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Abstract In this article we show how the classification of supermanifolds to first
order can be recovered through their functor of points. Subsequently, we consider
the notion of !-points of a supermanifold. In analogy with the complex topology on
schemes, we describe a topology on the locus of !-points of a superscheme in line
with the DeWitt approach to supermanifold theory.

1 Introduction

Mathematically, supermanifolds form a class of spaces representing supercommu-
tative rings. They originally arose as a foundational framework for new ideas in
particle physics and were developed along similar lines to contemporary algebraic
geometry. In algebraic geometry, nilpotent elements in a commutative ring are es-
sential in forming infinitesimal deformations. In supergeometry, nilpotent elements
are part of the foundation. They represent coordinates on ‘superspace’ in their own
right rather than deformations of coordinate rings.

There are a number of approaches to the construction of supermanifolds, many
of which are detailed in [1]. In this article we study supermanifolds from two ap-
proaches: firstly as local, supercommutative ringed spaces (LSRS) developed by
Berezin [2], Kostant [3] and Leites [4]; secondly, in line with the approach by De-
Witt in [5].1 Among our main results in this article is Theorem 5.14 relating the two
approaches in the category of superschemes.

Kowshik Bettadapura
University of Melbourne, e-mail: k.bettad@gmail.com

1 Supermanifolds in this approach could also be attributed to Rogers, e.g., [6], and so might be
referred to as ‘Rogers-DeWitt’ supermanifolds. We will refer to them as ‘DeWitt supermanifolds’
however since the approach by Rogers is substantially more general, see e.g., [7].
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1.1 Article summary and outline

We begin in §2 with an introduction to supermanifolds in the LSRS approach and
present their classification to first order. Subsequently we give a general characteri-
zation of submanifolds in supermanifolds. In §3 we illustrate this classification for
affine superspace, projective superspace and super Riemann surfaces.

A deep viewpoint propounded by Grothendieck [22] is to consider the functor of
points represented by a space to be the more natural object to study, rather than
the space itself. A number of authors have adapted this viewpoint to supermanifold
theory, yielding significant results. For instance, Vaintrob in [28] used this view-
point to study supersymplectic structures; Stolz and Teichner et. al. in [29, 30] relied
heavily on this viewpoint in deriving links between supergeometry and topological
invariants. For a more introductory account of the functor-of-points viewpoint to
supermanifold theory, see Manin in [26], [27, Ch. 4] and Deligne and Morgan in [8].

In this article we will also consider the functor-of-points viewpoint to supermani-
folds. In §4 we show how to recover this aforementioned classification of superman-
ifolds to first order through the functorial viewpoint. This is the content in Theorem
4.5 and Theorem 4.6. The example of a quadratic form in dimension (1|1) is then
given to illustrate the distinction between !-points for ! = 0, 1, 2.

One of our motivations to study the functor of points of a supermanifold is to
arrive at a framework to unify other approaches in supermanifold theory in [1].
We propose that such a unification amounts to understanding these approaches as
Grothendieck topologies on the category of superschemes. This in line with a similar
program outlined by Molotkov in [20] and furthered by Sachse [21]. In Definition
4.4 we establish the notion of ‘!-points of a supermanifold’. In §5 we present a
brief introduction to the DeWitt approach to supermanifold theory, following [5].
Subsequently, we revisit the locus of !-points of a superscheme. Our main result
is Theorem 5.14 where it is shown how this locus can be given the structure of
a DeWitt supermanifold. This leads to Question 5.15 and 5.16 on understanding
supermanifold topologies as Grothendieck topologies.

1.2 Further remarks

Through a unification proposed as above we can hope to arrive at a deeper under-
standing into superspace constructions and relations among them. As an illustration
of a typical problem, consider that of relating constructions in super Teichmüller
theory with supermoduli theory. Penner and Zeitlin in [23] have shown, through
DeWitt’s approach, that super Teichmüller space is supersymplectic; Sachse in [21]
give models of super Teichmüller space from both the DeWitt and LSRS approaches;
Rothstein in [24] gives a classification of supersymplectic structures on superman-
ifolds as LSRS; Donagi and Witten in [25] have shown, using the LSRS approach,
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that the supermoduli space of curves admits a natural gauge pairing between cer-
tain cohomology classes and deformation parameters. In light of these results, some
natural questions are:

• does Penner and Zeitlin’s supersymplectic structure translate to a supersymplectic
structure on super Teichmüller space as LSRS?
• can we apply Rothstein’s classification to study Penner and Zeitlin’s supersym-
plectic structure?
• can Penner and Zeitlin’s supersymplectic form be expressed in terms of Donagi
and Witten’s deformation gauge pairing?

Progress on the above questions will invariably involve a unification of different
approaches to supermanifold theory. As such, it would lead to a wealth of insight
into the nature of supermanifolds more broadly.

Note: throughout this article, by ‘rational points’ it is meant K-rational points
for a field K.

2 Supermanifolds

Supermanifolds are, in analogy with complex analytic spaces, a geometric object
whose functions under multiplication form a supercommutative ring.

2.1 Supercommutative rings

Fix a field K. A K-algebra � is said to be a superalgebra if it is equipped with
a morphism �

?
→ Z2. The even subalgebra is then the preimage �0̄ := ?−10̄

and the fermionic part is the preimage �1̄ := ?−11̄. See that �0 ⊂ � is indeed
subalgebra while �1̄ is an �0̄-module. This gives a Z2-decomposition of � over �0̄,
(�, ?) � �0̄ ⊕ �1̄.

The K-superalgebra (�, ?) is said to be a supercommutative ring if, for homoge-
neous 0, 1 ∈ �, that

0 · 1 = (−1) ? (0) ? (1)1 · 0. (1)

From (1) we can immediately deduce the existence of nilpotent elements: if 0 ∈ �1̄
then 0 · 0 = −0 · 0 giving 02 = 0.

Remark 2.1 While a supercommutative ring � is not strictly commutative, it is
weakly commutative in the sense that (1) gives rise to an equivalence between the
categories of left- and right �-modules.2 �

2 c.f., the commutativity isomorphism in [8, p. 62].
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2.1.1 First properties

Recall that any superalgebra (�, ?) admits a canonical Z2-decomposition (�, ?) �
�0̄ ⊕ �1̄ with �1̄ the ‘fermionic part’. It lends itself to the construction of the left-
and right- fermionic ideals: �;4 5 C := �1̄ · � and �A86ℎC := � · �1̄. By Remark 2.1, if
� is supercommutative then �;4 5 C � �A86ℎC and we will just refer to �;4 5 C = �A86ℎC =
� ⊂ � as the fermionic ideal. This leads now to two characterizing structures derived
from �:

I) the reduced ring ' := �/�;
II) the fermionic module � := �/�2.

Note that ' here is commutative and � is an '-module. Despite the prefix ‘reduced’,
' may be non-reduced as a commutative ring.

Example 2.2 Over a field K let + be a K-vector space and ∧•K+ its exterior algebra.
Then ∧•K+ is a supercommutative ring with: I) K as its reduced ring; II) + as its
fermionic module. �

The prototypical example above of a supercommutative ring motivates the following
generalization of affineness from commutative algebra.

