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Abstract This paper gives a partial answer to a question asked by Pierre-Emmanuel
Caprace at the Groups St Andrews conference at Birmingham (UK) in August 2017,
and investigated at the ‘Tutte Centenary Retreat’ workshop held at MATRIX in
November 2017. Caprace asked if there exists a 2-transitive permutation group P
such that only finitely many simple groups act arc-transitively on a connected graph
X with local action P (of the stabiliser of a vertex v on the neighbourhood of v).
Some evidence is given to suggest that the answer is “No”, even when ‘2-transitive’
is replaced by ‘transitive’, and then by way of illustration, a follow-up question
is answered by showing that all but finitely many alternating groups have such an
action on a 6-valent connected graph with vertex-stabiliser A6.

1 Introduction

At the Groups St Andrews conference held at Birmingham (UK) in August 2017,
Pierre-Emmanuel Caprace asked if there exists a 2-transitive permutation group P
such that only finitely many simple groups act arc-transitively on a connected graph
X in such a way that the stabiliser (in the simple group) of a vertex v induces P on
the neighbourhood of v. This question and a follow-up question about what happens
when P is the alternating group A6 were conveyed by Gabriel Verret and Michael
Giudici at the ‘Tutte Centenary Retreat’ workshop held at MATRIX in November
2017. What follows is a partial answer to the main question, showing that even
when ‘2-transitive’ is replaced by ‘transitive’, no such group P can exist if a certain
conjecture about alternating quotients of amalgamated free products is valid, and
then a full answer to the sub-question, showing that P cannot be A6, as well as
noting that P cannot be one of a number of other permutation groups.
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2 The general question

One approach that can be taken to the general question is to consider the action of
a group G on a graph X with the property that the stabiliser V in G of a vertex v
of X is isomorphic to P (and induces P on the neighbourhood X(v)). First, let d
be the degree of P (as a transitive permutation group). Then we may suppose that
d ≥ 3, since the automorphism groups of 2-valent connected arc-transitive graphs
are dihedral and therefore soluble, and the question by Caprace is not relevant.

Now observe that if E is the stabiliser of an edge e = {v,w} incident with v, and
A is the stabiliser of the arc (v,w) (and hence isomorphic to a point-stabiliser in the
given group P), then G is a homomorphic image of the free product V ∗A E with the
subgroup A =V ∩E amalgamated. Moreover, A has index d in V , and 2 in E.

Next, a conjecture made by Džambić and Jones [10] and supported by the author
asserts that if V and E are any two finite groups with a common subgroup A with
index |V :A| ≥ 3 and index |E :A| ≥ 2, then all but finitely many alternating groups
An occur as homomorphic images of the amalgamated free product V ∗A E. An even
stronger version of this conjecture (believed to be true by the author) is as follows:

Conjecture 1. Let V and E be any two finite groups with a common subgroup A
with index |V : A| ≥ 3 and index |E : A| ≥ 2, and let K be the core of A in V ∗A E.
Then all but finitely many An occur as the image of the amalgamated free product
V ∗A E under some homomorphism that takes V and E to subgroups (of An) isomor-
phic to V/K and E/K respectively. In particular, if the amalgamated subgroup A is
core-free in V ∗A E, then all but finitely many An occur as images of V ∗A E under
homomorphisms that are faithful on each of V and E.

It is easy to see this is stronger than the conjecture in [10], since for example any
quotient of C2∗C1 C3 =C2∗C3 (the modular group) is also a quotient of C4∗C2 D3, but
not vice versa. Also there is plenty of evidence in support of it. Indeed it is known
to be true in many special cases (proved well before the original conjecture was
made in [10]), such as those arising in the way described above from the study of
finite arc-transitive and/or path-transitive 3-valent graphs [4, 8], or 7-arc-transitive
4-valent graphs [9], or similarly from the study of arc-transitive digraphs [6], chiral
maps [2] or chiral polytopes [5], and even hyperbolic 3-manifolds [7].

Furthermore, if the above conjecture is valid, then the answer to Caprace’s main
question can be shown to be ‘No’, even when V is not 2-transitive:

Theorem 1. If Conjecture 1 is valid, then for every transitive finite permutation
group P, all but finitely many alternating groups An act arc-transitively on a con-
nected graph X in such a way that the stabiliser in An of a vertex v induces P on the
neighbourhood of v.

