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Abstract We address the modelling of tissue deformation using mixture theory. The
governing equations consist of mass and momentum balances for two phases, and
are written in Eulerian and Lagrangian frameworks using an active stress approach.
We specify the general formulation for relatively simple representative examples in
the context of tumour growth and early stages of atherosclerotic plaque develop-
ment.

1 Introduction

Our current understanding of both the physiological and pathological conditions un-
der which tissue growth and development occurs remains incomplete. In this work
we explore the process of tissue growth: the addition of mass to the tissue through
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cell growth and rearrangement without changing its mechanical properties. Tissue
growth is observed in several biological processes including remodelling and mor-
phogenesis [31]. In many biological contexts, for example avascular tumour growth,
external nutrients diffuse into the tumour providing sufficient energy for the tumour
cells to proliferate [17]. There are multiple approaches to modelling these phenom-
ena, from cell-based models to large-scale continuum models including high-order
phase-field frameworks [26, 27, 35]. The purpose of this research project is to ex-
plore a configuration of multiphase models in general geometries, where the spe-
cific physical and geometrical characteristics of individual cells are not considered
but rather each point in space is regarded as occupied by a particle belonging to
each constituent (coexisting continua). As specific biological applications of this
framework, we consider two phenomena: tumour growth and atherosclerotic plaque
formation. We note that this framework can also be applied to other biological con-
texts such as chemotactic cell aggregates [22]. We build on the Eulerian two-phase
model for avascular tumour growth described in [9] which considers two phases:
viscous tumour cells and inviscid interstitial extracellular fluid. We extend this from
a single dimension to general geometries then pull-back the set of equations to their
Lagrangian counterpart. The active deformation of tissue (which encodes the growth
process in the model) is represented using the active stress approach (also known as
additive split of forces) [2].

Finding closed-form solutions to the nonlinear coupled problems discussed
above is only possible in very restricted scenarios and simplified settings. We opt for
solving the governing equations numerically. The numerical framework undertaken
here uses the method of lines, adopting a backward Euler scheme for the discreti-
sation in time and finite element methods in space using a total Lagrangian ap-
proach. This method has been used extensively for growth modelling (see for exam-
ple [28, 31]). Here we derive a formulation which is consistent with the multiphase
poromechanical description. The specific form of the resulting system of equations
(in the Lagrangian setting) has as unknowns the displacement of the first phase, the
pressure of the second phase, the nutrient (oxygen) tension, and the volume fraction
of the first phase. We adopt a monolithic method that requires stable mixed element
pairs (in the sense of the Babuška–Brezzi theory [8]) for the approximation of dis-
placement and volume fraction. For the problem at hand, using the MINI element
(piecewise linear displacements enriched with cubic bubble functions and piecewise
linear and continuous elements for volume fraction) is efficient and sufficiently ac-
curate, but other techniques including stabilisation of low-order schemes with dis-
continuous volume fractions [6] or mixed methods based on the Hu–Washizu three-
field variational principle [34], could be employed in cases where high gradients of
the volume fraction are expected and when the material parameters approach the
incompressibility limit.

Understanding the mechanisms of moving boundaries in the applications ad-
dressed herein can contribute to gaining insight on tissue characterisation, the design
and optimisation of medical devices, and the personalisation of surgical and phar-
macological medical treatment.
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In Section 2 we present a mixture theory model for tumour growth, addressing
its extension to the Lagrangian framework and its finite element discretisation. Sec-
tion 3 contains the derivation of a new model for the early stages of atherosclerosis
(more specifically, regarding plaque formation). We continue the theory of mixtures,
but the active mechanisms in the plaque formation are concentrated on interfacial
fluxes. We write a simplified model valid in the axisymmetric case. In Section 4 we
close with a discussion on the limitations of our study and explore possible exten-
sions.

