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Abstract We show that many graphs with bounded treewidth can be described as
subgraphs of the strong product of a graph with smaller treewidth and a bounded-
size complete graph. To this end, define the underlying treewidth of a graph class G
to be the minimum non-negative integer c such that, for some function f , for ev-
ery graph G ∈ G there is a graph H with tw(H)6 c such that G is isomorphic to a
subgraph of H�K f (tw(G)). We introduce disjointed coverings of graphs and show
they determine the underlying treewidth of any graph class. Using this result, we
prove that the class of planar graphs has underlying treewidth 3; the class of Ks,t -
minor-free graphs has underlying treewidth s (for t >max{s,3}); and the class of
Kt -minor-free graphs has underlying treewidth t−2. In general, we prove that a
monotone class has bounded underlying treewidth if and only if it excludes some
fixed topological minor. We also study the underlying treewidth of graph classes
defined by an excluded subgraph or excluded induced subgraph. We show that the
class of graphs with no H subgraph has bounded underlying treewidth if and only if
every component of H is a subdivided star, and that the class of graphs with no in-
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duced H subgraph has bounded underlying treewidth if and only if every component
of H is a star.

1 Introduction

Graph product structure theory describes complicated graphs as subgraphs of strong
products1 of simpler building blocks. The building blocks typically have bounded
treewidth, which is the standard measure of how similar a graph is to a tree. Exam-
ples of graphs classes that can be described this way include planar graphs [14, 29],
graphs of bounded Euler genus [10, 14], graphs excluding a fixed minor [14],
and various non-minor-closed classes [15, 21]. These results have been the key to
solving several open problems regarding queue layouts [14], nonrepetitive colour-
ing [13], p-centered colouring [11], adjacency labelling [12, 18], twin-width [1, 5],
and comparable box dimension [16].

This paper shows that graph product structure theory can even be used to describe
graphs of bounded treewidth in terms of simpler graphs. Here the building blocks
are graphs of smaller treewidth and complete graphs of bounded size. For example,
a classical theorem by the referee of [8] can be interpreted as saying that every
graph G of treewidth k and maximum degree ∆ is contained2 in T �KO(k∆) for
some tree T .

This result motivates the following definition. The underlying treewidth of a
graph class G is the minimum c ∈ N0 such that, for some function f , for ev-
ery graph G ∈ G there is a graph H with tw(H)6 c such that G is contained
in H�K f (tw(G)). If there is no such c, then G has unbounded underlying treewidth.
We call f the treewidth-binding function. For example, the above-mentioned result
in [8] says that any graph class with bounded degree has underlying treewidth at
most 1 with treewidth-binding function O(k).

This paper introduces disjointed coverings of graphs and shows that they are
intimately related to underlying treewidth; see Section 3. Indeed, we show that dis-
jointed coverings characterise the underlying treewidth of any graph class (Theo-
rem 7). The remainder of the paper uses disjointed coverings to determine the under-
lying treewidth of several graph classes of interest, with a small treewidth-binding
function as a secondary goal. In this extended abstract, most proofs are omitted;
see [6] for all the details.

1 The strong product of graphs A and B, denoted by A�B, is the graph with vertex-set
V (A)×V (B), where distinct vertices (v,x),(w,y) ∈V (A)×V (B) are adjacent if v = w and xy ∈
E(B), or x = y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).
2 A graph G is contained in a graph X if G is isomorphic to a subgraph of X .
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2 Preliminaries

2.1 Basic Definitions

See [7] for graph-theoretic definitions not given here. We consider simple, finite,
undirected graphs G with vertex-set V (G) and edge-set E(G). A clique in a graph
is a set of pairwise adjacent vertices. Let ω(G) be the size of the largest clique in a
graph G.

A graph class is a collection of graphs closed under isomorphism. A graph class
is monotone if it is closed under taking subgraphs. A graph H is a minor of a graph G
if H is isomorphic to a graph obtained from a subgraph of G by contracting edges.
A graph G is H-minor-free if H is not a minor of G. A graph class G is minor-closed
if every minor of each graph in G is also in G .