Proof. Let V , E and A be as above, with E chosen as a group containing an index 2
subgroup isomorphic to A, and consider the amalgamated free product V ∗A E. Note
that because A is a point-stabiliser in the permutation group V (= P), it is core-free
in V and hence also A is core-free in V ∗A E. Suppose further that θ : V ∗A E → G is
any epimorphism to a finite non-abelian simple group G such that θ is faithful on
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each of V and E, and also let a be any element of the image of E \A in G, and let H
be the θ -image of V (so that H is isomorphic to P).

Now let X be the double-coset graph X(G,H,a), with vertices defined as the right
cosets of H in G, with cosets Hx and Hy adjacent in X if and only if xy−1 ∈ HaH.
This is a well-known construction attributed to Sabidussi, and described in detail in
[4, 9] for example. The construction ensures that G acts as an arc-transitive group
of automorphisms of the graph X (by right multiplication of cosets Hx in G), with
vertex-stabiliser H acting transitively on the neighbourhood X(H) = {Hah : h ∈ H}
of the trivial coset H. Moreover, this action of H is equivalent to the action of V on
cosets of A (by right multiplication), and hence the same as the natural action of the
given permutation group P, as required.

Finally, if Conjecture 1 is valid then we can take G as the alternating group An
for all but finitely many n, and this completes the proof. ⊓⊔

3 Some specific cases

The same argument as used in the above proof can be applied to many specific cases
where Conjecture 1 is known to be valid.

For example, this is often known to happen when the amalgamated subgroup A
in V ∗A E is trivial. The validity of Conjecture 1 for the free products C3 ∗C2 and
Ck ∗C2 for all k ≥ 7 follows from the fact that all but finitely many alternating groups
are quotients of the ordinary (2,3,k) triangle group for any given such k (see [3]),
and the same holds for Ck ∗C2 for all k ∈ {4,5,6} by the analogous properties of the
(2,k,m) triangle groups for 4 ≤ k < m (see [11]).

Similarly, the fact that all but finitely many alternating groups are quotients of
the extended (2,3,k) triangle (see [3]) shows that the same thing holds for Dk ∗C2 V4
for k = 3 and all k ≥ 7. Also in [10] it was shown that infinitely many alternating
groups occur as quotients of A5 ∗C5 D5.

Hence, in particular, the answer to Caprace’s question is ‘No’ when P is a cyclic
or dihedral group of degree 3 or more, or the group of degree 12 induced by A5 on
cosets of a subgroup of order 5. It is fairly clear that the same answer holds for many
other permutation groups besides these, and we complete this paper (and answer the
sub-question mentioned earlier) by considering the case where P = A6.

From now on we take V as A6 and A as its point-stabiliser A5, and we choose
E as A5 ×C2. Just as before, note that A is core-free in V and hence also core-free
in V ∗A E. We will show that all but finitely many alternating groups An occur as
images of V ∗A E under homomorphisms that are faithful on each of V and E.

To do this, first we note that V ∗A E = A6 ∗A5 (A5 ×C2) is generated by three
elements x, y and a with the following properties:

• x and y generate V = A6 and satisfy the relations x2 = y5 = (xy)5 = (xy2)4 = 1,
• y and u = xy−1xyx generate A = A5 (and satisfy u2 = y5 = (uy2)3 = 1), and
• y, u and a generate E = A5 ×C2, and satisfy a2 = [u,a] = 1 and ya = y−1.
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These properties may be seen by taking x = (3,6)(4,5) and y = (1,2,3,4,5) in A6,
with u = (1,4)(3,5), and by viewing a as the inner automorphism of A5 induced by
conjugation by (1,3)(4,5).

Next, we consider six particular transitive permutation representations of V ∗A E,
of degrees 1, 12, 42, 62, 21 and 31, as given below. In each case we give also the
permutations induced by u = xy−1xyx and w = xa, and identify the fixed points of
the subgroup E (generated by y, u and a), and call these fixed points ‘link points’,
for reasons that should soon become clear.

