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Abstract We review the algebraic approach to super non-Abelian T-Duality consid-
ered in [1], focusing on symmetric and semi-symmetric coset spaces on G/H. We
discuss a potential impediment, appearing in these models when integrating out the
gauge fields in favour of the dual variables. This process cannot be performed in
general and we isolate the obstruction, highlighting three cases in which a solution
can be found. After writing the T-dual action we provide solution for two specific
models. The first based on the symmetric space S3 ' SO(4)/SO(3), well-known in
the literature, the second on the semi-symmetric coset OSp(1|2)/SO(1,1), a Green-
Schwarz-like string sigma model satisfying the supergravity torsion constraints.1

1 Introduction

We start by fixing notation on semi-symmetric cosets, as relevant formulae can be
reduced to those for symmetric spaces. We consider two-dimensional sigma models
involving a generic Lie (super)group G with associated Lie (super)algebra g and
defined via smooth maps g ∈C∞(Σ ,G) from a two-dimensional Lorentzian world-
sheet Σ to G. The main building block of these models is the pull-back to Σ , via g,
of the Maurer-Cartan form j := g−1dg ∈ Ω 1(Σ ,g), invariant under the global left
action GL of the group on itself g→ g−1

0 g and satisfying the Maurer-Cartan flatness
condition Fj := d j + 1

2 [ j, j] = 0, with d and Ω p(Σ ,g) respectively denoting exte-
rior derivative and g-valued p-forms on Σ . Semi-symmetric spaces are cosets on
G/H where H, bosonic subgroup of the supergroup G with associated Lie algebra
h, arises as the fixed point set of an automorphism of G of order four [2, 3]. At
the Lie algebra level this implies the existence of an automorphism σ : g→ g such
that σ4 = 1. This allows to identify four subspaces gk ⊂ g, k = 0,1,2,3, charac-
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terised by σ(gk) = ikgk and [gk,gl ]⊂ g(k+l)mod4. These are singled out by projectors
gk =Pk(g) =

1
4 (1+ i3kσ + i2kσ2+ ikσ3)(g), leading to an orthogonal decomposition

g ' g0⊕ g1⊕ g2⊕ g3. Noting that σ2 = (−1)k, the subspaces g0 ≡ h, g2 ≡ m and
g1 ≡ p, g3 ≡ q are respectively recognised as purely bosonic and purely fermionic.
σ is an involution on bosonic generators, hence semi-symmetric models are the su-
perspace analogue of symmetric spaces, which are recovered by removing fermions.
In turn, j decomposes as j = A+ p+m+ q, with the components transforming as
A→ h−1Ah+h−1dh and {p,m,q} → h−1{p,m,q}h under the local right action HR
of H on G, g→ gh. A locally HR-invariant and globally GL-invariant action is then
constructed out of p,m,q as SSS = 1

2
∫

Σ
〈m,?m〉+ 1

2
∫

Σ
〈p,q〉. Wedge product is un-

derstood and ? is the Hodge star operator on Σ with respect to the world-sheet met-
ric, satisfying ?2 = 1 on Ω 1(Σ ,g). Brackets denote an Ad-invariant, non-degenerate
graded-symmetric bilinear form on g compatible with the decomposition.

T-duality can then be performed, assuming a topologically trivial world-sheet,
by gauging a sub-(super)group KL ⊆ GL of the isometries with gauge fields ω ∈
Ω 1(Σ ,kL) and introducing a term enforcing their flatness Fω := dω + 1

2 [ω,ω] = 0
by means of Lagrange multipliers Λ ∈C∞(Σ ,kL), which transform as Λ → h−1Λh
under local HR. Integrating out the multipliers, ω is set to be pure gauge and the
initial model can be recovered, while integrating out ω a T-dual model is ob-
tained in which the multipliers play the role of dual coordinates. The gauged ac-
tion, with Lagrange multipliers, reads Sω

SS = 1
2
∫

Σ
〈mω ,?mω〉+ 1

2
∫

Σ
〈pω ,qω〉+

1
2
∫

Σ
〈D( jω), jω〉+

∫
Σ
〈Λ̃ ,Fjω 〉. Where Λ̃ := g−1Λg + g−1D(g), while jω := j +

g−1ωg and Aω , pω ,mω ,qω are its projections on the subspaces. D : g→ g defines
a deformation of the initial model introduced in [4, 5, 6], which will be set to zero
in our examples. We shall dualise the whole isometry groups and also choose gauge
g = 1. The EOM for ω reads ?mω − 1

2 pω + 1
2 qω +∇ jω Λ̃ −D( jω) = 0 and its

projections on p,m,q can be solved for pω ,mω ,qω [1]. The projection on h reads

[Λ̃q, pω ]+D
Λ̃m

(mω)+ [Λ̃p,qω ] = ∇Aω
Λ̃h with

{
D

Λ̃m
:= D+ad

Λ̃m

∇ jω := d+ad jω
(1)

and cannot be generally solved for Aω due to the lack of linear terms. This issue is
a result of local HR-invariance and forces a case-by-case study.

