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Abstract In this short note, we consider the optimization problem with probability
distortion when the objective functional involves a running term which is given by
an S-shaped function. A stochastic maximum principle is presented.

1 Introduction

There are several epoch-making achievements in the history of finance theory over
the past 70 years. The first is the expected utility maximization proposed by von
Neumann and Morgenstern [17]. It is premised on the tenets that decision makers
are rational and consistently risk averse under uncertainty. Later on, a Nobel-prize-
winning work, Markowitz’s mean-variance model [12] came out. Along with these
theories in continuous portfolio selection problems, many approaches, such as dy-
namic programming, stochastic maximum principle, martingale and convex duality
have been developed, see Merton [13], Peng [14], Duffie and Epstein [4], Yong and
Zhou [19], Karatzas et al. [9].

On the account of substantial phenomena violating the basic tenets of conven-
tional financial theory, for instance, Allais paradox [1], Tversky and Kahneman [16]
put forward cumulative prospect theory (CPT) and Benartzi and Thaler [3] pro-
posed behavioral economics. Both of them integrate psychology with finance and
economics. To study the continuous-time portfolio choice problem, we concentrate
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on CPT in this paper. Its key elements are: (1) benchmark (evaluated at terminal
time T ) serves as a base point to distinguish gains from losses (Without loss of gen-
erality, it is assumed to be 0 in this paper); (2) Utility functions are concave for gains
and convex for losses, and steeper for losses than for gains; (3) Probability distor-
tions (or weighting) are nonlinear transformation of the probability measures, which
overweight small probabilities and underweight moderate and high probabilities.

There have been burgeoning research merge CPT into portfolio investment. Most
of them are limited to the discrete-time setting, see for example Benartzi and Thaler
[2], Shefrin and Statman [15], Levy and Levy [10]. The pioneering analytical re-
search on continuous-time asset allocation featuring behavioral criteria is done by
Jin and Zhou [7]. Since then, a few extensive works have been published, see He
and Zhou ([5], [6]), Xu and Zhou [18], Jin and Zhou [8] and so on. Jin and Zhou
developed a new theory to work out the optimal terminal value in a continuous-time
CPT model. Nonetheless, their theory aims at a particular portfolio choice problem
in a self-financing market.

This article is to deal with probability distortion for model with running utilities.
In order to come closer to reality, bankruptcy is not allowed in our problem. The
remainder is organized as follows. Next section will formulate a general continuous-
time portfolio selection model under the CPT, featuring S-shaped utility functions
and probability distortions. The stochastic maximum principle as well as a solvable
example are finally presented.

2 Problem Formulation

Let T > 0 be a fixed time horizon and (Ω ,F ,P,{Ft}t≥0) a filtered complete prob-
ability space on which is defined a standard Ft -adapted m-dimensional Brownian
motion Wt ≡ (W 1

t , · · · ,W m
t )⊤ with W0 = 0. It is assumed that Ft =σ{Ws : 0≤ s≤ t},

augmented by all the null sets. Throughout this paper A⊤ denotes the transpose of a
matrix A; a± denote the positive and negative parts of the real number a.

We define a positive state processdXt = b(t,ut ,Xt)dt +σ(t,ut ,Xt)dWt

X0 = x0 > 0,
(2.1)

and the agent’s prospective functional

J(u·) = E
∫ T

0
(
ζ+(u+t )ϖ ′

+

(
1−Fu+t

(u+t )
)
−ζ−(u−t )ϖ ′

−
(
1−Fu−t

(u−t )
))

dt

+E
(
l(XT )w′(1−FXT (XT )

))
,

(2.2)
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where u· is a control process taking values in a convex set U ⊆R. According to CPT,
the following assumptions will be in force throughout this paper, where x denotes
the state variable, u denotes the control variable.

We make the following assumptions throughout this article.
(H.1) b(·, ·, ·) : [0,T ]×U ×R+ →R, σ(·, ·, ·) : [0,T ]×U ×R+ →R, are continu-

ously differentiable with respect to (u,x) with Lipschitz continuous first derivatives.
We further assume b(t,u,0) = σ(t,u,0) = 0.

(H.2) ζ±(·), l(·) : R+ → R+ are differentiable, strictly increasing, strictly con-
cave, with ζ±(0) = l(0) = 0 and ζ ′

±(0+) = l′(0+) = ∞.
(H.3) ϖ±(·),w(·) : [0,1]→ [0,1], are differentiable and strictly increasing, with

ϖ±(0) = w(0) = 0, ϖ±(1) = w(1) = 1. Moreover, the first derivatives of ϖ±(·),w(·)
are all bounded.

Let

U =
{

u : [0,T ]×Ω →U | ut is Ft -adapted and E
∫ T

0
|ut |4dt < ∞

}
.