Representation R1 (degree 1)
x 7→ (),
y 7→ (),
u 7→ (),
a 7→ (),
w 7→ ().
Link point 1

Representation R2 (degree 12)
x 7→ (1,2)(3,4)(9,12)(10,11),
y 7→ (2,3,4,5,6)(7,8,9,10,11),
u 7→ (2,4)(3,5)(7,10)(9,11),
a 7→ (2,7)(3,11)(4,10)(5,9)(6,8),
w 7→ (1,7,2)(3,10)(4,11)(5,9,12)(6,8).
Link points 1 and 12

Representation R3 (degree 42)
x 7→ (1,2)(3,4)(7,12)(8,20)(9,32)(10,27)(11,24)(13,29)(14,33)(15,18)

(16,31)(17,25)(21,34)(23,36)(26,28)(30,35)(39,42)(40,41),
y 7→ (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16)(17,18,19,20,21)

(22,23,24,25,26)(27,28,29,30,31)(32,33,34,35,36)(37,38,39,40,41),
u 7→ (2,4)(3,5)(7,10)(9,11)(12,17)(13,22)(14,27)(15,28)(16,23)(18,21)

(19,31)(20,29)(24,26)(25,30)(32,34)(33,35)(37,40)(39,41),
a 7→ (2,7)(3,11)(4,10)(5,9)(6,8)(13,16)(14,15)(18,21)(19,20)(22,23)

(24,26)(27,28)(29,31)(32,37)(33,41)(34,40)(35,39)(36,38),
w 7→ (1,7,12,2)(3,10,28,24)(4,11,26,27)(5,9,37,32)(6,8,19,20)(13,31)

(14,41,34,18)(15,21,40,33)(16,29)(17,25)(22,23,38,36)(30,39,42,35).
Link points 1 and 42

Representation R4 (degree 62)
x 7→ (1,2)(3,4)(7,12)(8,20)(10,14)(11,21)(13,16)(15,18)(23,32)(24,31)

(25,35)(26,40)(27,41)(28,33)(29,39)(36,38)(42,52)(43,50)(44,46)
(45,54)(47,55)(48,53)(57,61)(60,62),

y 7→ (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16)(17,18,19,20,21)
(22,23,24,25,26)(27,28,29,30,31)(32,33,34,35,36)(37,38,39,40,41)
(42,43,44,45,46)(47,48,49,50,51)(52,53,54,55,56)(57,58,59,60,61),
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u 7→ (2,4)(3,5)(7,10)(9,11)(12,17)(13,19)(16,20)(18,21)(22,27)(23,29)
(26,30)(28,31)(33,37)(34,39)(35,41)(38,40)(44,47)(45,49)(46,51)
(48,50)(52,54)(53,56)(57,60)(58,61),

a 7→ (2,7)(3,11)(4,10)(5,9)(6,8)(12,22)(13,26)(14,25)(15,24)(16,23)
(17,27)(18,31)(19,30)(20,29)(21,28)(32,42)(33,46)(34,45)(35,44)
(36,43)(37,51)(38,50)(39,49)(40,48)(41,47)(52,57)(53,61)(54,60)
(55,59)(56,58),

w 7→ (1,7,22,12,2)(3,10,25,44,33,21)(4,11,28,46,35,14)(5,9)(6,8,29,49,
39,20)(13,23,42,57,53,40)(15,31)(16,26,48,61,52,32)(17,27,47,59,
55,41)(18,24)(19,30)(34,45,60,62,54)(36,50)(37,51)(38,43)(56,58).

Link points 1 and 62

Representation R5 (degree 21)
x 7→ (1,2)(3,4)(7,12)(8,20)(10,14)(11,21)(13,16)(15,18),
y 7→ (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16)(17,18,19,20,21),
u 7→ (2,4)(3,5)(7,10)(9,11)(12,17)(13,19)(16,20)(18,21),
a 7→ (2,7)(3,11)(4,10)(5,9)(6,8)(13,16)(14,15)(18,21)(19,20),
w 7→ (1,7,12,2)(3,10,15,21)(4,11,18,14)(5,9)(6,8,19,20).
Link point 1

Representation R6 (degree 31)
x 7→ (1,2)(3,4)(7,12)(8,20)(10,14)(11,21)(13,16)(15,18)(23,25)(24,31)

(26,28)(27,29),
y 7→ (2,3,4,5,6)(7,8,9,10,11)(12,13,14,15,16)(17,18,19,20,21)