2 A general multiphase tumour model in general geometries

Tumour growth has long been an area of considerable interest to the mathematical
biology community. In addition to the devastating impacts tumours can have on in-
dividuals and the healthcare system, tumour growth is a process that is amenable to
mathematical studies. Early stage tumour growth - such as that we are considering
here - is often avascular, in other words, it does not involve blood vessels. Avascular
tumours are simpler to model, since interactions with and development of vascu-
lature are not considered. In the early 1970’s, Greenspan developed a continuum,
compartmental model for avascular tumour growth that is still expanded upon and
used for comparison today [23, 24, 36]. In contrast, Landman and Please [32] de-
veloped a mixture model of cells and extracellular water and proposed that the dif-
fering pressures in each phase drive tumour behaviour. Subsequent tumour models
have utilised the mixture model framework, extending and refining earlier assump-
tions [9–11,13,33,37]; for comprehensive reviews on modelling of avascular tumour
growth, refer to [4,12,38]. One such model is that proposed by Breward et al. [9]. In
their model, the cellular phase behaves similarly to viscous fluid, and the extracel-
lular phase is assumed to be inviscid. Furthermore, the development of the necrotic
core of the tumour depends on oxygen tension. In this section we generalise Bre-
ward et al.’s model to general geometries, and then numerically solve the system
in the two-dimensional case for two different geometries. We note that alternative
approaches to solving two and three-dimensional multiphase avascular and vascular
tumour models are possible [16–18, 25, 43].

2.1 Governing equations in Eulerian form

We derive here a set of governing equations starting from the main assumption that
a given biological tissue is a medium composed by a solid phase (containing cells
of diverse types) and an interstitial fluid completely filling the void spaces. For this
we consider the two phase model from [9] and continue the basic assumptions held
in their model; that there are no voids such that



4 Ahmed, Flegg, Miller, Ruiz-Baier, Won, Zanca

α +β = 1, (1)

where α and β represent the (dimensionless) volume fractions of the two phases.
We also assume that mass and momentum are conserved. We redefine these initial
equations to general geometries, where the mass balance equations in each phase
become:

∂α

∂ t
+∇x · (uα α) = qα , (2a)

∂β

∂ t
+∇x · (uβ β ) = qβ , (2b)

where uα and uβ denote the velocities of their respective phases, while qα and qβ

denote the respective net production rates of tumour cells and fluid. The x-subindex
indicates that the spatial derivatives are taken with respect to the Eulerian coordi-
nates.

The momentum balance equations become:

∇x · (ασα)+ f α = 0, (3a)
∇x · (βσβ )+ f β = 0. (3b)

Here σα and σβ are the respective Cauchy stresses and f α and f β are the respective
net sources of momentum. We set

σα =−pα I+2µα ε(uα)+λα(∇x ·uα)I, σβ =−pβ I,
f α = pβ ∇α +καβ (uβ −uα), f β = pβ ∇β −καβ (uβ −uα),

(4)

where ε(uα) =
1
2 (∇xuα +∇xuT

α) is the strain rate tensor, µα and λα are the shear
and bulk viscosities respectively for the cell phase, and pα and pβ are the respective
average pressures. The net momentum sources contain a drag term accounting for
the relative motion of the two phases, and an interfacial force coupling pressure with
the gradient of volume fraction. The drag coefficient is denoted by κ . We define
Σα to encode a capillary pressure (the difference between the pressures in the two
phases) Σ = pα − pβ , and it is assumed to have the following form (depending on
α)

Σ(α) =

γ
α−α∗

(1−α)2 if α > αmin,

0 if α < αmin.

(5)

Based on our assumptions, it also follows that qα = −qβ , reflecting conservation
of mass for the cell-fluid mixture. Moreover, f α =− f β , reflecting that no external
forces act upon the cell-fluid mixture.

The source/sink terms are assumed to be dependent on the concentration of an
externally supplied nutrient, here taken to be oxygen. The functional form of qα is
defined to agree with [40]
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qα(α,C) =
(1+ s1)α(1−α)C

(1+ s1C)
− s2 + s3C

1+ s4
α, (6)

where si, i ∈ {1,2,3,4}, are constants and the oxygen tension is denoted by C. The
positive and negative terms in the equation for qα correspond to cell division and
death, respectively. The factor (1−α) in the cell division term indicate that the
growth rate decreases together with the available space.