Let N := {1,2, . . .} and N0 := {0,1, . . .}. All logarithms in this paper are binary.

2.2 Tree-Decompositions

For a tree T , a T -decomposition of a graph G is a collection W = (Wx : x ∈V (T )) of
subsets of V (G) indexed by the nodes of T such that (i) for every edge vw ∈ E(G),
there exists a node x ∈V (T ) with v,w ∈Wx; and (ii) for every vertex v ∈V (G), the
set {x ∈V (T ) : v ∈Wx} induces a (connected) subtree of T . Each set Wx in W is
called a bag. The width of W is max{|Wx| : x ∈V (T )}−1. A tree-decomposition is
a T -decomposition for any tree T . The treewidth tw(G) of a graph G is the mini-
mum width of a tree-decomposition of G. Treewidth is the standard measure of how
similar a graph is to a tree. Indeed, a connected graph has treewidth 1 if and only
if it is a tree. Treewidth is of fundamental importance in structural and algorithmic
graph theory; see [2, 20, 27] for surveys.

We use the following well-known facts about treewidth. Every minor H of a
graph G satisfies tw(H)6 tw(G). In every tree-decomposition of a graph G, each
clique of G appears in some bag. Thus tw(G)> ω(G)−1 and tw(Kn) = n−1.
If {v1, . . . ,vk} is a clique in a graph G1 and {w1, . . . ,wk} is a clique in a graph G2,
and G is the graph obtained from the disjoint union of G1 and G2 by identifying vi
and wi for each i ∈ {1, . . . ,k}, then tw(G) = max{tw(G1), tw(G2)}. A greedy algo-
rithm shows that χ(G)6 tw(G)+1.

2.3 Partitions

To describe our main results in Section 1, it is convenient to use the language of
graph products. However, to prove our results, it is convenient to work with the
equivalent notion of graph partitions, which we now introduce.
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For graphs G and H, an H-partition of G is a partition (Vx : x ∈V (H)) of V (G)
indexed by the nodes of H, such that for every edge vw of G, if v ∈Vx and w ∈Vy,
then x = y or xy ∈ E(H). We say that H is the quotient of such a partition. The
width of an H-partition is max{|Vx| : x ∈V (H)}. For c ∈ N0, an H-partition where
tw(H) 6 c is called a c-tree-partition. The c-tree-partition-width of a graph G, de-
noted tpwc(G), is the minimum width of a c-tree-partition of G.

It follows from the definitions that a graph G has an H-partition of width at most `
if and only if G is contained in H�K`. Thus, tpwc(G) equals the minimum ` ∈ N0
such that G is contained in H�K` for some graph H with tw(H)6 c. Hence, the
underlying treewidth of a graph class G equals the minimum c ∈ N0 such that, for
some function f , every graph G ∈ G has c-tree-partition-width at most f (tw(G)).
We henceforth use this as our working definition of underlying treewidth.

Before continuing, we review work on the c = 1 case. A tree-partition is a T -
partition for some tree T . The tree-partition-width of G, denoted by tpw(G), is the
minimum width of a tree-partition of G. Thus tpw(G) = tpw1(G), which equals the
minimum ` ∈ N0 for which G is contained in T �K` for some tree T . Tree-partitions
were independently introduced by Seese [28] and Halin [19], and have since been
widely investigated [3, 4, 8, 9, 17, 30, 31].

Bounded tree-partition-width implies bounded treewidth, as noted by Seese [28].
This fact easily generalises for c-tree-partition-width:

tw(G)6 (c+1) tpwc(G)−1.

Of course, tw(T ) = tpw(T ) = 1 for every tree T . But in general, tpw(G) can be
much larger than tw(G). For example, fan graphs on n vertices have treewidth 2 and
tree-partition-width Ω(

√
n); see Lemma 8 below. On the other hand, the referee of

[8] showed that if the maximum degree and treewidth are both bounded, then so is
the tree-partition-width, which is one of the most useful results about tree-partitions.

Lemma 1 ([8]). For k,∆ ∈ N, every graph of treewidth less than k and maximum
degree at most ∆ has tree-partition-width at most 24k∆ .