(22,23,24,25,26)(27,28,29,30,31),
u 7→ (2,4)(3,5)(7,10)(9,11)(12,17)(13,19)(16,20)(18,21)(22,27)(23,29)

(26,30)(28,31),
a 7→ (2,7)(3,11)(4,10)(5,9)(6,8)(12,22)(13,26)(14,25)(15,24)(16,23)

(17,27)(18,31)(19,30)(20,29)(21,28),
w 7→ (1,7,22,12,2)(3,10,25,16,26,21)(4,11,28,13,23,14)(5,9)

(6,8,29,17,27,20)(15,31)(18,24)(19,30).
Link point 1

Note that in each case, the permutations induced by x, y and u are necessarily
even, since they generate a subgroup isomorphic to A6 or the trivial group. On the
other hand, the permutations induced by the involution a have 0, 5, 18, 30, 9 and 15
transpositions respectively, and hence the permutations induced by a and w = xa are
even in representations R1, R3 and R4, but are odd in representations R2, R5 and R6.
Indeed, the cycle structure of the permutation induced by w = xa in representations
R2 to R6 is 23 32, 23 49, 28 52 66, 13 21 44 and 24 51 63, respectively.

We will use these six representations as ‘building blocks’ for constructing tran-
sitive permutation representations of V ∗A E of arbitrarily large degree, by using the
link points to join representations together.

To help to explain that, we observe how the image of each representation of
V ∗A E splits into orbits of the subgroups V = ⟨x,y⟩ ∼= A6, E = ⟨y,u,a⟩ ∼= A5 ×C2
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and A = V ∩E = ⟨y,u⟩ ∼= A5. For example, the image of R3 (of degree 42) splits
into three orbits of V, of lengths 6, 6 and 30, namely {1,2, . . . ,6}, {7,8, . . . ,36} and
{37,38, . . . ,42}, and these in turn split into seven orbits of A, of lengths 1, 5, 5, 20, 5,
5 and 1, namely {1}, {2,3, . . . ,6}, {7,8, . . . ,11}, {12,13, . . . ,31}, {32,33, . . . ,36},
{37,38, . . . ,41} and {42}. Every orbit of the subgroup E = ⟨A,a⟩ is then either an
orbit of A preserved by a, or a union of two orbits of A that are interchanged by a.
For example (again), in R3 the subgroup E has five orbits, of lengths 1, 10, 20, 10
and 1, namely {1}, {2,3, . . . ,11}, {12,13, . . . ,31}, {32,33, . . . ,41} and {42}.

This orbit decomposition is depicted for all six of our ‘building block’ represen-
tations in Figure 1, with each small box indicating an orbit of A (and the number
inside it indicating the length of that orbit), and each thin horizontal line indicating
a connection between a pair of orbits of A that are interchanged by a. In particular,
each small box with a ‘1’ inside it contains a link point, fixed by E = ⟨y,u,a⟩.
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Fig. 1 Our ‘building block’ representations 1 to 6 (on 1, 12, 42, 62, 21 and 31 points respectively)

Next, if we take any two transitive permutation representations of V ∗A E, say
of degrees n1 and n2, such that each representation contains at least one link point,
then we can join them together to form a larger one of degree n1 + n2, by simply
concatenating the permutations induced by each of x, y and a, and then adding a
transposition to a that swaps the two chosen link points.

For example, we can join the first two representations together by re-labelling the
single point of R1 as ‘13’, and then adding a new transposition (12,13) to the per-
mutation induced by a. This gives a transitive representation on 13 points, in which
x, y and u induce the same permutations as given in R2, while a induces the in-
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volution (2,7)(3,11)(4,10)(5,9)(6,8)(12,13) and w = xa induces the permutation
(1,7,2)(3,10)(4,11)(5,9,13,12)(6,8).

Here, and in general when a pair of transitive representations are joined together
in this way, the images of x, y and a still satisfy the same relations as in V ∗A E,
and hence (by the universal property of amalgamated products), the definition of the
images extends to a new permutation representation of V ∗A E. The only significant
change is made to the permutation induced by a, and this simply joins two single-
point orbits of E = ⟨y,u,a⟩ into a single two-point orbit of E. Similarly, the cycles
of w = xa containing the two link points are merged into a single cycle.

