of its both
sides for sufficiently large s gives:

(c1s− (λ +δ )+λ r f̂ (s))ϕ̂∞(s) = c1ϕ∞(0)−λ r ˆ̄F(s), s ≥ 0. (28)

To determine the constant term c1ϕ∞(0) in (28), we substitute the solution ρ1 of the
Lundberg Fundamental Equation (6) for s:

c1ϕ∞(0) = λ r ˆ̄F(ρ1) = λ rTρ1
ˆ̄F(0). (29)

Consequently, the equation (28) reduces to

[c1(s−ρ1)+λ r f̂ (s)−λ r f̂ (ρ1)]ϕ̂∞(s) = λ r ˆ̄F(ρ1)−λ r ˆ̄F(s).

Dividing above equation by s−ρ1 and simple rearranging along with implementa-
tion of the formula (5) produces:

c1ϕ̂∞(s) = λ rϕ̂∞(s)TsTρ1 f (0)+λ rTsTρ1 F̄(0).

Inverting this Laplace transforms gives classical renewal equation:

ϕ∞(u) =
λ r
c1

ϕ∞ ∗Tρ1 f (u)+
λ r
c1

Tρ1 F̄(u) (30)

having the solution given as an Neumann infinite series (21).
To prove the last statement (22) note that the function ν(u) satisfies the following

integro-differential equation:

c1ν
′
(u)− (λ +δ )ν(u)+λ r

∫ u

0
ν(u− x) f (x)dx = 0, u ≥ 0, (31)

with the initial condition ν(0) = 1. To get the analytical expression of ν(u) we take
the Laplace transforms of both sides of (31) for sufficiently large s (s > ρ1). This
yields:

c1sν̂(s)− c1ν(0) = (λ +δ )ν̂(s)−λ r f̂ (s)ν̂(s).

Since ν(0) = 1,

(s+
λ r
c1

f̂ (s)− λ +δ
c1

)ν̂(s) = 1. (32)

Recalling that ρ1 is the root of (6), we can rewrite (32) as

(s−ρ1 +
λ r
c1

[ f̂ (s)− f̂ (ρ1)])ν̂(s) = 1,

which, by dividing by s−ρ1 and implementing (5), produces:
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ν̂(s) =
λ r
c1

ν̂(s)TsTρ1 f (0)+
1

s−ρ1
. (33)

Inverting the Laplace transforms in (33) leads to the equation (22). Including all
above identities in (24) completes the proof.

6 The joint density of (τ,Nτ)

In this section we give the joint density of the number of claims counted until
ruin time and the ruin time using the Lagrange’s Expansion theorem. We start with
few facts that will be useful in the proof of the main result.

Recall that by w∞(u,n, t) we denote the joint density of (τ,Nτ) for the classical
risk process (1) (with infinite barrier b =+∞); see (26). For i = 1,2 we denote

gi(x,0, t) := δx/ci(t)e
−λx/ci ,

gi(x,n, t) := xtn−1e−λ tλ n f n∗(cit − x)/n!.

Following Dickson [3] we can state the following lemma.

Lemma 1. We have
w∞(u,1, t) = λe−λ t F̄(u+ c1t).

For n = 1,2,3, . . . the following holds:

w∞(u,n+1, t) =
(λ t)n

n!
e−λ t

∫ u+c1t

0
f n∗(u+ c1t − x)λ F̄(x)dx

−c1

n

∑
j=1

∫ t

0

(λ s) j

j!
e−λ s f j∗(u+ c1s)w∞(0,n+1− j, t − s))ds,(34)

where

w∞(0,n, t) =
λ
c1

∫ c1t

0
F̄(x)g1(x,n−1, t)dx, n = 1,2, . . . . (35)

Proof. Using Lagrange’s Expansion Theorem presented in Section 2 with α(z) =
e−zx, β (z) = − λ

ci
f̂ (s), a = (λ + δ )/ci and D = {z||z− a| ≤ a} (i = 1,2) and the

Lundberg fundamental equation (6) we can conclude the following identity:

e−ρix = e−(λ+δ )x/ci +
∞

∑
n=1

rn

n!
dn−1

dsn−1

(
−xe−sx

(
−λ

ci
f̂ (s)

)n)∣∣∣
s=(λ+δ )/ci

= e−(λ+δ )x/ci +
∞

∑
n=1

rn

n!
dn−1

dsn−1

(
(−1)n+1λ nx/cn

i

∫ ∞

0
e−s(x+y) f n∗(y)dy

)∣∣∣
s=(λ+δ )/ci

= e−(λ+δ )x/ci +
∞

∑
n=1

λ nrn

n!cn
i

∫ ∞

0
x(x+ y)n−1e−(λ+δ )(x+y)/ci f n∗(y)dy.
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Substituting t := (x+ y)/ci and rearranging leads to:

e−ρix = e−(λ+δ )x/ci +
∞

∑
n=1

rn λ n

n!