Definition 2.3 An affine supercommutative ring over K is a supercommutative ring
over K for which:

i) its reduced ring ' is affine;
ii) it is isomorphic to ∧•

'
+/� for + a free '-module and � ⊂ ∧•

'
+ an ideal. �

Accordingly, the exterior algebra from Example 2.2 is an example of an affine,
supercommutative ring.

2.2 Local supercommutative ringed spaces

2.2.1 Local supercommutative rings

Recall that a ring is said to be local if it contains a unique, maximal ideal m ⊂ '.
Similarly, a supercommutative algebra � is local if it contains a unique, maximal
ideal m ⊂ �.
Lemma 2.4 Let � be a supercommutative ring and � ⊂ � the fermionic ideal. Then
� is local if and only if �/� is local. �

Proof Let � be a local, supercommutative ring and � ⊂ � the fermionic ideal.
Recall that the reduced ring ' = �/� is commutative. Let �

?
→ �/� = ' be the

quotient morphism. Suppose m ⊂ � is maximal and let � ⊂ ' be an ideal. Since
? is an epimorphism (onto), ?(?−1�) = �. Moreover, ? preserves inclusions giving
� = ?(?−1�) ⊂ ?(m). As this holds for any ideal � ⊂ ', it follows that ?(m) ⊂ ' is
maximal.
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Conversely, let < ⊂ ' be a maximal ideal. Set m = ?−1< and let � ′ ⊂ � be an
ideal. Since ? is a morphism, ?(� ′) ⊂ ' is an ideal and so contained in <. Thus
� ′ ⊂ ?−1 (?(� ′)) ⊂ ?−1< = m, i.e., that � ′ ⊂ m, so m ⊂ � must be maximal. �

Example 2.5 Continuing on from Example 2.2, the maximal ideal in a field K is
the zero ideal {0}. By Lemma 2.4, the maximal ideal in the supercommutative ring
∧•K+ is then the preimage of {0} under the quotient ∧•K+

?
→ K. Equivalently, it is

the kernel � = ker{∧•K+
?
→ K}. Since K is the reduced ring of ∧•K+ , the maximal

ideal � ⊂ ∧•K+ is precisely the fermionic ideal. �

The above example leads to a more general result pertaining to maximal ideals.

Lemma 2.6 Let � be a supercommutative ring and suppose its reduced ring is also
reduced as a commutative ring. Then the fermionic ideal � ⊂ � is maximal.

2.2.2 Manifolds

Let - be a topological space. A presheaf of rings O on - assigns to each open set
* ⊂ - a ringO(*). Elements ofO are referred to as functions. To inclusions of open
sets * ⊂ + the presheaf O comes with a ring morphism, referred to as restriction
A4B+ ,* : O(+) → O(*). If * = + , A4B*,+ is the identity. The presheaf O is a
sheaf if it satisfies the locality and glueing axioms. Locality requires, for functions
B, C ∈ O(+) and * ⊂ + , if A4B*,+ B = A4B*,+ C, then B = C. Glueing requires, for
functions B* ∈ O(*), B+ ∈ O(+), if A4B*,*∩+ B* = A4B+ ,+∩* B+ , then there exists
a function B ∈ O(* ∪ +) such that B* = A4B*∪+ ,* B and B+ = A4B*∪+ ,+ B. The
stalk of the sheaf O on - at a point % ∈ - is the pullback of O along the inclusion
of the point ]% : {%} ↩→ - and denoted O% . The pullback morphism of sheaves on
- , O → ]%∗O% given by 5 ↦→ 5 (%) is referred to as evaluation at %. Note that for
different points %, %′ ∈ - the evaluation is valued in the rings O% resp., O%′ . As
such, it doesn’t make sense to generally ask whether functions can separate points.
This question does make sense if the rings O% are local for each % ∈ - however,
since then one can instead ask whether functions vanish modulo the unique, maximal
ideal.

Definition 2.7 A pair (-,O- ), for - a topological space and O- a sheaf of rings
is said to be a locally ringed space if, for each point ? ∈ - , the stalk O-,? is a local
ring. In this case O- is referred to as the structure sheaf. �

Example 2.8 The pair ({?C},K) for {?C} the one-point, topological space and K a
field defines a locally ringed space. More generally, for any commutative ring ', its
spectrum Spec ' = ('?A8<4B , '̃), for '?A8<4B the set of prime ideals in ' equipped
with the Zariski topology and '̃ the sheafification of the presheaf assigning ' to the
open sets in '?A8<4B defines a locally ringed space. See e.g., [9, Ch. II] or [10, §3]
for a detailed introduction bypassing the language of sheaves. �

Example 2.9 Let - = R<. A smooth structure on - is a identified with the sheaf of
smooth, R-valued functions C∞. To each open set * ⊂ - , C∞ (*) = �∞ (*,R) is
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the ring of smooth functions *
5
→ R. At each point % ∈ - the stalk C∞

%
is a local

ring with maximal idealm% ⊂ �∞% comprising those (germs of) functions vanishing
at %, i.e., m% = { 5 ∈ �∞ | 5 (%) = 0}. Smooth, <-dimensional Euclidean space is
then the locally ringed space (R<, C∞). �

Example 2.10 Replacing R< with C< and the sheaf C∞ in Example 2.9 with the
sheaf of complex-valued, analytic functions O defines the <-dimensional, analytic
Euclidean space (C<,O). �

Definition 2.11 A morphism of locally ringed spaces q : (-,O- ) → (.,O. )
consists of a pair q = ( 5 , ℎ♯) where 5 : - → . is a continuous map of topological
spaces and ℎ♯ : 5 ∗O. → O- is a morphism of sheaves of local rings on - . �

Remark 2.12 Adjunction statesHomSh(- ) ( 5 ∗O. ,O- ) � HomSh(. ) (O. , 5∗O- ). As
such, W.L.O.G., ℎ♯ in Definition 2.11 can be understood equivalently as a morphism
of sheaves of local rings O. → 5∗O- on . . �

With Definition 2.7 and 2.11, locally ringed spaces form a category. It makes sense
then to ask whether two such spaces are isomorphic. Accordingly, through Example
2.9 and 2.10 we can define smooth and analytic manifolds, circumventing the more
familiar definition involving charts and atlases.3

Definition 2.13 A smooth resp., complex analytic, <-dimensional manifold is a
locally ringed space (-,O- ), locally isomorphic to (R<, C∞) resp., (C<,O). �

2.2.3 Supermanifolds

Definition 2.13 captures the familiar intuition that the real and analytic Euclidean
spaces in Example 2.9 and 2.10 are model spaces on which manifolds are built. The
notion of a supermanifold can be arrived at in parallel.

Definition 2.14 A supercommutative space X is a pair X = (-,OX) where - is a
topological space and OX is a sheaf of local, supercommutative rings. �

Following Definition 2.11, a morphism of supermanifolds X = (-,OX) and Y =

(.,OY) is defined by a pair ( 5 , ℎ♯) : X → Y where 5 : - → . is continuous
and ℎ♯ : 5 ∗OY → OX is a morphism of sheaves of local, supercommutative rings
on - (or equivalently on . by Remark 2.12). The analogue of smooth and analytic
Euclidean space in the present context is obtained by reference to the prototypical,
supercommutative ring from Example 2.2.