For another example, suppose we join together a copy of each of R5 and R2 by
adding a new transposition that swaps the link point 1 of R5 with link point 1 of
R2 (suitably re-labelled). Then we obtain a transitive permutation representation on
21+ 12 = 33 points. Before the join, the permutations induced by w have cycle
structures 13 21 44 and 23 32, with link point 1 of R5 lying in a cycle of length 4 and
link point 12 of R2 lying in a cycle of length 3. The effect of the join is to merge
those two cycles into a single cycle of length 7, leaving other cycles unchanged.

We have now dealt with enough properties of the building blocks and their con-
junction to prove the following:

Theorem 2. For all but finitely many positive integers n, both the alternating group
An and the symmetric group Sn are homomorphic images of the amalgamated free
product A6 ∗A5 (A5 ×C2), and hence act faithfully as an arc-transitive group of au-
tomorphisms of some 6-valent graph with vertex-stabiliser isomorphic to A6.

Proof. For any positive integers k and m, let n = 21+12k+62m, and observe that
every odd positive integer n ≥ 395 is expressible in this way.

Now construct a transitive permutation representation of A6 ∗A5 (A5 ×C2) of odd
degree n by stringing together a single copy of R5 with k copies of R2, and then m
copies of R4. Then the permutation induced by a has 9+ 6k+ 31m transpositions
(with k+m of these coming from the linkages), and so the permutations induced by
a and w are even when m is odd, but odd when m is even. Indeed, the permutation
induced by w has cycle structure 13 21+3k+8m 43 51 6k−1+6m 71 81 10m−1.

The single 7-cycle comes from the linkage between the copy of R5 and the first
copy of R2. Also the length of every other cycle of w divides 120, so w120 is a
single 7-cycle. Moreover, this 7-cycle contains a pair of points interchanged by x,
a fixed point of y, and a pair of points interchanged by a. It follows that the image
of this new representation is primitive (for otherwise there would be a block B of
imprimitivity containing all 7 points of the 7-cycle, but then B would be preserved
by each of x, y and a and hence by the whole group). And now by a theorem of
Jordan [12, Theorem 13.9], this 7-cycle ensures that the permutations generate An
for large n ≡ 3 mod 4 when m is odd, and Sn for large n ≡ 1 mod 4 when m is even.

Next, we can add a copy of R1 to the final copy of R4, and get a transitive repre-
sentation of A6 ∗A5 (A5 ×C2) of even degree n = 21+12k+62m+1, and the same
argument works, except that the parity of the permutations a and w changes, with a
5-cycle of w = xa becoming another 6-cycle. In this case the permutations generate
Sn with n ≡ 0 mod 4 when m is odd, and An with n ≡ 2 mod 4 when m is even.
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Finally, we can replace the single copy of R5 by a copy of R6, and insert a single
copy of R3 between the k copies of R2 and the m copies of R4, and get transitive
permutation representations of odd degree n= 31+12k+42+62m and even degree
n= 31+12k+42+62m+1, in which the permutations induced by a and w are even
if and only if m is even in the first case, and are even if and only if m is odd in the
second case. The cycle structure of xa is altered by addition of a 9-cycle, plus some
changes in the 1-, 2-, 4-, 6- and 8-cycles, and replacement of the single 7-cycle by
a new single 7-cycle coming from the linkage between R2 and R3, but the same
arguments apply as earlier. In this case the induced permutations generate An for
large n ≡ 1 mod 4 and Sn for large n ≡ 3 mod 4 when m is even, and Sn for large
n ≡ 2 mod 4 and An for large n ≡ 0 mod 4 when m is odd.

These constructions cover all residue classes mod 4 for the degree n, for both An
and Sn for large enough n (indeed for all n ≥ 447), as required. ⊓⊔

Incidentally, we also obtain the following, because if a is any involution in E \A,
then the index 2 subgroup S = ⟨V,V a⟩ in the group V ∗A E = A6 ∗A5 (A5 ×C2) used
above is isomorphic to A6 ∗A5 A6, and also maps onto An for large n. This strength-
ens an observation made by Peter Neumann and Cheryl Praeger at the Groups St
Andrews conference that A6 ∗A5 A6 has infinitely many alternating quotients.

Corollary 1. All but finitely many alternating groups occur as quotients of the amal-
gamated free product A6 ∗A5 A6.
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