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Abstract We show that the distribution of two-sided weighted Kolmogorov-Smirnov
(wWK-S) statistics can be obtained via the solution of the system of two Volterra type
integral equations for corresponding boundary crossing probabilities for a diffusion
process. Based on this result we propose a numerical approximation method for
evaluating the distribution of wK-S statistics. We provide the numerical solutions
to the system of the integral equations which were also verified via Monte Carlo
simulations.

1 Introduction

The applications of one-sided and two-sided weighted Kolmogorov-Smirnov (wK-
S) statistical tests are ubiquitous in diverse areas of applications, including physics,
finance, computational biology and Gene Set Enrichment Analysis (GSEA), see
e.g. [8, 14, 22]. In some cases there exist modifications of the wK-S whose limit
distributions (for large sample sizes) can be represented as the following random

variable |B ()5|
Dy, ::supti, (1.1)
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where g(¢) and f(¢) are some deterministic functions of ¢, B = {By,t € [0,1]} is a
standard Brownian bridge, the random variable & is independent of B and has the
standard normal distribution, & ~ N(0,1), T C [0, 1]. Note that analytical expres-
sions for the distribution function P{Dgy s < x}, x > 0, are not available in closed
form besides the classical case when g(¢) =0, f(¢) = 1 (see Kolmogorov [15]).

Recent applications of wK-S in GSEA (see e.g. [6]) require the development of
fast and accurate numerical approximations for the cumulative distribution functions
(cdf) of Dy r for specific functions f and g.

This paper addresses the issues of approximating cdf of the D, ; under the fol-
lowing two important settings:

1. f)=1g={g(t) =t*—t,1/2<a<1,teT =]0,1]},
2. f(t)=+/t(1=1),t €T =a,bl,g(t) =0,0<a<b< 1.

Our goal is to find accurate numerical approximations for the following corre-
sponding tail distributions

Pi(x) := P{sup|B; — g(t)&| > x}; Pr(x) ::P{ sup _ Bl >x}.
teT t€la,b] t(1—1)

Setting 1 was recently discussed in the context of GSEA, see e.g. [6],[16], [17]).
The family of functions g is of special relevance there. In particular, the case a =
2/3 in Setting 1 corresponds to GSEA analysis where the weights of the genes in
question are replaced by their respective ranks obtained based on their expressions
in typical experiments. Examples of such gene expression profiles are accessible
from the Gene Expression Omnibus repository [12]. Note that g = 0 corresponds to
the classical Kolmogorov-Smirnov test statistic where the closed-form expression
for P{DOJ < x} is well known [15]. See also [10] and [21] for a historical account.

Setting 2 corresponds to the wK-S test suggested by Anderson and Darling [1].
It is designed with the purpose to increase the sensitivity for the tails of empirical
distributions compared to the classical K-S test. Some asymptotic result for the tail
probabilities under this setting have been derived recently in [7].

In general, finding the distribution of Dy  is a computationally intensive numer-
ical problem, a subject of pursuit for many different approaches, each with its own
merits and shortcomings, that are devised specifically to address this problem from
different perspectives. In [9] and [2], among others, the authors reduce the problem
of approximating the extrema of modified Brownian bridges to finding boundary
crossing probabilities (BCP) with respect to Brownian motion. In line with this
approach, piecewise linear boundaries were used to replace nonlinear boundaries
and approximate the desired distribution by an n-dimensional integrals in a simi-
lar way as used in [19], [4], and [23]. The convenient feature of this approach, as
demonstrated in [16] and [17] for the case of the one-sided version of wK-S, is a
possibility to obtain analytical upper and lower bounds for the tail distributions of
statistics which lead to fast and reasonably accurate approximations. However, for
the case of the two-sided wK-S this approach requires substantial computational
cost in situations when highly accurate approximations are needed.
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Historically it was Kolmogorov [15] who first found the distribution of Dy ; as a
solution of a partial differential equation (PDE). Subsequently, Anderson and Dar-
ling in [1], had applied this approach for solving related problems in the construc-
tion of goodness-of-fit tests. Under Settings 1 and 2 it is possible to use the finite-
difference schemes or finite element method to obtain numerical approximations.
However, the PDE approach seems to be not computationally efficient due to the
fact that not only function evaluations are required at larger number of discretised
points, but substantially higher computational burden is incurred due to the element
assembly process [5].