Example 2.15 Fix an =-dimensionalR- orC-vector space+ and take as the structure
sheaf ∧•C∞+ resp., ∧•O+ . Note that these are indeed local, supercommutative rings by
Lemma 2.6. The pair (R<,∧•C∞+) resp., (C

<,∧•O+) defines < |=-dimensional real,
resp., analytic Euclidean superspace. They are denotedR< |= andC< |= respectively.�

3 see e.g., [10, §2.2].
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Remark 2.16 Throughout this article we will denote byK a field, which we intend to
mean either R or C. Then K< |= is taken to mean either R< |= or C< |= from Example
2.15. �

Following Definition 2.13 we arrive at the notion of a supermanifold.4

Definition 2.17 An< |=-dimensional real resp., complex supermanifoldX is a super-
commutative space (-,OX) which is locally isomorphic to the Euclidean superspace
R< |= resp., C< |=. �

2.3 First properties of supermanifolds

We denote by X a supermanifold and OX its structure sheaf. As OX is a sheaf
of supercommutative rings it will imply X can be classified to first order through
analogous properties I) and II) for supercommutative rings in §2.1.1. Denote by
|X | the underlying topological space so that, as a supercommutative space, X =

( |X |,OX). Over each open set * ⊂ |X |, OX (*) is a supercommutative ring and so
decomposes into a (commutative) subring and a module over it, OX (*) � �0̄ ⊕ �1̄.

Projecting onto �0̄ for each* defines then a presheaf of commutative rings*
OX,0̄↦→ �0̄

and a presheaf of OX,0̄-modules*
OX,1̄↦→ �1̄. Since OX is a sheaf we have:

Lemma 2.18 The presheaves*
OX,0̄↦→ �0̄ and*

OX,1̄↦→ �1̄ define a sheaf of commutative
rings OX,0̄ and a sheaf of OX,0̄-modules OX,1̄ on |X | respectively.

As a consequence of Lemma 2.18 we obtain an isomorphism of sheaves on |X |,
OX

�→ OX,0̄ ⊕ OX,1̄. The sheaf of fermionic ideals is JX := OX · OX,1̄ and, modulo
JX we obtain a commutative sheaf of rings C = OX/JX . By Lemma 2.4, C will
be a sheaf of local, commutative rings on |X |. Hence by Definition 2.13, the pair
" = ( |X |, C) will define a differentiable manifold. This is the analogue of property
I) from §2.1.1 for supermanifolds.

Definition 2.19 The differentiable manifold " = ( |X |, C) associated to any super-
manifold X is referred to as the body of X. �

For each* ⊂ |X |we have the fermonic idealJX (*) ⊂ OX (*) giving, over C(*), the
fermionic modules JX (*)/JX (*)2. For X a supermanifold, it is locally isomorphic
to K< |=. Therefore, there exists a covering (*8)8 such that JX (*8)/JX (*8)2 is a free
C(*8)-module for all 8. Hence J/J 2

X
is a locally free sheaf of C-modules on |X |

and so will be the sheaf of sections of a vector bundle VX → " over the body of X.
This is the analogue of property II) in §2.1.1 for supermanifolds.

Definition 2.20 The vector bundle VX → " is referred to as the soul of the super-
manifold X. �

4 This viewpoint was developed by the authors [2, 4, 3] and is sometimes referred to as the
‘BLK-approach’ to supermanifold theory.
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The body and soul of X admit the following ‘geometric relation’ to X.

Proposition 2.21 The body of a supermanifold X is naturally embedded in X; the
soul of X is the conormal bundle to the embedding of its body. �

Proof Recall that the body of X is the locally ringed space " = ( |X |, C) where
C = OX/JX . An embedding is a morphism of supermanifolds ( 5 , ℎ♯) where 5 is
an embedding of the underlying, topological space and ℎ♯ is an epimorphism on

structure sheaves. Denote by ℎ♯ the quotient OX
ℎ♯→ OX/JX = C. Then we obtain

a morphism ] = (1, ℎ♯) : " → X, where 1 : |X | → |X | is the identity map.
The morphism ] is an embedding of supermanifolds.5 The ideal sheaf of the body
embedding ] : " ↩→ X is ker ℎ♯ = JX . The conormal bundle to ] is a vector bundle
over the body " whose sheaf of sections is given by JX/J 2

X
. This is precisely the

sheaf of fermonic modules in X. Hence the soul of X is the conormal bundle to the
body embedding ]. �

Lemma 2.22 Let X be a supermanifold and JX ⊂ OX the fermionic ideal. Then the
soul VX of X is given by VX = Spec Γ(", Sym• (JX/J 2

X
)). �

Proof This follows from the characterization of vector bundles as locally ringed
spaces from algebraic geometry (see e.g., [11, Tag 01M1]) along with the identifi-
cation of the sheaf of sections of VX in the proof of Proposition 2.21. �

2.4 First properties of supermanifold embeddings

The following result characterizes the body and soul of submanifolds6 of a super-
manifold X in terms of the body and soul of X.7

Theorem 2.23 Let X be a supermanifold, Y ⊂ X a submanifold and suppose that
IY ∩ JX = (0), for IY the ideal sheaf of Y and JX ⊂ OX the fermionic ideal. Then:

(i) the body # of Y is a submanifold of the body " of X;
(ii) the ideal sheaf of # ⊂ " is given by the image of IY in O" ;
(iii) # � Y∩ ";
(iv) VY � VX | |Y |
where VY resp., VX denotes the soul of Y resp., X. �

Proof (i) Let (8, ℎ♯) : Y ⊂ X denote the embedding of supermanifolds where
8 : |Y| ⊂ |X | the embedding of topological spaces and ℎ♯ : OX → 8∗OY an
epimorphism. The body of Y resp., X is the locally ringed space # = ( |Y|,OY/JY)

5 Scheme-theoretically, ] is a closed immersion.
6 By a submanifold of a supermanifold, it is meant a subspace which is itself a supermanifold.
7 Theorem 2.23 is adapted from work in [12]. We refer here for more details on the nature of
supermanifold embeddings.
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resp.," = ( |X |,OX/JX). Since ℎ♯ preserves the fermionic ideal it gives a commuting
diagram,

OX

��

ℎ♯ // 8∗OY

��

// 0

O"
ℎ̄♯ // O# // 0

Hence we have an embedding (8, ℎ̄♯) : # ⊂ " .
(ii) Let IY denote the ideal sheaf of Y ⊂ X. There exist short exact sequences,

0→ IY ∩ JX → IY→ O" → 0 and 0→ IY ∩ JX → JX → OY→ 0 (2)

where IY → O" is the composition IY → OX → O" and JX → OY is the
composition JX → OX → OY. Assuming IY ∩ JX = (0), the ideal IY can be
identified with its image in O" and JX with its image in OY. The support of O"/IY
is |X | \ ( |X | \ |Y|) = |Y|. Set # ′ := ( |Y|,O"/IY). We need to show # ′ � # ,

for # the body of Y. To show this, firstly note IY = ker{OX
ℎ♯→ 8∗OY}. Therefore

JY = JX/IYJX . Since the morphism JX → OY from (2) is injective we have the
commuting diagram,

0 // IYJX // JX //

��

JY //

��

0

OY OY

Hence the fermionic ideal for Y satisfies JY = im{JX → OY}. Therefore,

OY
JY

=
OY
JX
�
(OX/IY)
JX

�
(OX/JX)
IY

=
O"
IY

. (3)

Denoting by i the isomorphism in (3) we have an isomorphism of locally ringed
spaces (1, i) : # � # ′.