Due to the separation of time–scales between the cell dynamics and nutrient
transport (the timescale of tumour cell proliferation is typically much longer than
that of oxygen diffusion), we simply describe oxygen dynamics by

−∇
2
xC = qC(α,C), (7)

where ∆ is the Laplacian operator, and the reactive term assumes the following
specification

qC(α,C) =− QαC
1+ Q̂1C

, (8)

where Q represents the scaled oxygen consumption rate (scaled by the oxygen dif-
fusion coefficient), and the positive constant Q̂1 describes how fast the tumour cells
consume oxygen as oxygen levels change.

Based on the above considerations, a mass conservation equation and a momen-
tum balance for the mixture can be derived by summing up (2a) and (2b), and (3a)
and (3b), respectively. This leads to the following set of equations, all written in an
Eulerian frame:

∂α

∂ t
+∇x · (uα α) = qα(α,C), continuity of phase α

∇x ·
(

uα −
(1−α)

κα
∇pβ

)
= 0, continuity of the mixture

−∇x · (σ) = 0, momentum balance
σ =−αΣ(α)I− pβ I+2αµα ε(uα)+λα(∇x ·uα)I,

constitutive equation

−∇
2
xC = qC(α,C). continuity of oxygen

Note that the conservation of angular momentum reads σT = σ , and note also that
effective unknowns of the problem are the viscous fluid (cell) volume fraction α ,
the viscous fluid (cell) velocity uα , the fluid pressure pβ , and the oxygen tension C.

We have considered the above equations in the current configuration Ω (which
depends on t) with coordinates x. This system of equations in general coordinates
coincides with the one derived in [17].
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2.2 Governing equations in Lagrangian form

To circumvent the need of solving the set of equations in a moving domain, the goal
in this section is to re-define the problem in Lagrangian coordinates. The motion of
material points in a body that occupies region Ω0 with boundary ∂Ω0 in the initial
state, moves to region Ω with boundary ∂Ω in the current state. The motion map
can be characterised by a C 1 (and bijective) vector field (the deformation or motion
map)

χ : Ω0→Ω , X 7→ χ(X) = x(X, t) for all X ∈Ω0, t ∈ ×(0,T ],

and we have that χ−1(x, t) = X for all x ∈Ω .
The material time derivative D

Dt (with respect to a fixed material coordinate X) for
a scalar function φ(x(X, t), t), defined by applying the chain rule for differentiation,
is:

Dφ

Dt
=

Dφ

Dt

∣∣∣∣
X
=

∂φ

∂ t
+∇x φ · ∂x

∂ t
=

∂φ

∂ t
+∇x φ ·u.

We consider a displacement field d : Ω0 → Ω . This displacement is associated
with the deformation map χ such that

x = χ(X)

= X+d where d is the displacement.
(9)

The tensor F is the gradient of the deformation map such that

F = ∇Xχ = I+∇Xd, (10)

and the Jacobian of the transformation representing local change of volume is

J(X, t) = detF(X, t).

For the two configurations Ω and Ω0, we denote the outward unit normals of the
respective domains as n and N0, related through n = F−T N0, where we have used
the notation F−T = (F−1)T . Understanding ds and ds0 as spatial differences in the
respective domains and dV and dV0 as current and initial volume elements, we recall
the relation

J dV0 = dV, (11)

and Nanson’s formula

JF−T N0 dS0 = nds. (12)

From the Eulerian momentum balance for the fluid phase (3b) we can obtain the
following relation (corresponding to Darcy’s law, see, e.g., [15])



Multiphase models for moving boundary problems in biology 7

1−α

ακ
∇x pβ = (1−α)(uα −uβ ). (13)