The technique discussed in our paper is inspired by the work of Peskir (see The-
orem 2.2 in [20]) who derived an integral equation of Volterra type for BCP with
one-sided boundaries. In this paper we are expanding this technique for BCP with
two-sided boundaries deriving a system of two integral equations of Volterra type.
Note that this system of integral equations was derived in a different way by Buono-
core at al [3] using a different approach. As a matter of fact our technique is appli-
cable to all regular diffusion processes where transition probabilities are available in
a closed form. The advantage of this approach is that a system of integral equations
are rather straight forward to obtain for all one-dimensional diffusion processes and
efficient numerical techniques can be easily developed to solve the equations. The
complete results including the case of general diffusion processes will be presented
in another publication.

The paper is organised as follows. In Section 2 we formulate the results which
provide a system of two Volterra integral equations for P{D, s < x}. In Section 3
we describe the numerical algorithm and results as well as comparisons with Monte
Carlo simulation.

2 Construction of a system of integral equations of Volterra type

In this section, we formulate a general result on BCP for two-sided boundaries
which will be used for deriving a system of integral equations to evaluate the distri-
bution of Dy ¢.

Note that in Setting 1 we need to find BCP of the following form

Pi(x,y) := P{sup|B, — g(t)y| <x} = P{L(t) < B <U(1),t € [0, 1]}
teT
where
L(t) = —x+g(t)y, U(t) =x+g(t)y,x >0,y €R.
Having the function Pj(x,y) the distribution of two-sided wK-S statistics can be

.. . . . . 2
evaluated via integration with respect the density function ¢(y, o) := G%me’@/ 0)°/2

P =1-P(Du <x}= [ :DI-AEd. @D
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In Setting 2 a similar integral representation holds due to the following relations:

= u 7|Bt| x| = xya(l—a
Pz(x)"’<,2[a‘;] %t(l—t)>> P(|Bq| > xv/a(1—a))+

P<{|3a< Val-a)} “{,S[fb]m> }>

etV 4 [ D)1 Bey))dy  @2)

—x/la
with
Py(x,y) =P{L(t) < B, <U(t),1 € [a,D]|Bs = y},y €R,
L(t) = —x\/t(1—=1), U(t) =x\/t(1—1), x> 0.

To derive equations for BCP under the general setting for a general diffusion
process X = {X;,# > 0} (defined on a suitable probability space) we set

T = tigtf{t 1 X, <L(t);B; < U(s),Vs € (t0,1)| Xy, = X0}, (2.3)
Zly

Ty = ,iiltf{t X, >U(1); Xy > L(s),Vs € (t0,1)| X5y = X0}, (2.4)
Zly

t=inf{t: X, & (L(1),U(1))[X, = xo} = inf{z", T} (2.5)
2o

Let f1.(¢|x0,%0), fu(t|xo,t0) and f(¢|x0,%) be the densities of 7;, Ty and T respec-
tively (subject their existence) and X;, = xo.
Now we state a modified version of Theorem 2.2 in [20] for the two-sided BCP.
Theorem 1. Let X be a one-dimensional diffusion process with boundaries U
and L being continuously differentiable functions satisfying inequalities L(s) < xp <
U(s) and L(t) < U(r) forallt > s. Let Fy and Fy, be the cumulative distribution
functions of Tty and 7y, respectively. The following system of integral equations

't ot

P(G1.tlxo.s) = [ PG1HU(s),9)Fudsto,s)+ | P(G1LtILs).9)F(dslxoss)
JS JSs

(2.6)

1 1
P(Ga,t|xg,s) = / P(Go,t|U(s),s)Fy(ds|xo,s) +/ P(Ga,t|L(s),s)Fy(ds|xo,s) ,
' ' 2.7)

hold for any measurable sets G| C [U(t),o0) and Gy C (—oo,L(1)].