2 Solving the EOM - two simple examples

Exploiting the solution for pω ,mω ,qω , equation (1) can be rearranged as

W (Aω)+Z(?Aω) = ζ with W,Z : h→ h, Aω ,ζ ∈Ω
1(Σ ,h) and

W := ad
Λ̃h

+N +(D
Λ̃m
−M†)◦∑

∞
k=0 S2k+1 ◦ (D

Λ̃m
+M)

Z := (D
Λ̃m
−M†)◦∑

∞
k=0 S2k ◦ (D

Λ̃m
+M)

ζ := dΛ̃h+ξ +(D
Λ̃m
−M†)◦ (?+S)◦∑

∞
k=0 S2k ◦ (dΛ̃m+χ)

(2)
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Where we defined S := ad
Λ̃h

+L, with L := ad
Λ̃p
◦O1 +ad

Λ̃q
◦O2, and

M := ad
Λ̃p
◦O3 +ad

Λ̃q
◦O4

N := ad
Λ̃q
◦O3 +ad

Λ̃p
◦O4

ξ := O†
3 (dΛ̃q)+O†

4 (dΛ̃p)

χ := O†
1 (dΛ̃q)+O†

2 (dΛ̃p)


O1 := R11 ◦adΛq +R12 ◦adΛp

O2 := R21 ◦adΛq +R22 ◦adΛp

O3 := R12 ◦adΛq +R11 ◦adΛp

O4 := R22 ◦adΛq +R21 ◦adΛp

(3)

We refer to [1] for the expressions of Ri j and clarify that any O† is defined, with
respect to the inner product 〈O†(X),Y 〉 = 〈X ,O(Y )〉 for any two 1-forms X ,Y ,
using 〈R12(X),Y 〉 = −〈X ,R12(Y )〉, 〈R21(X),Y 〉 = −〈X ,R21(Y )〉, 〈R11(X),Y 〉 =
−〈X ,R22(Y )〉. As anticipated, all the above formulae reduce to those for symmetric
spaces, in which g ' h⊕m, by simply setting to zero any element in p and q. In
symmetric supercosets, h and m contain both bosonic and fermionic generators.

The possibility of solving (2) for Aω , depends on the invertibility of W and Z and
in turn on the structure of the algebra. This potential obstruction has been mentioned
in [7, 5, 6] and problems in the presence of fermions have been discussed in [8]. We
now highlight three situations in which the equation can be solved: in the first two
cases W and 1± ZW−1 or Z and 1±WZ−1 are invertible, while in the third one
neither W nor Z is invertible, but their sum and difference are

Aω = 1
2 (ζ +?ζ )B++

1
2 (ζ−?ζ )B− with


B± :=W−1[(1±ZW−1)−1]

B± :=±Z−1[(1±WZ−1)−1]

B± := (W ±Z)−1

(4)

Writing Aω = ?α + β with α := 1
2 (ζ+B+ − ζ−B−), β := 1

2 (ζ+B+ + ζ−B−) and
ζ± := dΛ̃h+ξ ± (D

Λ̃m
−M†)◦∑

∞
k=0(±S)k ◦ (dΛ̃m+χ) defined as (1±?)ζ = (1±

?)ζ±, one obtains the full T-dual action S̃SS =
∫

Σ
g̃+ B̃ from the hybrid one in [1]

g̃ := 1
2 〈λ−,

1
1−S

?λ+〉−〈∇β Λ̃h+O†
3 (∇β Λ̃q)+O†

4 (∇β Λ̃p),?α〉 (5)

B̃ := 1
2 〈λ−,

1
1−S

λ+〉+ 〈Λ̃h,Fβ − 1
2 [α,α]〉+ 1

2 〈α,N(α)〉+

+ 1
2 〈∇β Λ̃p,R21(∇β Λ̃)p+R22(∇β Λ̃)q〉+ 1

2 〈∇β Λ̃q,R11(∇β Λ̃)p+R12(∇β Λ̃)q〉

with λ± := ∇β±αΛ̃m+O†
1 (∇β±αΛ̃q)+O†

2 (∇β±αΛ̃p)−D(β ±α).
We shall now solve (2) in two examples. The first one involves dualisation of the

SO(4) isometry of the coset space SO(4)/SO(3)' S3. This model has been studied
in the literature [9, 7] and it is thus interesting to understand how the procedure goes
through from the purely algebraic point of view. Given the SO(4) algebra

[RIJ ,RKL] =− i
2 (δIKRJL−δJKRIL−δILRJK +δJLRIK) (6)

one can separate the h= SO(3) = {Hi :=− 1
2 εi

jkR jk} subalgebra from the rest m=
{Mi := Ri4} by using indices I,J = {1,2,3,4} and i, j = {1,2,3}. Indices are raised
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and lowered using the Euclidean metric δIJ . Generators in h and m satisfy