This bound is best possible up to the multiplicative constant [31]. Note that
bounded maximum degree is not necessary for bounded tree-partition-width (for
example, stars). Ding and Oporowki [9] characterised graph classes with bounded
tree-partition-width in terms of excluded topological minors. We give an alternative
characterisation, which says that graph classes with bounded tree-partition-width
are exactly those that have bounded treewidth and satisfy a further ‘disjointedness’
condition. Furthermore, this result naturally generalises for c-tree-partition-width
and thus for underlying treewidth.

3 Disjointed Coverings

This section introduces disjointed coverings and shows that they can be used to
characterise bounded c-tree-partition-width and underlying treewidth.
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An `-covering of a graph G is a set β ⊆ 2V (G) such that |B|6 ` for every B ∈ β ,
and∪{B : B ∈ β}=V (G).3 If B1∩B2 =∅ for all distinct B1,B2 ∈ β , then β is an `-
partition. As illustrated in Figure 1, an `-covering β of a graph G is (c,d)-disjointed
if for every c-tuple (B1, . . . ,Bc) ∈ β c and every component X of G− (B1∪·· ·∪Bc)
there exists Q⊆V (X) with |Q|6 d such that for each component Y of X−Q, for
some i ∈ {1, . . . ,c} we have V (Y )∩NG(B′i) =∅, where B′i := Bi \ (B1∪·· ·∪Bi−1).
Note that we can take Q =∅ if some B′i =∅, since NG(∅) =∅.

Q

B′
1 B′

2

X

Fig. 1 A disjointed partition with c = 2, where non-edges are dashed.

Given positive integers ` and t and an `-covering β of a graph G, we de-
fine β [t] := {

⋃
B : B ⊆ β , |B|6 t}. So β [t] is a t`-covering of G. For a func-

tion f : N→ R+ we say that β is (c, f )-disjointed if β [t] is (c, f (t))-disjointed for
every t ∈ N.

While (c,d)-disjointed coverings are conceptually simpler than (c, f )-disjointed
coverings, we show they are roughly equivalent (Theorem 3). Moreover, (c, f )-
disjointed coverings are essential for the main proof (Lemma 6) and give better
bounds on the c-tree-partition-width, leading to smaller treewidth-binding functions
when determining the underlying treewidth of several graph classes of interest (for
Kt -minor-free graphs for example).

Note that we often consider the singleton partition β := {{v} : v ∈V (G)} of a
graph G, which is (c, f )-disjointed if and only if, for every t ∈ N, every t-partition
of G is (c, f (t))-disjointed.

This section characterises c-tree-partition-width in terms of (c,d)-disjointed cov-
erings (or partitions) and (c, f )-disjointed coverings (or partitions). The following
observation deals with the c = 0 case.

Observation 2. The following are equivalent for any graph G and d ∈ N:

(a) G has a (0,d)-disjointed covering;
(b) every covering of G is (0,d)-disjointed;
(c) each component of G has at most d vertices;
(d) G has 0-tree-partition-width at most d.

Observation 2 implies that a graph class G has underlying treewidth 0 if and
only if there is a function f such that every component of every graph G ∈ G has at
most f (tw(G)) vertices.

3 Our definition of `-covering differs from the standard usage where it refers to a covering in which
each element of the ground set is covered ` times.
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We prove the following characterisation of bounded c-tree-partition-width (which
is new even in the c = 1 case).

Theorem 3. For fixed c ∈ N0, the following are equivalent for a graph class G with
bounded treewidth:

(a) G has bounded c-tree-partition-width;
(b) for some d, ` ∈ N, every graph in G has a (c,d)-disjointed `-partition;
(c) for some d, ` ∈ N, every graph in G has a (c,d)-disjointed `-covering;
(d) for some ` ∈ N and function f , every graph in G has a (c, f )-disjointed `-

partition;
(e) for some ` ∈ N and function f , every graph in G has a (c, f )-disjointed `-

covering.