(iii) Note that Y ∩ " � Y ×X " , i.e., that the intersection can be identified
with the fiber product of embeddings Y ⊂ X and " ⊂ X. This leads to 8∗OY∩" =

8∗OY ⊗OX O" . With O" = OX/JX we have,

8∗OY∩" = 8∗OY ⊗OX O" = 8∗OY ⊗OX (OX/JX) �
8∗OY
JX · 8∗OY

�
8∗OY
8∗JY

= 8∗O#

for # = ( |Y|,OY/JY) the body of Y. In identifying |Y| = |Y| ∩ |X | see that, as
a locally ringed space, Y ∩ " = ( |Y|,OY∩" ). Now since 8 is an embedding, the
isomorphism 8∗OY∩" � 8∗O# implies OY∩" � O# as sheaves on |Y|. Hence we
obtain the desired isomorphism # � Y∩ " .
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(iv) Recall that IY = ker{OX
ℎ♯→ 8∗OY} is the ideal sheaf defining the embedding

Y ⊂ X. Accordingly we have a relation between fermonic ideals, JY = JX/IYJX .
This leads to the following morphism of short exact sequences,

0 // IYJ 2
X

//

��

J 2
X

//

��

8∗J 2
Y

//

��

0

0 // IYJX // JX // 8∗JY // 0

giving the right-exact sequence of O" -modules,

IYJX
IYJ 2

X

−→ JX
J 2
X

−→ 8∗
JY
J 2
Y

−→ 0 (4)

With O" = OX/JX we have,

IYJX
IYJ 2

X

� (IYJX) ⊗OX O" � IY ⊗OX JX ⊗OX O" � IY ⊗OX
JX
J 2
X

� I# ⊗O"
JX
J 2
X

where I# = im{IY → O" } is the ideal sheaf of # ⊂ " by part (ii). In pulling
back the sequence (4) to # now, the morphism 8∗ (IYJX/IYJ 2

X
) → 8∗ (JX/J 2

X
)

necessarily vanishes. Hence that 8∗ (JX/J 2
X
) � JY/J 2

Y
. As these are (respectively)

the sheaves of sections of souls VY and VX , it follows that VY � VX |# . �

3 Examples

3.1 Affine algebraic superspaces

Let � = K[G1, . . . , G< |\1, . . . , \=] be the free algebra on (< + =)-generators subject
to the relations G8G 9 = G 9G8 , G8\0 = \0G

8 and \0\1 = −\1\0. Then � defines a
supercommutative ring. The reduced ring of � is the polynomial ringK[G1, . . . , G=].
If we denote by + a free K[G1, . . . , G<]-module of rank =, then � � ∧•

K[G1 ,...,G< ]+ .
Hence by Definition 2.3, � defines an affine, supercommutative ring. The spectrum
construction from algebraic geometry generalizes to the supergeometry setting and
establishes a duality between affine algebraic superspaces and supercommutative
rings.8 The < |=-dimensional, affine algebraic superspace over K, denoted A< |=K , is
then the spectrum of �, i.e., A< |=K = Spec K[G1, . . . , G< |\1, . . . , \=].

(i) the body of A< |=K is Spec K[G1, . . . , G<] = A<K ;

8 See e.g., [13].
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(ii) the soul of A< |=K is the free K[G1, . . . , G<]-module + of rank = such that
O(A< |=K ) � ∧

•
K[G1 ,...,G< ]+ .

3.1.1 Affine subvarieties

As in algebraic geometry, affine subvarieties are subsets ( ⊂ A< |=K defined by a loci of
polynomials. WithA< |=K = SpecK[G1, . . . , G< |\1, . . . , \=], the coordinate ringK[(]
of ( is given byK[(] = K[G1, . . . , G< |\1, . . . , \=]/� for � an ideal. Note byDefinition
2.3, since K[G1, . . . , G< |\1, . . . , \=] is affine, then so is the coordinate ring K[(].
Suppose � = ( 58)8 for 58 ∈ K[G1, . . . , G< |\1, . . . , \=]. With the characterization of
the body and soul of submanifolds in Theorem 2.23 we have:

(i) the body of ( is given by the intersection of ( with the body of A< |=K . This is
precisely the locus,

58 (G1, . . . , G< |\1, . . . , \=) = 0 and \1 = · · · = \= = 0 (5)

for all 8.
(ii) The soul of ( is given by restricting the soul of A< |=K to the body of (. With
O(A< |=K ) � ∧

•
K[G1 ,...,G< ]+ , the soul of ( is then + | |( | .

3.1.2 Superschemes

With affine superspaces over a field K now established, we can define superschemes
following Definition 2.17 and in line with Leites in [13].

Definition 3.1 An algebraic superscheme over a field K is supercommutative space
which is locally isomorphic to an affine superspace over K. �

3.2 Projective superspaces

The multiplicative group G< acts on the affine superspace A< |=K by scalar multi-
plication. On generators G |\ of the coordinate ring of A< |=K and _ ∈ G< we have
the scaling G |\ ↦→ _G |_\. The Euclidean superspace K< |= was formed as a local,
supercommutative ringed space in Example 2.15. Projective superspace over K is
then formed as the quotient P<−1 |=

K := (K< |= \ {(0|0)})/G<.

(i) the body of P<−1 |=
K is P<−1

K ;
(ii) the soul of P<−1 |=

K is the =-fold sum of the tautological line bundle over P<−1
K .

Its sheaf of sections is ⊕=OP<K (−1).
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An atlas on projective superspace P<−1 |=
K can be described in a manner analo-

gous to the case of P<−1
K . An open set in this atlas can be described as fol-

lows. Denoting by � = K[-1, . . . , -< |Θ1, . . . ,Θ=] the homogeneous coordinate
ring, let *8 be the localization of � at - 8 . Set G 9 = - 9

- 8
and \0 =

Θ0
G8
. Then

O(*8) = K[G1, . . . , G8−1, G8+1, . . . , G< |\1, . . . , \=] � �- 8 is the coordinate ring of
the open set *8 ⊂ P<−1 |=

K . From here it ought to be clear why the projective super-
space is < − 1|=-dimensional.

3.2.1 Projective superspace varieties

Homogeneous ideals in the coordinate ringK[-1, . . . , -< |Θ1, . . . ,Θ=] with respect
to the G<-action define subvarieties of projective superspace. As an illustration over
K = C, the superspace quadric& ⊂ P2 |2

C
is given by the ideal ((-1)2+(-2)2+(-3)2+

Θ2Θ2) ⊂ C[-1, -2, -3 |Θ1,Θ2]. In the open set *1 we have the affine subvariety
(1 + (G2)2 + (G3)2 + \1\2) ⊂ C[G2, G3 |\1, \2] where G8 = - 8/G1 and \0 = Θ0/G1.