The proof of this result will be presented in a full version of this paper; we just
mention that it is based on the use of the Chapman-Kolmogorov equation as a start-
ing point.

In both Settings 1 and 2 we need to derive equations for the case when X = B is
a standard Brownian bridge. Since B is a Gauss-Markov process we have
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S 2 S
P(y,t]x,s) ~ N (Iljgs’;;x, R(t,1)— ’; ((S ’3) 2.8)

where R is the covariance function of B. Using this representation, upon the substi-
tution of the initial condition B;, = xo into the equations (2.6) and (2.7). Letting

1—t 1—t
Y= 1=* o Y= 1=
(—s)(1—1) |’ P(yly,s) =@ (t—s)(1—1)
(I—s) (1-s)

¥ (ylx,s) =¥

)

we have

t

P(U(t)|xo,t0) = | ‘P(U(f)|U(S)7S)fu(5|xo,lo)ds+/lt W(U(t)|L(s),s) fL(s]x0,20) ds,

(2.9)
1 1

(L) 0,10 = [ DL (5),5) o (shros) s | DLOIL), ) (s t0)ds
! ‘ (2.10)

respectively, where @ (x) = [*_ ¢(z)dz and ¥(x) = 1 — P(x).

Since by assumptions U (¢) and L(¢) are differentiable, we have

(U (1), 1]U(5).) = lim D(L(1).]L(s).5) = W(0) = % @.11)
(U (0).1[L(s).5) = Iim @(L().1|U(s).5) = (o) =0 (2.12)

Hence, the kernels ¥(-) and &(-) are non-singular and are differentiable with re-
spect to ¢ for the case X = B.

The system of integral equations (2.6) and (2.7) (and the corresponding equations
(2.9) and (2.10 for the case of Brownian bridge) are Volterra equations of the first
kind; they can be reduced to Volterra integral equations of the second kind which
are numerically more suitable.

Theorem 2. Let fy(f|xo,10) and fi.(t|x0,%0) be the probability density functions
of Ty and Ty, respectively and let p(y,t|x,s) = %P(y,ﬂx,s), then

t
fu(tlxo,t0) = 2p(y1,t|x0,t0) 72/; pO1,t|U(s),s) fu (s|x0,t0) ds
0

t
—2/ p(1,t|L(s),5) fL(s]x0,%0) ds, (2.13)
1o
't
fi(txo,10) =2p(y2,tIXO,to)—2/t p(2,t|U(s),5) fu(s|x0,t0) ds
0

=2 | pO2,1|L(s),5) Llslxo,t0) ds (2.14)
0

hold for any y; C [U(t),o0) and yp C (—oo, L(1)].
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Equations (2.13) and (2.14) are obtained by differentiating (2.6) and (2.7) with
respect to ¢ and then using the relation

. . 1
lim P(U(1).(U(5)9) = lm PL(.1L(5).5) = 3.
Note that a similar approach for the one-sided case was used by Fortet [13] .
It follows that for a standard Brownian bridge with the initial condition B, = xo,
we have

Q¥ UMot) , [ IPWWIU(s).5)
ot ,0 ot

1P (U(t)|L(s),s)
72/,0 ot

fu(tlxo,20) =2 fu (slxo,t0) ds

fr (s]x0,10) ds, (2.15)

and

fL(t|)C(),l()) =2

DUk, [ IRLOCLS) 1 1

ot fo o1
L t’ wﬁ(m,m)d& (2.16)
0

Due to properties (2.11) and (2.12) , singularities in the denominator of the kernels
can be removed.

3 Numerical integration procedure for approximation BCP

For Settings 1 and 2 we use (2.1) and (2.2)

A= [ [ o6 u10.0)+ 00,0y

and

x\/Ta

) =erte(s/ VD) + [ [ o5, /I ) el + Al )y

—X\/lg

with boundaries L and U shown in Section 1 respectively. To calculate fyy and f; we
use (2.15) and (2.16).