∫ ∞

x/ci

xtn−1e−λ te−δ t f n∗(cit − x)dt

=
∞

∑
n=0

rn
∫ ∞

x/ci

e−δ tgi(x,n, t)dt. (36)

Therefore,

Tρi f (x) =
∫ ∞

x
e−ρi(u−x) f (u)du

=
∫ ∞

x

∞

∑
n=0

rn
∫ ∞

(u−x)/ci

e−δ tgi(u− x,n, t)dt f (u)du

=
∞

∑
n=0

rn
∫ ∞

0
e−δ t

∫ cit+x

x
f (u)gi(u− x,n, t)dudt. (37)

Since ϕ∞(u) defined in (25) is the joint Laplace transform under the classical com-
pound Poisson risk model without a barrier we can use Dickson [3] to complete the
proof.

Moreover, the following result holds true.

Lemma 2. The function ν(u) given in (22) equals

ν(u) =
∞

∑
n=0

rn
∫ ∞

0
e−δ tϖ(u,n, t)dt, (38)

where

ϖ(u,0, t) := g1(−u,0, t),

ϖ(u,n, t) :=
n

∑
m=1

(
λ
c1

)m ∫ c1t

0

∫ u

0
gc1(y,n−m, t)bm(u− x,y+ x)dxdy+gc1(−u,n, t), n ≥ 1

bn(u,y) :=
n−1

∑
j=0

(
n
j

)
(−1) j

Γ (n)

∫ u

0
(u− x)n−1 f (n− j)∗(y+u− x) f j∗(x)dx.

Proof. Our goal is to express ν(u) as the Laplace transform:

ν(u) =
∫ ∞

0
e−ρ1tξ (u, t)dt. (39)

We start from definition (22):

ν(u) =
∞

∑
n=0

(
λ r
c1

)n

(Tρ1 f )n∗ ∗ p(u)
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=
∞

∑
n=1

(
λ r
c1

)n ∫ u

0
(Tρ1 f )n∗(u− x)eρ1xdx+ eρ1u. (40)

Using Dickson and Willmot [5] we can obtain the following representation:

(Tρi f )n∗(u) =
∫ ∞

0
e−ρiybn(u,y)dy (41)

for

bn(u,y) :=
n−1

∑
j=0

(
n
j

)
(−1) j

Γ (n)

∫ u

0
(u− x)n−1 f (n− j)∗(y+u− x) f j∗(x)dx.

By (40)

ν(u) =
∞

∑
n=1

(
λ r
c1

)n ∫ u

0

∫ ∞

0
e−ρ1ybn(u− x,y)dyeρ1xdx+ eρ1u

=
∞

∑
n=1

(
λ r
c1

)n ∫ ∞

0
e−ρ1t

∫ u

0
bn(u− x, t + x)dxdt

+
∞

∑
n=1

(
λ r
c1

)n ∫ 0

−u
e−ρ1t

∫ u

−t
bn(u− x, t + x)dxdt +

∫ ∞

0
e−ρ1tδ−u(t)dt.

Comparing the coefficients of e−ρ1t in (39) gives:

ξ (u, t) =
∞

∑
n=1

(
λ r
c1

)n ∫ u

0
bn(u− x, t + x)dx+δ−u(t); (42)

see also [11]. Using (36) and (42) in (39) we end up with:

ν(u) =
∫ ∞

0
e−ρ1yξ (u,y)dy+ eρ1u

=
∫ ∞

0

∞

∑
n=0

rn
∫ ∞

y/c1

e−δ tgc1(y,n, t)dtξ (u,y)dy

=
∞

∑
n=0

rn
∫ ∞

0
e−δ t

∫ c1t

0
gc1(y,n, t)ξ (u,y)dydt

=
∞

∑
n=1

rn
∫ ∞

0
e−δ t

(
n

∑
m=1

(
λ
c1
)m
∫ c1t

0

∫ u

0
gc1(y,n−m, t)bm(u− x,y+ x)dxdy+gc1(−u,n, t)

)
dt

+
∫ ∞

0
e−δ tgc1(−u,0, t)dt

which completes the proof.