(i) by (5), the body of & is the projective subvariety defined by the ideal ((-1)2 +
(-2)2 + (-3)2) ⊂ C[-1, -2, -3], which describes the degree two embedding
P1
C
⊂ P2

C
. Hence the body of & is isomorphic to P1

C
;

(ii) by Theorem 2.23, the soul of& is the restriction of the soul of P2 |2
C

to the degree
two embedding P1

C
⊂ P2

C
. Recall from §3.2 that the soul of P2 |2

C
is ⊕2OP2

C
(−1).

Hence, the soul of & is ⊕2OP1
C
(−2).

For more details and theory on projective superspaces and subvarieties, including
their weighted analogues, see [14].

3.3 Super Riemann surfaces

Definition 3.2 A super Riemann surface is a pair (S,D) where S is a (1|1)-
dimensional, complex supermanifold and D ⊂ )S is a totally non-integrable distri-
bution, i.e., defines a short exact sequence,

0 −→ D −→ )S −→ D ⊗ D −→ 0

where )S = �4A OS is the tangent sheaf. �

In coordinates G |\ on the complex Euclidean superspace C1 |1, the vector field m
m\
+

\ m
mG

generates a totally non-integrable distribution � ⊂ )C1|1 . As a result (C1 |1, �)
defines a (non-compact) super Riemann surface. It is in fact the local model for any
super Riemann surface. In more detail, let*,+ ⊂ S denote open sets, G |\ resp., H |[
coordinates on* resp., + and d*+ = d+*+ |d−*+ transition functions on* ∩+ ,



First properties of supermanifolds, their functor of points and the DeWitt topology 13

H = d+ (G |\) = 5 (G) [ = d− (G |\) = 6(G)\. (6)

The system (*,+,* ∩+, {d*+ , d+* }) form (part of) an atlas for a super Riemann
surface (S,D) iff d*+ preserves the generators of D|* and D|+ . With m

m\
+ \ m

mG

and m
m[
+ [ m

mH
the generators of D|* and D|+ respectively, that d*+ preserves D

means (d*+ )∗ ( mm\ + \
m
mG
) ∝ m

m[
+ [ m

mH
. Enforcing this necessitates 6(G) =

√
5 ′(G)

in (6). We then have as a consequence:

(i) the body |S| of a super Riemann surface (S,D) is a Riemann surface;
(ii) the soul of a super Riemann surface is a spin structure ()∗|S |)

1/2 on the body.

Evidently,

Theorem 3.3 The set of totally non-integrable distributions D on compact, (1|1)-
dimensional supermanifold S is in bijective correspondence with spin structures on
the body |S| of S.

Remark 3.4 Authors such as Rabin and Crane in [15] and Witten in [16] take a
broader definition of a super Riemann surface. For these authors, the functions in (6)
are themselves valued in an auxiliary exterior algebra. The author in [17] views these
describing infinitesimal deformations however, which is in line with the treatment of
super Riemann surfaces and their moduli from [18]. Through the viewpoint in this
article, we would understand the super Riemann surfaces from [15, 16] as ‘DeWitt
structures on a specified locus of points’ of super Riemann surfaces from [17, 18].�

4 Points of a supermanifold

4.1 R-points

We have so far introduced supermanifolds as local, supercommutative ringed spaces.
That is, a supermanifoldX consists principally of a topological space |X | and a sheaf
of local, supercommutative rings OX on |X |. It is arguably more natural however to
adopt the functor of points approach and view a supermanifold X through the repre-
sentable functor it defines,X = HomSM (−,X) forSM the category of supermanifolds.
This allows for defining points of a supermanifold in a very general setting. Over a
field K and for an integer !, consider the supercommutative ring ∧•KK! . By §3.1, its
spectrum is the affine superspace A0 |!

K .

Definition 4.1 An !-point of a supermanifold X is a morphism A0 |!
K → X. If ! = 0,

we refer to the !-point as reduced. If ! = 1 the !-point is referred to as a superpoint.�

In analogy with schemes we have:9

9 c.f., [11, Lemma 01J6]
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Lemma 4.2 An !-point A0 |!
K

q
→ X is equivalent to a homomorphism of (local)

supercommutative rings OX,% → K[b1, . . . , b!], where % is the image of q and
A

0 |!
K = Spec K[b1, . . . , b!]. �

Proof With A0 |!
K = Spec K[b1, . . . , b!], as a locally ringed space we can write

A
0 |!
K = ({?C},K[b1, . . . , b!]) as in Example 2.8. With A0 |!

K

q
→ X an !-point of

X it is a morphism of loca, supercommutative ringed spaces. Accordingly, we can
write q = (8, ℎ♯) where 8 : {?C} → |X | and ℎ♯ : 8∗OX → K[b1, . . . , b!]. Writing
% = 8({?C}) ∈ |X | note that 8∗OX � OX,% . As such q is completely determined by

the homomorphism of supercommutative rings OX,%
ℎ♯→ K[b1, . . . , b!]. �

To expand further on Lemma 4.2: with the !-point A0 |!
K

q
→ X equivalent to a

homomorphism of local, supercommutative rings OX,%
ℎ♯→ K[b1, . . . , b!], recall

from Example 2.5 that the maximal ideal in K[b1, . . . , b!] is the fermionic ideal � =
ker{K[b1, . . . , b!] → K}. As such ℎ♯ sends the unique maximal ideal m% ⊂ OX,%
to �. Hence that it induces a morphism of short exact sequences,

0 // m%

��

// OX,%

ℎ♯

��

// K

��

// 0

0 // � // K[b1, . . . , b!] // K // 0

(7)

A function 5 ∈ OX vanishes at the !-point q if its germ [ 5 ]% vanishes modulo the
maximal ideal m% . Equivalently by (7), if ℎ♯ ( [ 5 ]%) vanishes modulo the fermionic
ideal �.

Remark 4.3 For convenience we will often conflate the point % with the image of
the !-point q = (8, ℎ♯) on {?C} �

Recall our notation: for any supermanifold X, X := HomSM (−,X).

Definition 4.4 The locus of !-points of X is the image X(A0 |!
K ) in Set. For brevity,

it is denoted by X(!) �

4.2 First properties

Theorem 4.5 The locus of reduced points of a supermanifold is isomorphic to the
locus of rational points of its body. �

Proof Recall that a reduced point of X is an !-point with ! = 0. The locus of
reduced points is then X(0). By Lemma 4.2 and the diagram in (7), any reduced
point % is determined by a morphism OX,% → K. Since K is commutative we have
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an isomorphism of sets10 HomSCR (OX,% ,K) � HomCR (O",% ,K) where " is the
body of X.11 Therefore X(0) � " (Spec K). As " (Spec K) is precisely the locus of
rational points of " , the theorem follows. �

Theorem 4.6 The locus of superpoints in a supermanifold is isomorphic to the locus
of rational points of its soul. �

Proof We need to show there exists an isomorphism X(1) � V
X
(Spec K) where

VX is the soul of X, characterized in Lemma 2.22. We begin by constructing a map
X(1) → V