Let t; = to+ih, i = 1,...,m, where h is the time step size of uniform dis-
cretisations. We use the Euler approximation to obtain f1(¢;) = fi(f|x,s) and
Ju(t) = fu(tix,s) at an increasing sequence of knots #; and the appropriate Gaus-
sisan quadrature for numerical integrations.

For each of the aforementioned cases, we preform N simulations and use m
equally-spaced discretization in the time interval T, and we estimate the tail proba-
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bilities

Lyt
N ‘:1I(Df,g;m 2 x),

1

Prgm(x) =P [Df(‘:;;m 2 x}

where /(-) is an indicator function.

For Setting 1 we calculate P (x), the tail probabilities approximated using the
aforementioned approximation for ps g, (x) with m = 210 discretised time steps and
the usage of n = 20 Gauss-Hermite nodes in the numerical integrations. Table 1
contains the comparisons of Py (x) and p g

For Setting 2 we calculate P (x), the tail probabilities approximated using the
aforementioned approximation for py 4., () in this setting, with m = 210 discretised
time steps and the usage of n = 20 Gauss-Legendre nodes in the numerical integra-
tions. In Table 2 we compare P (x) to simulation results, and asymptotic estimators
Py(x) generated from [7].

The numerical approximations using integral equations are performed on a Mac-
intosh laptop computer running OS X with 8 GB RAM and 1600MHz CPU, and
computer programs are implemented in C++98. Each point of pe(x) and p;(x) in
the tables takes 1.92s and 1.87s respectively. The Monte Carlo simulations for all
cases are carried out on a cluster computer with 28 parallel CPUs using N = 10’
simulation runs and m = 2'° equally-spaced discretization time intervals.

In both settings, tail probabilities estimated using integral equations and simula-
tion approach differ only at the third decimal place and beyond, suggesting that the
numerical integration approach delivers a level of accuracy comparable to those of
the simulation approach despite the use of a comparatively coarser grain discretiza-
tion time step, i.e., m = 2! in the former as opposed to m = 2!° in the latter.

The major advantage of our method is the relative simplicity and fast calculations
compared to other techniques. For approximations using integral equations, since
discretization time steps of the order m = 2'° is sufficient to deliver tail probability
estimates comparable to those of simulation at N = 107 and m = 2!°, they can be
evaluated in a modest computational framework to reduce costs.

x P prem(®) Varpsen(x)] x 107 |P(x) = prgm(x)|

0.4 0.997467 0.997395 0.025982 0.000072
1.2 0.128036 0.127972 1.115952 0.000064
2.0 0.001056 0.001040 0.010389 0.000016
2.2 0.000219 0.000233 0.002329 0.000014

Table 1a Setting 1: estimated tail probabilities P (x) using integral equations, compared to simu-
lations p g, (x).
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X PZ(X) Pr.gm(X) Var[ps g (x)] x 107 ﬁZ(X) |132(x) *pf-g:m(xﬂ ‘ ﬁZ(X) = Prgm(x)

1.2 0.997822 0.997820 0.021752 0.930700 0.000002 0.067120
2.0 0.695515 0.698015 2.107901 0.663005 0.002500 0.035010
2.8 0.175139 0.177285 1.458550 0.192957 0.002146 0.015672
3.6 0.018395 0.018750 0.183984 0.020708 0.000355 0.001958
4.4 0.000925 0.000969 0.009681 0.001032 0.000044 0.000063

Table 2b Setting 2: estimated tail probabilities P (x) using integral equations, compared to sim-
ulations p g (x); P(x)=1-A(x) (1/ g)_e‘)(x) is the asymptotic tail probability estimator in
equations (9), (10) and (13) of Chicheportiche & Bouchaud [7] where A(x) = (erf(x/v/2))?,
6o(x) = \/2/7x e/ 2, and 1/u is the sample size which is set to be 100 in this numerical example.
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