Using the Maxwell principle for transport and localisation, (13) can be rewritten in
the undeformed domain in the following form

J
1−α

ακ
F−1F−T

∇X pβ = J(1−α)F−1(uα −uβ ). (14)

The mass balance for α (2a), becomes, in Lagrangian coordinates

D
Dt

(αJ) = Jqα in Ω0× (0,T ], (15)

whereas for β we use the generalised Reynolds theorem together with (14) to arrive
at

D
Dt

(βJ)−∇X · (JF−1F−T 1
ακ

∇X pβ ) = Jqβ ; (16)

using the complementary relation (1), and summing the two equations above, gives
us

DJ
Dt
−∇X · (JF−1F−T 1

ακ
∇X pβ ) = 0 in Ω0× (0,T ]. (17)

For the Lagrangian balance of linear momentum, following the same steps as in
the Eulerian case we obtain

−∇X ·P = 0 in Ω0× (0,T ],

where
P = JTF−T , (18)

is the first Piola-Kirchhoff stress tensor, and T is the total Cauchy stress tensor (the
stress of the mixture) in the reference configuration.

Note that the use of the Lagrangian setting allows us to consider the cell phase
as a solid. Regarding the mechanochemical coupling, we adopt the assumption of
active stress. In this case the microscopically generated active stresses of the mix-
ture are considered as an additive contribution to the total stress. In a simplified
rheological model, the active stress formalism corresponds to considering a parallel
arrangement of a passive element and a newly introduced active element [29]. We
decompose the first Piola–Kirchhoff stress tensor into

P = Pα +Pβ +Pactive, (19)

where Pα is the effective solid stress for hyperelastic materials. We have

Pα =
∂W

∂F
,
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where W is a strain energy density depending on F. For the specific case of Neo-
Hookean poroelastic solids with material parameters µα ,λα , we obtain the follow-
ing form for the effective first Piola–Kirchhoff stress tensor

Pα = µα(F−F−T )+λα J(J−1)F−T .

The stress due to the fluid phase and to the active mass change are, respectively

Pβ =−pβ JF−T ,

and
Pactive =−αΣ(α)JF−T . (20)

In general, the active component of stress can depend on a set of phenomenologi-
cal or physiologically relevant parameters that describe, for example, the state of a
population of cells. This is precisely what is added in (20).

Remark 2.1. A more adequate description of growth in the Lagrangian framework
is the multiplicative decomposition of the deformation gradient into a pure growth
deformation tensor and an elastic rearrangement deformation F = FeFg (see, e.g.,
[21,26]). In such a case, Fg is determined from a growth factor g(α, t) whose evolu-
tion is dictated to preserve (15). We instead adopt an active stress approach which is
much simpler to relate with the constitutive equation used for the linear elastic case
in Eulerian coordinates.

Note that the conservation of angular momentum is also included, and it is en-
coded in the relation PFT = FPT .

In summary, we get the following initial-boundary value problem for the multi-
phase growth model in Lagrangian form

D
Dt

(αJ) = Jqα(α,C), continuity of phase α

D
Dt

(J)−∇X · (
J

ακ
∇X pβ ) = 0, continuity of the mixture

∇X ·P = 0, equation of motion for the mixture

P =
∂W

∂F
− pβ JF−T −αΣ(α)JF−T , constitutive equation

−∇X · (JF−1F−T
∇XC) = JqC(α,C). continuity of oxygen

To close the set of equations we need to provide suitable initial data and boundary
conditions. We suppose that the system is initially at rest and with a given initial
distribution of cells

α(0) = α0, dα(0) = 0 in Ω0. (21)

Boundary conditions depend on the specific case under consideration in the follow-
ing sections. For the mixture we assume general mixed-loading boundary conditions
including displacement essential conditions
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dα = d̂0 on ∂Ω
D
0 × (0,T ],

and natural boundary conditions in the Lagrangian setting

PN0 = t̂0 on ∂Ω
N
0 × (0,T ],

where ∂Ω N
0 and ∂Ω D

0 are two disjoint parts of the undeformed boundary, N0 is the
unit vector outward normal to the body surface ∂Ω0 in the referential configuration,
and d̂0, t̂0 are the prescribed Lagrangian displacement and traction on the boundary.