X
(Spec K). Let A0 |1

K

q
→ X be a superpoint with image % in |X |. By

Lemma 4.2 and the diagram in (7), q is determined by the morphism ℎ♯ on local
supercommutative rings,

0 // m%
//

��

OX,%

ℎ♯

��

// K //

��

0

0 // K
b // K[b] // K // 0

(8)

wherewe have identified ker{K[b] → K} � K asK-modules andK
b
→ K[b] denotes

multiplication by b. For any [ 5 ]% ∈ OX,% we can write ℎ♯ ( [ 5 ]%) = 0( [ 5 ]%) +
b1( [ 5 ]%). Since ℎ♯ is a morphism of supercommutative rings, 0 : OX, ? → K will
be an even homomorphism and 1 : OX,% → K[b] will be an odd derivation over 0,
i.e., that

1( [ 5 5 ′]%) = 0( [ 5 ]%)1( [ 5 ′]%) + 1( [ 5 ]%)0( [ 5 ′]%). (9)

By Theorem 4.5, 0 defines a rational point in the body of X. Now with JX ⊂ OX the
fermionic ideal and JX,% ⊂ OX,% the stalk at %, ℎ♯ induces, analogously to (8), the
morphism of short exact sequences,

0 // JX,%

ℎ♯

��

// OX,%
1

{{

0

##
ℎ♯

��

// C",%

��

// 0

0 // K // K[b] // K // 0

(10)

where C" is the structure sheaf of the body of X. Since 0 : OX,% → K is even and
K contains no non-trivial, nilpotent elements, it follows that 0( 9) = 0,∀ 9 ∈ JX,% .
Then by (9) see that for any element 9 ′′ = 9 9 ′ ∈ J 2

X,%
,

10 Here SCR refers to the category of supercommutative rings while CR is that of commutative
rings
11 To see that we will indeed have an isomorphism of sets note that conversely, given a rational

point of " , this is a morphism Spec K
k
→ " . It defines on local rings, C",%

6♯

→ K. Using that

C",% = OX,%/JX,% , the composition ℎ♯ : OX,% → C",%
6♯

→ K defines a reduced point of X.
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1( 9 ′′) = 1( 9 9 ′) = 1( 9)0( 9 ′) + 0( 9)1( 9 ′) = 0.

Therefore ℎ♯ ( 9 ′′) = 0 so it will induce a commuting diagram,

JX,%

��

ℎ♯ // K

JX,%/J 2
X,%

1

77 (11)

Recall now the universal property for the symmetric algebra which says: for any
commutative algebra � over a commutative ', an '-module + and any '-linear
morphism +

1→ �, there exists a unique, algebra morphism 1̃ : Sym•'+ → �

commuting the following diagram,

+

1 ��

// Sym•'+

1̃||
�

where+ ⊂ Sym•'+ is the inclusion of+ as the degree one component of its symmet-
ric algebra. Applying this universal property to (11) yields a unique morphism of
algebras 1̃ : Sym•OX,% (JX,%/J

2
X,%
) → K. With VX = Spec Sym• (JX,%/J 2

X,%
) from

Lemma 2.22 see that 1̃ now defines a rational point SpecK→ VX . We have therefore
constructed a map X(1) → V

X
(Spec K). A inverse map V

X
(Spec K) → X(1) can

be formed by suitably reversing the construction given above. We omit the details
here. �

4.3 A (1|1)-quadratic form

To illustrate the distinction between !-points for ! = 0, 1, 2 we present the (1|1)-
dimensional, quadratic form as follows. Consider a form & given by

〈(G |\), (H |[)〉 = GH + \[. (12)

Here & defines a function A2 |2
K � A

1 |1
K × A

1 |1
K → A

1 |1
K . As a pairing, we can write

& =

(
1 0
0 1

)
(13)

so that 〈(G |\), (H |[)〉 = (G |\))&(H |[).
On the locus of superpoints, set G = I1,0, H = I2,0, \ = o 1

1 b and [ = o
1

2 b. Then
& defines on A2 |2

K (1),
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ℎ♯ (〈(G |\), (H |[)〉) = I1,0I2,0 + (o 1
1 b) (o

1
2 b) = I

1,0I2,0.

As a pairing then on A2 |2
K (1) � K

1+1 = K2 � K × K, & from (13) is represented by
the 1 × 1-matrix, &(1) = (1).12

We obtain a more interesting expression on the locus of 0|2-points. Here, write

G
ℎ♯↦−→ I1,0 + I1,12b1b2;

H
ℎ♯↦−→ I2,0 + I2,12b1b2;

\
ℎ♯↦−→ o 1

1 b1 + o 2
1 b2;

[
ℎ♯↦−→ o 1

2 b1 + o 2
2 b2.

Then,

ℎ♯ (〈(G |\), (H |[)〉) = I1,0I2,0 +
(
I1,0I2,12 + I2,0I1,12 + o 1

1 o
2

2 − o
2

1 o
1

2 )b1b2

As a pairing on A2 |2
K (2) � K

22−1 (2+2) = K8 � K4 × K4, & from (13) is represented
by the 4 × 4-matrix,

&(2) =
©«

1 1
1 0

0 1
−1 0

ª®®®¬
where the blank spaces in the abovematrix are zeroes. Note that&(2) not symmetric,
in contrast to (13). This is because, due to anti-commutativity of the odd variables, the
product (12) itself is not symmetric, i.e., that 〈(G |\), (H |[)〉 ≠ 〈(H |[), (G |\)〉. Indeed,
we have the relations 〈(G |\), (H |[)〉 + 〈(H |[), (G |\)〉 = 2GH and 〈(G |\), (H |[)〉 −
〈(H |[), (G |\)〉 = 2\[. In a sense, these relations are not ‘seen’ by the reduced and
superpoints.

5 The DeWitt topology

In §2 we presented the local, supercommutative ringed space (LSRS) approach to
supermanifold theory (c.f., Definition 2.17). In §4 we recovered its first properties
through its functor of points and arrived general class of points in Definition 4.4.
In the present section we detail the approach to supermanifold theory instigated by
DeWitt in [5], aptly termed the ‘DeWitt approach’. Our main result here is Theorem
5.14. In analogy with the complex topology in algebraic geometry, we construct in

12 Note, this coincides with & (0) .
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Theorem 5.14 a topology on the locus of !-points of a superscheme, referred to as
the DeWitt topology.

5.1 The DeWitt approach

5.1.1 DeWitt superspaces

Fix a field K, an integer ! and set �! := ∧•KK! . It is referred to as the auxiliary
algebra on ! generators. In the vector space topology, �! � K2!−1 (1+1) . Let �<,=

!

now denote the product,

�
<,=

!
:=

<∏
�!,0̄ ×

=∏
�!,1̄ (14)

where �!,0̄ resp., �!,1̄ is the subring resp., �!,0̄ module of even and odd elements
of �! . Evidently �1,1

!
� �! . In the vector space topology �<,=!

� K2!−1 (<+=) . Since
�! is an exterior algebra it comes equipped with a projection f : �<,=

!
→ K<

induced by �! → K. We refer to �<,=
!

f→ K< as the body projection.

Definition 5.1 The topology on �<,=
!

comprised of open sets of the form f−1* for
* ⊂ K< open is referred to as the DeWitt topology on �<,=

!
. �

Relating the vector space and DeWitt topologies on �<,=
!