[Hi,H j] =
i
2 εi j

kHk [Mi,H j] =
i
2 εi j

kMk [Mi,M j] =
i
2 εi j

kHk (7)

Writing the multipliers, i.e. the dual coordinate, as Λh := ỹiHi and Λm := x̃iMi,
recalling that Aω := Ai

ω Hi and using the above commutators, one finds

W (Aω) = vi
εi j

kA j
ω Hk with vi :=

[
i
2 ỹi +

i(x̃ · ỹ)
2(4− ỹ2)

x̃i
]

Z(?Aω) =
1

4(ỹ2−4)

{
[(ỹ2−4)x̃2− (ỹ · x̃)2]δ k

j +

+[(ỹ · x̃)ỹ j− (ỹ2−4)x̃ j]x̃k +[(ỹ · x̃)x̃ j− x̃2ỹ j]ỹk}?A j
ω Hk

(8)

It is clear that vk and x̃k respectively lie in the kernels of W k
j and Zk

j , but it is also not
hard to find that W ±Z can be inverted, so that B± := (W ±Z)−1 reads

(B±)k
l = a±1 δ

l
k + x̃k(a±2 x̃l +a±3 ỹl)+ ỹk(a±4 x̃l +a±5 ỹl)+ εak

l(a±6 x̃a +a±7 ỹa)+ (9)

+ x̃aỹb
εab

l(a±8 x̃k +a±9 ỹk)+ x̃aỹb
εabk(a±10x̃l +a±11ỹl)+a±12x̃aỹb

εabkx̃cỹd
εcd

l

with a±1 , ...,a
±
12 complicated functions of x̃2, ỹ2,(x̃ · ỹ) which we omit for brevity.

The second example has to do with super T-dualisation of the OSp(1|2) isom-
etry of the semi-symmetric space OSp(1|2)/SO(1,1). The interest in such a coset,
which has also been considered in the context of holography [10], is due to its struc-
ture, which is that of a 2d Green-Schwarz string sigma model satisfying the torsion
constraints of supergravity. For this reason, dualising such a model would not only
represent a natural next step to the super T-dualisation of the Principal Chiral Model
on OSp(1|2), for which in [1] it was argued that T-duality breaks the supergravity
constraint, but also a concrete example of super T-duality on supercosets, that could
be compared to [4, 5, 6]. Given the OSp(1|2) algebra in light-cone notation

{Q±,Q±}= L±± {Q+,Q−}= L+− [L±±,Q∓] =∓iQ±
[L+−,L±±] =±iL±± [L++,L−−] =−2iL+− [L+−,Q±] =± i

2 Q±
(10)

the four subspaces are h = {L+−} p = {Q+} m = {L++,L−−} q = {Q−}.
Then, writing the Lagrange multipliers, i.e. the dual coordinates, as Λh := ỹL+−,
Λp := θ̃+Q+, Λm := x̃++L+++ x̃−−L−−, Λq := θ̃−Q− and recalling that Aω :=
A+−

ω L+−, one can exploit the above commutators to compute W (Aω) = 0 and

Z(?Aω) =
4x̃++x̃−−

1+ ỹ2

[
1+

4iθ̃+θ̃−

(1− iỹ)[4x̃++x̃−−+(1+ iỹ)2]

]
?A+−

ω L+− (11)

Equation (2) can thus be immediately solved as in (4) with B± :=±Z−1 and

Z−1 =
1+ ỹ2

4x̃++x̃−−

[
1− 4iθ̃+θ̃−

(1− iỹ)[4x̃++x̃−−+(1+ iỹ)2]

]
(12)
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3 Conclusions and Outlook

We focused on a delicate step in the T-dualisation procedure of symmetric and semi-
symmetric cosets, namely solving the EOM for the gauge fields ω in the h subspace.
We highlighted how such EOM is not necessarily solvable due to the lack of a linear
term in Aω : this may heavily affect T-duality, as the removal of Aω is necessary to
write down the full dual action. Rewriting the EOM as in (2), three cases can be
recognised in which the solution is of the form (4). This has been used to write the
full T-dual action and construct solutions for two explicit examples.

An important step toward a better comprehension of T-dualisation would be rep-
resented by a deeper understanding of the EOM (2) and of the constraints its resolu-
tion imposes on the underlying algebra. Additionally, given the physical relevance
of the coset OSp(1|2)/SO(1,1) and the simple result (12) for its EOM, it would cer-
tainly be very interesting to carry out the dualisation of such model in full details, so
as to have a concrete example of super non-Abelian T-duality on supercosets, which
could hopefully serve as a base model in view of more complicated ones.

Acknowledgements I am extremely grateful to Silvia Penati, Dmitri Sorokin and Martin Wolf for
stimulating discussions and useful comments on this contribution. I also thank the organisers of the
workshop “2D SUSY@MATRIX” for the opportunity to present my work and the referee for useful
comments. This work was partially supported by Università degli studi di Milano-Bicocca, by the
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