Definition 1. A control process u· ∈U is said to be admissible, and (u.,X .) is called
an admissible pair, if

1. X . is the unique solution of equation (2.1) under u.;
2. For any t ∈ [0,T ], the distribution functions of u±· are continuous except at 0;
3. E

∫ T
0

∣∣ζ±(u±t )ϖ ′
±
(
1−Fu±t

(u±t )
)∣∣8dt < ∞.

4. E
∫ T

0

(∣∣ d
du lnζ±(u±t )

∣∣8 + ∣∣ζ ′′
±(u

±
t )

∣∣4)dt < ∞.

The set of all admissible controls is denoted by Uad .

Meanwhile, the following technical assumption for the terminal state are in force
throughout this paper.

Assumption 1 The terminal state XT corresponding to the control process u.∈Uad
is supposed to has continuous distribution function. Besides,

E
∣∣l(XT )w′(1−FXT (XT )

)∣∣8 +E
∣∣∣ d
dx

ln l(XT )
∣∣∣8 +E

∣∣l′′(XT )
∣∣4 < ∞. (2.3)

Problem. Our optimal control problem is to find ū· ∈ Uad such that

J(ū·) = max
u·∈Uad

J(u·). (2.4)

3 A necessary Condition for Optimality

The current section presents our main result of the article. Let (ū·, X̄·) be an optimal
pair of the problem (2.4). We proceed to presenting the condition it must satisfy. To
this end, we formulate the adjoint equation
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(
bx(t, ūt , X̄t)pt +σx(t, ūt , X̄t)qt

)
dt +qtdWt ,

pT = l′(X̄T )w′(1−FX̄T
(X̄T )).

(3.1)

Here is the necessary condition we obtained for the optimality of the control.

Theorem 2. If ū· is the optimal control with the state trajectory X̄·, then there exists
a pair (p·,q·) of adapted processes which satisfies (3.1) such that a.e. t ∈ [0,T ],

ptbu(t, ūt , X̄t)+σu(t, ūt , X̄t)qt =

−ζ ′
+

(
ū+t

)
ϖ ′
+

(
1−Fū+t

(ū+t )
)

if ūt > 0,

−ζ ′
−
(
ū−t

)
ϖ ′
−
(
1−Fū−t

(ū−t )
)

if ūt < 0,
a.s..

(3.2)

Recall the state equation (2.1) and the adjoint equation (3.1). Given an optimal
control ū·, there exists a unique solution X̄(ū·) to the state equation. As pT is known,
the unique solution (p(ū·),q(ū·)) for the backward SDE (3.1) is obtained. Plugging
X̄(ū·) and (p(ū·),q(ū·)) into (3.2), the optimal control ū· is narrowed to one of the
solution of so obtained algebraic equation.

In what follows, we present a solvable example and compare the result with the
one without probability distortions. The process u±t in the objective functional are
replaced by u±t Xt , signifying the proportion of wealth process. We study a case with
compounded cost function.

Example 1. Let ut ,Xt > 0, b(t,u,x) = −ux, and σ(t,u,x) = x. We take utility func-
tion ζ+(x) = xα

α (0 < α < 1), and distortion function (see, Lopes [11])

ϖ+(p) = ν pγ+1 +(1−ν)[1− (1− p)β+1], γ,β ≥ 0,0 ≤ ν ≤ 1.

Then,
dXt =−utXtdt +XtdWt , X0 = x0,

and

J(u·) =E
∫ T

0

( 1
α
(utXt)

α ϖ ′
+

(
1−Fut Xt (utXt)

)
+Xt

)
dt.

By Theorem 2, its optimal solution (ū·, X̄·) should satisfy

pt =
(
ūt X̄t

)α−1ϖ ′
+

(
1−Fūt X̄t

(ūt X̄t)
)
, a.e.t ∈ [0,T ],a.s., (3.3)

and

d pt =
(
ūt pt −qt −

(
ūt X̄t

)α−1ϖ ′
+

(
1−Fūt X̄t

(ūt X̄t)
)
ūt −1

)
dt +qtdWt , pT = 0.

It yields pt = T −t, qt = 0, ∀t ∈ [0,T ]. Plugging back to equality (3.3), we obtain

that ūt X̄t =
(

T−t
(1−ν)(β+1)

)1/(α−1)
, a.e.t ∈ [0,T ], a.s.. Solving the state equation, we

arrive at
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ūt = (T − t)1/(α−1)/Vt
(
x0((1−ν)(β +1))1/(α−1)+

∫ t

0

(T − s)1/(α−1)

Vs
ds, a.s.,

where Vt = exp{Bt − t
2}.
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