On the sub-boundary ∂Ω N
0 the oxygen concentration is maintained at a given

value, whereas a flux is imposed on the remainder of the boundary

C =Cout on ∂Ω
N
0 × (0,T ], JF−1F−T

∇XC ·N0 = g0 on ∂Ω
D
0 × (0,T ].

2.3 Finite element discretisation for the Lagrangian model

The nonlinear weak form of the multiphase equations of motion collected in Sec-
tion 2.2 can be established following a standard approach, that is, multiplying
each field equation by a suitable test function, integrating over Ω0, and invoking
the divergence theorem (in tensorial and in vectorial form) whenever appropri-
ate. For almost all t > 0, we look for dα ∈ H1

D(Ω0) = {v ∈ H1(Ω) : v|
∂Ω D

0
= 0},

pβ ,C ∈ H1
N(Ω0) = {s ∈ H1(Ω) : s|

∂Ω N
0
= 0}, and α ∈ L2(Ω0), such that

∫
Ω0

(Pα − [pβ +αΣ(α)]JF−T ) : ∇Xζ dV0−
∫

∂Ω N
0

JF−T t̂0 ·ζ dS0 = 0 ∀ζ ∈H1
D(Ω0),

(22a)∫
Ω0

D
Dt

(αJ)η dV0−
∫

Ω0

Jqα(α,C)η dV0 = 0 ∀η ∈ L2(Ω0),

(22b)∫
Ω0

D
Dt

(J)ψ dV0 +
∫

Ω0

J
ακ

F−1F−T
∇X pβ ·∇Xψ dV0 = 0 ∀ψ ∈ H1

N(Ω0),

(22c)∫
Ω0

JF−1F−T
∇XC ·∇Xϕ dV0−

∫
Ω0

JqC(α,C)ϕ dV0 = 0 ∀ϕ ∈ H1
N(Ω0).

(22d)

In order to define a Galerkin finite element method we denote by {Th}h>0 a
shape-regular family of partitions of Ω̄0, conformed by triangles K of diameter hK ,
with mesh size h := max{hK : K ∈ Th}. Given an integer k ≥ 1 and a subset S of
R2, by Pk(S) we will denote the space of polynomial functions defined locally in S
and being of total degree up to k. Let us also denote by bK := ϕ1ϕ2ϕ3 a P3 bubble
function in K, where ϕ1, ϕ2 ,ϕ3 are the barycentric coordinates of the triangle K.
Then the finite-dimensional subspaces for cell displacement Vh ⊆H1

D(Ω0), porous
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Fig. 1: Samples of unstructured triangular meshes generated for the tumour growth
and plaque formation applications.

fluid pressure and oxygen Qh ⊆ H1
N(Ω0), and solid phase volume fraction Rh ⊆

L2(Ω0) are defined, respectively, as follows

Vh := {ζ h ∈C(Ω0) : ζ h|K ∈ [P1(K)⊕ span{bK}]2 ∀K ∈Th, ζ h|∂Ω D
0
= 0},

Qh := {ψh ∈C(Ω0) : ψh|K ∈ P1(K), ∀K ∈Th, ψh|∂Ω N
0
= 0}, (23)

Rh := {ηh ∈C(Ω) : ηh|K ∈ P1(K), ∀K ∈Th}.

The pair (Vh,Rh) is the well-known MINI-element, which is inf-sup stable in the
context of saddle-point Stokes equations in their usual velocity-pressure formulation
[14].

Next we partition the interval [0, tfinal] into N evenly spaced non-overlapping sub-
intervals of fixed length ∆ t and apply a time semi-discretisation of (22a) using the
unconditionally stable, backward Euler’s method. Further details on the discretisa-
tion and its suitability in solving the equations of motion are omitted here and we
simply refer to, e.g., [5, 39].