, we have for any open set
* ⊂ K< that f−1* � * × K2!−1 (<+=)−<.

Definition 5.2 The spaces �<,=
!

equipped with the DeWitt topology from (14) are
referred to as (<, =)-dimensional, DeWitt superspaces over �! . �

Recall from the LSRS approach (Definition 2.17), a supermanifold is built on model
superspaces (R<,∧•C∞+) and (C

<,∧•O+) from Example 2.15. In the DeWitt ap-
proach, a DeWitt supermanifold is built by patching together DeWitt superspaces
over a fixed, auxiliary algebra �! with respect to a class of smooth functions.

5.1.2 Supersmooth functions

Let IU |o0 denote coordinates on �<,=
!

where U = 1, . . . , < and 0 = 1, . . . , =. Here
IU is even, so valued in �!,0̄ while o0 is odd, so valued in �!,1̄. With 1, b1, . . . , b!
denoting generators for �! we write,

IU = IU,0 + IU,8 9b8b 9 + · · · and o0 = o
8
0 b8 + o

8 9:
0 b8b 9b: + · · · (15)

If % ∈ �<,=
!

denotes a point so that IU (%) ∈ �!,0̄ and o0 (%) ∈ �!,1̄, then IU,0 (%)
are coordinates for the body f(%) ∈ K<, i.e., IU,0 (%) = IU,0 (f(%)).
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Remark 5.3 More generally, in the vector space topology we have the isomor-
phism i : �<,=

!
� K2!−1 (<+=) . On coordinates, this establishes a unique rep-

resentation of IU |o0 in (15) with the tuple IU ↦→ (IU,0, IU,8 9 , . . .) and o0 ↦→
(o 8
0 , o

8 9:
0 , . . .). In the case < = 1, = = 1, for % ∈ �

1,1
!

a point, i(%) ∈
K2!−1 (1+1) is a point in a classical, Euclidean space. Coordinates of i(%) are
(I0 (%), I8 9 (%), . . . , o8 (%), o8 9: (%), . . .). �

Definition 5.4 The ring of smooth functions on the DeWitt superspace �<,=
!

is given
by the tensor product,

�∞ (�<,=
!
) := �∞ (f(�<,=

!
)) ⊗ �!

where f(�<,=
!
) = K< is the body projection and �∞ (f(�<,=

!
)) = �∞ (K<) are

smooth functions on K<. �

With the above notion of smooth functions on DeWitt superspaces, the topological
isomorphism �

<,=

!
� K2!−1 (<+=) does not induce an isomorphism of smooth struc-

tures. Indeed, the ring of smooth functions on K2!−1 (<+=) is much larger than that
of �<,=

!
.13 The above notion of smoothness captures the property that any smooth

function � on �<,=
!

can be written in coordinates I |o,

� (I |o) = �0 (I) + �0 (I)o0 + �00
′ (I)o0o0′ + · · · (16)

The Z-expansion introduced by Bruzzo et. al. in [1] is the morphism of rings
�∞ (K<) Z→ �∞ (�<,0

!
) given by

Z( 5 ) (I) = 5 (I0) + (I − I0) 5 ′(I0) + 1
2!
(I − I0)2 5 ′′(I0) + · · ·

In [1, §2] it is shown:

Lemma 5.5 The Z-expansion �∞ (K<) Z→ �∞ (�<,0
!
) defines a monomorphism of

rings.

Comparing smooth functions on DeWitt superspaces from (16) with the image ofZ
leads to the notion of ‘supersmoothness’.

Definition 5.6 A smooth function � ∈ �∞ (�<,=
!
) is said to be supersmooth if the

coefficient functions � � in (16) are in the image ofZ. �

Example 5.7 We give here an example of a function which is, and which is not
supersmooth. Let I |o be coordinates on �1,1

2 so that I = I0 + I12b1b2 and o =

o1b1 + o2b2. Now let � ∈ �∞ (�1,1
2 ) be given by,

� (I |o) = I

13 E.g., the function exp(o1) , which is a smooth function in�∞ (K2!−1 (<+=) ) , will not come from
a smooth function on �<,=

!
.
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Then � is supersmooth since,

� (I |o) = I = I0 + I12b1b2 = Z( 5 ) (I)

where 5 ∈ �∞ (f(�1,1
2 )) = �

∞ (K) is given by 5 (I0) = I0. Indeed, any algebraic
function � (I |o) = � (I) will be supersmooth and so any � (I |o) = �0 (I) +�1 (I)o+
· · · where �8 (I) are algebraic functions of I. The following simple function

� (I |o) = I + b1b2

is not supersmooth however. �

5.1.3 DeWitt supermanifolds

Definition 5.8 An (<, =)-dimensional, DeWitt supermanifold over �! is a locally
ringed space which admits an open covering by open sets (U8)8∈� for U8 ⊂ �<,=!

open in the DeWitt topology and such that over intersections the transition function

i−1
9 (U8 ∩U 9 )

i−1
9−→ U8 ∩U 9

i8−→ i8 (U8 ∩U 9 )

is supersmooth for all 8, 9 for whichU8 ∩U 9 ≠ ∅. �

Remark 5.9 Recalling that �<,=
!
� K2!−1 (<+=) , it follows from Definition 5.8 that

underlying any (<, =)-dimensional, DeWitt supermanifold over �! is a 2!−1 (<+=)-
dimensional, differentiable manifold over K. In parallel with Definition 5.8 one can
construct a wider class of supermanifold where the open sets are open in the vector
space topology on �<,=

!
, i.e., open under the isomorphism �

<,=

!
� K2!−1 (<+=) . The

contrast to the DeWitt case was studied by Rabin and Crane in [7] and it was shown
by Bruzzo et. al. in [1, Ch. 5] how to distinguish different topologies with an analogue
of de Rham cohomology. �

5.2 Superschemes and DeWitt supermanifolds

5.2.1 The atlas for DeWitt supermanifolds

As for manifolds, an atlas for an (<, =)-dimensional, DeWitt supermanifold over
�! consists of a collection of disjoint, DeWitt open sets (U8)8∈� , U8 ⊂ �

<,=

!
,

distinguished DeWitt open subsets U8 9 ⊂ U8 and supersmooth diffeomorphisms
U8 9

�→ U 98 which is the identity if 8 = 9 and for all 8, 9 , : fits into a commuting
diagram,
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U8 9

�
!!

� // U 9:

U8:
�

<<

The construction
⊔
8∈� U8
∼ , where the equivalence relation is defined though the tran-

sition functions (U8 9 � U 98)8 9 , defines a DeWitt supermanifold up to isomorphism.
In the DeWitt topology, recall that each open set is of the form U8 = f−1*8 for
*8 ⊂ K<. As such the glueing data above describes a classical, <-dimensional
submanifold of the DeWitt supermanifold, referred to as the body. From [5, pp.
55-6]:

Theorem 5.10 Underlying any (<, =)-dimensional, DeWitt supermanifold over �!
is a rank-(2!−1 (< + =) − <) vector bundle over the body.