Using above lemmas we will prove the main result of this paper.
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Theorem 4. For 0 ≤ u ≤ b and m > 1 the joint density of the number of claims until
ruin Nτ and the time to ruin τ is given by

w1(u,1, t) =
λ
c2

e−λ t F̄(c2t +b+
c2

c1
(u−b))

w1(u,m, t) = e−
λb
c1

[
m

∑
n=1

ϑ(u,m,n, t − b
c1
)−

m−1

∑
n=1

∫ t− b
c1

0
ς(b,m−n, t − b

c1
− z)w1(u,n,z)dz

]
,

(43)

where for n ≥ 1

ς(b,0, t) := ϖ(b,0, t) = gc1(−b,0, t),

ς(b,n, t) := ϖ(b,n, t)−
n−1

∑
m=0

λ
c2

∫ b

0

∫ t

0
ϖ(b− x,n−1−m, t − z)

∫ c2z+x

x
f (y)g2(y− x,m,z)dydzdx,

γ(b,1, t) :=
λ
c2

∫ c2t+b

b
F̄(y)g2(y−b,0, t)dy,

γ(b,n, t) :=
n−2

∑
m=0

λ
c2

∫ b

0

∫ t

0
w∞(b− x,n−m−1, t − z)

∫ c2z+x

x
f (y)g2(y− x,m,z)dydzdx,

ϑ(u,m,n, t) :=
∫ t

0
ς(b,m−n, t − z)w∞(u,n,z)+(γ(b,n, t − z)−w∞(b,n, t − z))ϖ(u,m−n,z)dz.

Proof. In order to get the joint density w(u,n, t), we have to take inverse Laplace
transform with respect to δ rather than ρ1 and ρ2. To do this we must find firstly
the relationship between transforms with respect to ρ1, ρ2 and δ by applying the
Lagrange’s Expansion theorem. For convenience, we will denote:

χ(b) := ν(b)− λ r
c2

ν ∗Tρ2 f (b). (44)

Then we can rewrite (20) as follows:

χ(b)ϕ1(u) = χ(b)ϕ∞(u)+
λ r
c2

[
ϕ∞ ∗Tρ2 f (b)+Tρ2 F̄(b)

]
ν(u)−ϕ∞(b)ν(u). (45)

Putting (37) and (38) into (44) we will derive:

χ(b) =
∞

∑
n=0

rn
∫ ∞

0
e−δ tϖ(b,n, t)dt − λ r

c2

∫ b

0
ν(b− x)Tρ2 f (x)dx

=
∞

∑
n=0

rn
∫ ∞

0
e−δ tϖ(b,n, t)dt − λ r

c2

∞

∑
n=0

rn
n

∑
m=0

∫ b

0

∫ ∞

0
e−δ tϖ(b− x,n−m, t)dt

∫ ∞

0
e−δ z

∫ c2z+x

x
f (y)g2(y− x,m,z)dydzdx
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=
∞

∑
n=0

rn
∫ ∞

0
e−δ tϖ(b,n, t)dt −

∞

∑
n=1

rn
∫ ∞

0
e−δ t{

n−1

∑
m=0

λ
c2

∫ b

0

∫ t

0
ϖ(b− x,n−1−m, t − z)

∫ c2z+x

x
f (y)g2(y− x,m,z)dydzdx}dt

=
∞

∑
n=1

rn
∫ ∞

0
e−δ t{ϖ(b,n, t)−

n−1

∑
m=0

λ
c2

∫ b

0

∫ t

0
ϖ(b− x,n−1−m, t − z)

∫ c2z+x

x
f (y)

g2(y− x,m,z)dydzdx}dt +
∫ ∞

0
e−δ tϖ(b,0, t)dt

=
∞

∑
n=0

rn
∫ ∞

0
e−δ tς(b,n, t)dt. (46)

Similarly, using Lemma 1, we can check that:

λ r
c2

[
ϕ∞ ∗Tρ2 f (b)+Tρ2 F̄(b)

]
=

∞

∑
n=1

rn
∫ ∞

0
e−δ tγ(b,n, t)dt. (47)

Using (38), (46) and (47) in (45) we obtain:

∞

∑
m=1

rm
∫ ∞

0
e−δ t

m

∑
n=1

∫ t

0
ς(b,m−n, t − z)(w1(u,n,z)−w∞(u,n,z))dzdt

=
∞

∑
m=1

rm
∫ ∞

0
e−δ t

m

∑
n=1

∫ t

0
(γ(b,n, t − z)−w∞(b,n, t − z))ϖ(u,m−n,z)dzdt

or equivalently that

m

∑
n=1

∫ t

0
ς(b,m−n, t − z)w1(u,n,z)dz

=
m

∑
n=1

∫ t

0
ς(b,m−n, t − z)w∞(u,n,z)

+(γ(b,n, t − z)−w∞(b,n, t − z))ϖ(u,m−n,z)dz.