2.4 Numerical results

In this section we present numerical simulations conducted with algorithms imple-
mented using the open source finite element library FEniCS [1]. Sample codes
(including meshes) are available from the public repository
https://github.com/ruizbaier/MATRIX_MultiphaseTissueModelling.
A fixed tolerance of 10−6 is used on the residuals for the convergence criterion of
the Newton-Raphson iterative algorithm, and all the linear systems emanating from
the discretisation of the tangent systems are solved with the direct method MUMPS.
The three meshes used in our studies were generated with the library Gmsh [20] (see
Figure 1).
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2.4.1 Radial growth on a quarter disk

In our first set of simulations a tumour domain is considered as a unit disk. Only a
quarter of the domain is taken into account. On the straight segments of the boundary
we impose sliding conditions

dα ·N0 = 0 on ∂Ω
D
0 × (0,T ].

For this example the time step is fixed to ∆ t = 0.5 and the system is evolved until
tend = 60 (adimensional time units). The parameter values are taken to be (see for
example, [17])

αmin = α0 = α
∗ = 0.8, µα =Cout = k = 1, λα = pout

β
= Q̂1 = 0,

s1 = s4 = 10, s2 = s3 = Q = 0.5,

where we note that permeability, diffusivity, and active stress are isotropic. In Fig-
ure 2 we portray snapshots of the oxygen tension plotted on the deformed con-
figuration (which indicates domain growth). As the tumour grows larger, there is
less oxygen available at the tumour ‘centre’ (the region furthest away from the free
boundary). Once the oxygen concentration is below approximately 0.3, a necrotic
core forms. From Figure 2, we observe that a necrotic core forms shortly after t = 40.
In the necrotic core, (viable) tumour cells are replaced with necrotic material. The
volume of tumour cells remains lower within the necrotic core (see the lighter re-
gion in the α snapshot at t = 60 in Figure 2), before rapidly increasing across the
boundary between the necrotic core and the remainder of the tumour, then increas-
ing linearly to the free boundary.

2.4.2 Progression of a glioblastoma

We simulate tumour growth in free suspension and therefore for this case we include
pure traction boundary conditions with t̂0 = 0. In this situation we are required to
remove rigid motions from the set of admissible displacement solutions. This is done
using a Lagrange multiplier approach (imposing orthogonality with respect to the
space of rigid motions; see for example, [30]). We employ here the same parameters
as in the previous subsection.

The top row of Figure 3 depicts the volume fraction of cells on the deformed
configuration, showing also the directions of displacement. These arrows confirm
a radial growth imposed by the isotropic active stress distribution. In addition, we
observe that at early times oxygen levels are everywhere sufficiently high to enable
cell proliferation and therefore the tumour cell grows monotonically. The bottom
row shows, for the time t = 100, the oxygen distribution and the magnitude of the
first Piola–Kirchhoff stress tensor (19). From this we note a higher accumulation of
stress near the reentrant boundaries of the tumour. We also note that the range of val-
ues for α and C vary considerably to the quarter-disk case. Over 100 time units, the
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Fig. 2: Snapshots of the time evolution of cell volume fraction (top) and oxygen
tension (middle row), plotted on the deformed configuration at times t = 0,20,40,60
(adimensional units). The bottom row shows plots of α,C and the magnitude of the
current position x along the centre line of the domain (at an angle of 45◦), for three
times (t = 40,50,60).

concentration of oxygen never drops below 0.8 anywhere within the glioblastoma,
even at the centre, and therefore a necrotic core never forms. Contrast this with the
quarter-disk, where a necrotic core forms not long after t = 40 time units.