Remark 5.11 It is suggestive to compare Theorem 5.10 with the first properties of
supermanifolds as LSRS, described in §2.3 and §4.2. �

5.2.2 R-points of affine superspace

To prepare our argument for superschemes more generally, we establish the case
of affine superspaces in what follows. Over a field K, recall the affine superspace
A
< |=
K from §3.1. By Theorem 4.5, the rational points (! = 0) of A< |=K recover the

Euclidean space K<. By Theorem 4.6, the superpoints (! = 1) recover a rank =,
trivial vector bundle over K<. Hence that A< |=K (0) � K

< and A< |=K (1) � K
<+=.

More generally we have for the !-points:

Lemma 5.12
A
< |=
K (!) � �

<,=

!
.

Proof Firstly recall �<,=
!
� K2!−1 (<+=) . The statement in the lemma now relates the

functor of points A< |=K with that of the affine space A2!−1 (<+=)
K , where K2!−1 (<+=) �

A
2!−1 (<+=)
K (Spec K). That is, we need to show there exists a natural isomorphism

between the sets,14

HomLSRS (Spec K[b1, . . . , b!],A< |=K ) � HomLSRS (Spec K,A2!−1 (<+=)
K ) (17)

where A0 |!
K = Spec K[b1, . . . , b!]. Write, A< |=K = Spec K[G1, . . . , G< |\1, . . . , \=]

andA2!−1 (<+=)
K = SpecK[I� , o� ] where � and even resp., odd � are multi-indices on

!-generators. Then GU |\0 resp., I� , o� are coordinates on A< |=K resp., A2!−1 (<+=)
K .

The statement in (17) is now equivalent to the following as K-algebras,

14 here LSRS denotes the category of local, supercommutative ringed spaces
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HomK-ALG (K[GU |\0],K[b1, . . . , b!]) � HomK-ALG (K[IU� , o �
0 ],K). (18)

The above isomorphism is a consequence of the familiar tensor-hom adjunction
adapted to supercommutative rings. Thus we obtain the isomorphism (17) and so
the lemma. �

To elaborate further on the proof of Lemma 5.12, with A< |=K = Spec K[GU |\0],
U = 1, . . . , < and 0 = 1, . . . , =; the coordinate ring ofA< |=K isK[GU |\0]. An !-point
q ∈ A< |=K (K

0 |!) is a morphism q = ( 5 , ℎ♯) : K0 |! → A< |=K where 5 : {?C} → A<

is a rational point ofA< |=K (c.f., Theorem 4.5) and ℎ♯ : K[G8 |\0] → K[b1, . . . , b!] is
anmorphism of supercommutative rings. By Lemma 4.2, q is completely determined
by ℎ♯ which, on generators, is

ℎ♯ (GU) = IU,0 + IU,8 9b8b 9 + · · · and ℎ♯ (\0) = o 8
0 b8 + o

8 9:
0 b8b 9b: + · · · (19)

The coefficients of ℎ♯ generate the algebra K[IU,� , o �
0 ] which is the coordinate

ring for A2!−1 (<+=)
K . The assignment b 9 ↦→ 1,∀ 9 mediates the isomorphism (18). As

coordinates, let % = 5 ({?C}) be the image of 5 . Lemma 5.12 says: ℎ♯ (GU (%)) =
ℎ♯ (GU) (%) and ℎ♯ (\0 (%)) = ℎ♯ (\0) (%) and by (19) we have a correspondence,

ℎ♯ (GU (%)) = (IU,0 (%), IU,8 9 (%), . . .); ℎ♯ (\0 (%)) = (o 8
0 (%), o

8 9:
0 (%), . . .).

(20)

This shows explicitly how the locus of !-points ofA< |=K are precisely tuples (rational
points) in the Euclidean space K2!−1 (<+=) , or equivalently, the superspace �<,=

!
by

Remark 5.3. Note, we have only considered �<,=
!

here with its vector space topology.

Proposition 5.13 A< |=K (!) can be given the structure of a DeWitt superspace. �

Proof Recall the body map �<,=
!

f!→ K< defining the DeWitt topology. Then f!
defines the pullback morphism on functions f♯

!
: K[G1, . . . , G<] → �∞ (�<,=

!
). We

can extend this to a morphism f̃
♯

!
: K[G1, . . . , G< |\1, . . . , \=] → �∞ (�<,=

!
) through

the assignment \8 ↦→ o8 . Setting ℎ♯ = f♯! in (20), the body map f! leads thereby to
an identification A< |=K (!) � f

−1
!
A
< |=
K (0). This establishes the proposition. �

5.2.3 R-points of superschemes

Theorem 5.14 For any < |=-dimensional superscheme X over K, its locus of !-
points X(!) admits the structure of an (<, =)-dimensional, DeWitt supermanifold
over �! . �

Proof From [19] we can write X =
⊔
8*8
∼ where *8 ⊂ K< |= are a collection of

disjoint, open sets which cover X and the equivalence relation ∼ is defined by



First properties of supermanifolds, their functor of points and the DeWitt topology 23

isomorphisms d8 9 : *8 9 � * 98 between distinguished subsets *8 9 ⊂ *8 and * 98 ⊂
* 9 . In the casewhereX is a superscheme overK, the open sets are isomorphic to affine
superspaces*8 � A< |=K . By Lemma 5.12, the !-points of each open*8 is isomorphic
to �<,=

!
, so we have isomorphisms *

8
(!) � U8 � �<,=!

and therefore a collection
of distinguished subsets *

8 9
(!) = U8 9 ⊂ U8 � �

<,=

!
. By Proposition 5.13 these

open sets are open in the DeWitt topology on �<,=
!

. Now recall from Lemma 5.5 that
the Z-expansion is a monomorphism. Accordingly, it will preserve isomorphisms.
Applying the Z-expansion then to the transition functions d8 9 : *8 9 � * 98 leads to
the supersmooth isomorphisms Z(d8 9 ) : U8 9 � U 98 between DeWitt superspaces.
Hence from the covering data (*8 ,*8 9 , d8 9 ) defining X, its !-points give covering
data (U8 ,U8 9 ,Z(d8 9 )) which can be compiled as in §5.2.1 to form an atlas for a
DeWitt supermanifold. The locus of !-points the superscheme X therefore admits
the structure of a DeWitt supermanifold. �

From [10, §4], the complex topology on a scheme " over C is a topology on the
rational points " (Spec C) of " . It inherits this topology from complex Euclidean
space in a manner similar to our proof of Theorem 5.14. Now in Theorem 5.14 above
we have shown, for any superscheme X, that its locus of !-points X(!) can be given
the structure of a DeWitt supermanifold for any !. In analogy with the complex
topology then, we can understand Theorem 5.14 as describing a topology which by
Definition 5.1 we can refer to as: the DeWitt topology on the superscheme X.

Question 5.15 Can one interpret the DeWitt topology from Theorem 5.14 as a
Grothendieck topology on the category of superschemes SSCH? �

Recall from the proof of Theorem 5.14 that the DeWitt topology on X is a conse-
quence of Proposition 5.13. Note by Lemma 5.12 however that it is feasible to form
more general topologies on X than the DeWitt topology.

Question 5.16 Can one interpret the other topologies on supermanifolds from [1]
as Grothendieck topologies on SSCH? �
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