Now, if m = 1 then∫ t

0
ς(b,0, t − z)w1(u,1,z)dz = ϑ(u,1,1, t).

In this case ∫ t

0
δ−b/c1(t − z)e

λb
c1 w1(u,1,z)dz = e

λb
c1 w1(u,1, t +

b
c1
)

=
λ
c2

e−λ t F̄(c2t +b+
c2

c1
u)

and
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w1(u,1, t) =
λ
c2

e−λ (t+ b
c1
)F̄(c2t +b+

c2

c1
(u−b)).

Similarly, if m = 2 then

∫ t

0
δ−b/c1(t − z)e

λb
c1 w1(u,2,z)dz =

2

∑
n=1

ϑ(u,2,n, t)−
∫ t

0
ς(b,1, t − z)w1(u,1,z)dz

and

w1(u,2, t) = e−
λb
c1

[
2

∑
n=1

ϑ(u,2,n, t − b
c1
)−

∫ t− b
c1

0
ς(b,1, t − b

c1
− z)w1(u,1,z)dz

]
.

Similarly we can prove the assertion for any m > 1.

Theorem 5. For u > b and m > 1 the joint density of the number of claims until ruin
Nτ and the time to ruin τ is given by

w2(u,m, t)= (
λ
c2
)m

m−1

∑
k=0

m−k−1

∑
n=0

∫ u−b

0

∫ t

0

∫ c2z

0
g2(y,k,z)bm−k−n−1(u−b−x,y)ε(x,n, t−z)dydzdx,

(48)
where

ε(u,0, t) :=
∫ c2t+u+b

u+b
F̄(y)g2(y−u−b,0, t)dy,

ε(u,m, t) :=
m

∑
n=1

∫ u+b

u

∫ t

0
w1(u+b− x,n, t − z)

∫ c2z+x

x
f (y)g2(y− x,m−n,z)dydzdx

+
∫ c2t+u+b

u+b
F̄(y)g2(y−u−b,m,z)dy, n ≥ 1.

Proof. To obtain an expression for w2(u,m, t) we first consider h(x) defined in (16).
Using (37) we can derive:

h(u) =
∫ u+b

u

∞

∑
m=1

rm
∫ ∞

0
e−δ tw1(u+b− x,m, t)dt

×
∞

∑
n=0

rn
∫ ∞

0
e−δ z

∫ c2z+x

x
f (y)g2(y− x,n,z)dydzdx

+
∞

∑
n=0

rn
∫ ∞

0
e−δ t

∫ c2t+u+b

u+b
F̄(y)g2(y−u−b,n, t)dydt

=
∞

∑
n=1

rn
∫ ∞

0
e−δ t

[
n

∑
m=1

∫ u+b

u

∫ t

0
w1(u+b− x,m, t − z)

×
∫ c2z+x

x
f (y)g2(y− x,n−m,z)dydzdx
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+
∫ c2t+u+b

u+b
F̄(y)g2(y−u−b,n,z)dy

]
dt (49)

+
∫ ∞

0
e−δ t

∫ c2t+u+b

u+b
F̄(y)g2(y−u−b,0, t)dydt

=
∞

∑
n=0

rn
∫ ∞

0
e−δ tε(u,n, t)dt. (50)

Moreover, substituting (41), (49) and (36) into (15) gives:

ϕ2(u) =
∞

∑
m=0

(
λ r
c2

)m+1 ∫ u−b

0
(Tρ2 f )m∗(u−b− x)h(x)dx

=
∞

∑
m=0

(
λ r
c2

)m+1 ∫ u−b

0

∫ ∞

0
e−ρ2ybm(u−b− x,y)dy

∞

∑
n=0

rn
∫ ∞

0
e−δ tε(x,n, t)dtdx

=
∞

∑
m=0

(
λ r
c2

)m+1 ∫ u−b

0

∫ ∞

0

∞

∑
k=0

rk
∫ ∞

y/c2

e−δ zg2(y,k,z)dzbm(u−b− x,y)dy

×
∞

∑
n=0

rn
∫ ∞

0
e−δ tε(x,n, t)dtdx

=
∞

∑
m=1

rm
∫ ∞

0
e−δ t

{(
λ
c2

)m m−1

∑
k=0

m−k−1

∑
n=0

∫ u−b

0

∫ t

0

∫ c2z

0
g2(y,k,z)bm−k−n−1(u−b− x,y)

×ε(x,n, t − z)dydzdx

}
dt. (51)

Comparing equations (51) and (4) completes the proof.
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