Next steps for this case study are including anisotropy and heterogeneity, not
only in the active stress contribution, but also in the permeability parameter κ . For
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Fig. 3: Top: Snapshots of the time evolution of cell volume fraction, plotted on the
deformed configuration at times t = 0,10,50,100 (adimensional units). Arrows rep-
resent the displacement of the surface. Bottom: concentration of oxygen and mag-
nitude of total stress at the final time t = 100. Note the log-scale on the magnitude
of total stress. Shape based on [16, 19].

permeability we can use the same medical images employed to generate contours
and meshes.

3 Model for plaque development

The mechanisms used in the modelling of tumour growth in Section 2, see also
[3, 11], can serve as a starting point for formulating two-phase models for an early
stage atherosclerotic plaque. The model that we develop herein follows [41,42] and
assumes that all cells coexist in a mixture medium where proteins diffuse. To capture
the evolution of the plaque, we consider the region occupied by the plaque and its
surroundings as a moving boundary domain. In the mixture we consider two phases:
a macrophage phase (whose quantities are labelled with the subscript m) denoting its
volume fraction also m, and a second phase (whose quantities are labelled with the
subscript n), with volume fraction n, comprising foam cells, apoptotic and necrotic
material, and other material such as extracellular matrix (which we henceforth refer
to as necrotic material). We assume that there are no voids (the mixture is fully



14 Ahmed, Flegg, Miller, Ruiz-Baier, Won, Zanca

saturated, with n+m = 1). We also include an equation for chemically modified
low density lipoproteins (modLDL), whose concentration is denoted by l.

We first present the general framework. The equations of mass balance for the
two phases gives:

∂n
∂ t

+∇x · (nun) = qn, (1a)

∂m
∂ t

+∇x · (mum) = qm, (1b)

where un and um are the velocities in the macrophage and necrotic phases, and qn
and qm represent the rate of change in volume fractions for the macrophage and
necrotic phases. Both phases are assumed incompressible.

Conservation of mass for modLDL is modelled with the following equation that
considers advection in both phases, Fickian diffusion, and a sink term:

∂ l
∂ t

+∇x · (lû−Dl∇xl) = ql , (2)

where û = mum + nun is the average velocity of the mixture, Dl is the intrinsic
diffusivity of modLDL (assumed isotropic) and ql is the rate of removal of modLDL
by macrophages. Here we take

qn =−qm = kmlm , ql =−kl lm , (3)

where we adopt a simple mass-action form for the phagocytic consumption of
modLDL by macrophages (with kl ,km positive constants), although we note that
more complicated forms could be considered. We also assume here that macrophages
die of necrosis soon after becoming foam cells due to the impairment of normal
apoptotic pathways, and that macrophages do not ingest necrotic material [7].

Conservation of momentum is assumed in both phases, neglecting inertial effects
(which is justified by the timescales of cell growth and proliferation), leading to:

−∇x · (nσn) = bn, (4a)
−∇x · (mσm) = bm, (4b)

where σm and σn are the Cauchy stress tensors in the macrophage and necrotic
phases, and bm and bn are the net sources of momentum in each phase. Assum-
ing that there are no external momentum sources, we simply take bm = −bn and
consider that interaction forces only include a Darcy-type drag term:

bn = bn(1−n)(um−un).

Next, we supply the form of stresses in the necrotic and macrophage phases. We
simply consider constitutive laws including an hydrostatic and a viscous contribu-
tion, giving:
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Ω(t )

Γ2(t )
Γ1

LDL Flux

Fig. 1: Left: Cross-section of an artery. The pink cells are smooth muscle cells, the
beige cells are endothelial cells, the yellow region shows the necrotic core and the
red region is the lumen. Right: Model schematic.

σn =−pnI+2µnε(un)+λn(∇ ·un)I, (5a)
σm =−pmI+2µmε(um)+λm(∇ ·um)I, (5b)

where pn and pm are the pressures in the nectrotic and macrophage phases, µn and
µm and λn and λm are the shear and bulk viscosity coefficients in the two phases.
We further assume that the pressure difference between the macrophage and necrotic
phases contributes to macrophage movement:

pm = pn +Σ ,

and we take a form for the capillary pressure depending only on the volume fraction
of the macrophage phase and the concentration of modLDL. This term is assumed
to characterise the chemotaxis of macrophages towards higher levels of modLDL:

Σ(l,m) =
A

1+Blk , (6)

where A, B and k are positive constants. These terms adopt the structure used in,
e.g., [33].

For spatial domain Ω(t) we consider a cross-section through the artery wall,
transverse to the direction of blood flow. Early and mid-stage plaque formation is
observed to cause outward remodelling of the artery wall, where the radius of the
lumen is preserved. We therefore take the inner endothelial boundary Γ1 to be fixed.
The outer boundary Γ2(t) separates the intima from the layers of muscle cells sup-
porting the artery, and we assume that this boundary may vary with time (see a
sketch of the geometry and boundary configuration in Figure 1).

We impose the following flux-type boundary conditions on the inner endothelial
boundary:
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−∇xl + lû

)
·n =Ψl on Γ1, (7a)

mum ·n =Ψml on Γ1, (7b)
nun ·n = 0 on Γ1. (7c)

Here, Ψl is the rate of LDL deposition in the artery wall, which will be localised
over a specific region (for example, a particular angle). The presence of modLDL
will stimulate macrophage recruitment, where the macrophage influx mum|Γ1 · n is
proportional to the concentration of l near the endothelium. Note that this is an
essential part of the model as it represents the only contribution that will actively
modify the behaviour of the plaque.

3.1 Simplification to one-dimensional geometry

In one dimension the model can be written as follows

∂n
∂ t

+
∂

∂x
(nun) = knlm, (8a)

∂

∂x
(mum +nun) = 0, (8b)

∂ l
∂ t

+
∂

∂x

(
lû− ∂ l

∂x

)
= kl lm where û = nun +mum,

(8c)

− ∂

∂x

(
n
(
− pn +µn

∂un

∂x
+λn

∂un

∂x

))
= bnn(1−n)(um−un), (8d)

− ∂

∂x

(
m(−pn−Σ(l,m)+µm

∂um

∂x
+λm

∂um

∂x

))
=−(bnn(1−n)(um−un)), (8e)(

− ∂ l
∂x

+ lû
)∣∣∣∣

x=0
=Ψl , (8f)

mum|x=0 =Ψml|x=0, (8g)
nun|x=0 = 0 , (8h)

while the boundary conditions on the outer layer become:

m(um−L′)|x=L = n(un−L′)|x=L = l(ul−L′)|x=L = 0 . (9)

For numerical purposes, we scale the spatial domain using ξ = x
L(t) which then

gives:

∂n
∂ t
− ξ

L(t)
L′(t)

∂n
∂ξ

+
1

L(t)
∂

∂ξ
(nun) = kmlm, (10a)
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∂ l
∂ t
− ξ

L(t)
L′(t)

∂ l
∂ξ

+
1

L(t)
∂

∂ξ
(lû− 1

L(t)
∂ l
∂ξ

) =−kl lm. (10b)

Implementing this model numerically and comparing to atherosclerotic plaque
formation data is left for future work.

4 Discussion

This paper generalises the tumour growth model of Breward et al. [9] into general
geometries and shows numerical solutions for the two-dimensional case using finite
element variational formulations of the system. Our findings are consistent with
previous work; however, we have used a different approach that can handle differ-
ent geometries with relative ease. Given the current assumptions of the model the
domain grows uniformly, and therefore the power of this technique is not fully re-
alised. Extensions of this work could consider anisotropic stress and heterogeneous
diffusivity and permeability to explore the effects of different geometries.

We additionally hypothesise a two-phase model for early atherosclerotic plaque
formation. This work aims to complement the existing literature on late stage plaque
behaviour [41, 42]. We leave the exploration of the numerical solution for future
work. We note that to better understand early plaque formation it would be beneficial
to separate the necrotic material phase further into its component parts. For example,
formulating a three (or more) phase model to incorporate the difference between
foam cells and apoptotic and necrotic material.
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