Proof. Observation 2 handles the c = 0 case. Now assume that c> 1. Lemma 5 be-
low says that (a) implies (b). Since every `-partition is an `-covering, (b) implies (c),
and (d) implies (e). Lemma 4 below says that (c) implies (d). Finally, Lemma 6 be-
low says that (e) implies (a). ut

By definition, every (c, f )-disjointed `-covering is (c, f (1))-disjointed. The next
lemma gives a qualitative converse to this.

Lemma 4. Let `,c,d ∈ N, and let β be a (c,d)-disjointed `-covering of a graph G.
Then β is (c, f )-disjointed, where f (t) := dtc for each t ∈ N.

Proof. Fix t ∈ N. Let B1, . . . ,Bc ∈ β [t]. Let X be a component of G− (B1∪·· ·∪Bc).
For each i ∈ {1, . . . ,c}, let Bi be a set of at most t elements of β whose union
is Bi. Let F := B1×·· ·×Bc, and for each y = (A1, . . . ,Ac) ∈F , define Qy as fol-
lows. Let Xy the component of G− (A1∪·· ·∪Ac) containing X . Since β is (c,d)-
disjointed, there exists Qy ⊆V (Xy) of size at most d such that for every component Y
of Xy−Qy there is some i ∈ {1, . . . ,c} such that V (Y )∩NG(Ai \ (A1∪·· ·∪Ai−1)) is
empty. Now let Q :=

⋃
y∈F Qy, and note that |Q|6 d|F |6 dtc.

Suppose for contradiction that there exists a component Y of X−Q such that for
all i ∈ {1, . . . ,c}, there is a vertex bi ∈ NG(Y )∩B′i, where B′i := Bi \ (B1∪·· ·∪Bi−1).
Let y = (A1, . . . ,Ac) ∈F be such that (b1, . . . ,bc) ∈ A1×·· ·×Ac, and consider
that component Y ′ of Xy−Qy containing Y . By the definition of Qy, there is
some i ∈ {1, . . . ,c} such that Y ′ contains no neighbour of a vertex in Ai \ (A1 ∪
·· · ∪Ai−1). In particular, all neighbours of vertices of Y are either vertices of Y ′ or
neighbours of vertices of Y ′, so bi is not a neighbour of any vertex of Y , a contradic-
tion. ut

Having a (c,d)-disjointed partition is necessary for bounded c-tree-partition-
width.

Lemma 5. For all c, ` ∈ N0, every graph G with c-tree-partition-width ` has a
(c,c`)-disjointed `-partition.
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Proof. By assumption, G has an H-partition β = (Vh : h ∈V (H)) where H is a
graph of treewidth at most c and |Vh|6 ` for all h. We first show that the sin-
gleton partition of H is (c,c)-disjointed. Let v1, . . . ,vc ∈V (H) and let X be a
component of H−{v1, . . . ,vc}. Let (Wx : x ∈V (T )) be a tree-decomposition of H
where |Wx|6 c+1 for all x ∈V (T ). We may assume that Wx 6=Wy whenever x 6= y.
For each i ∈ {1, . . . ,c}, let Ti be the subtree of T induced by {x ∈V (T ) : vi ∈Wx}.

First suppose that V (Ti)∩V (Tj) =∅ for some i, j ∈ {1, . . . ,c}. Let z ∈V (Ti) be
the closest node (in T ) to Tj. Let Q :=Wz∩X . Note that Q⊆Wz \{vi} so |Q|6 c.
Any path from vi to v j in H passes through Wz, so each component of X−Q is
disjoint from NH(vi) or NH(v j).

Now assume that V (Ti)∩V (Tj) 6=∅ for all i, j ∈ {1, . . . ,c}. Let TX be the sub-
graph of T induced by {x ∈V (T ) : V (X)∩Wx 6=∅}. Since X is connected, TX is
a subtree of T . Suppose that V (Ti)∩V (TX ) =∅ for some i. Since every neighbour
of vi in H is in

⋃
(Wx : x ∈V (Ti)), it follows that NH(vi)∩V (X) =∅ and so we may

take Q :=∅ in this case. Now assume that V (Ti)∩V (TX ) 6=∅ for all i ∈ {1, . . . ,c}.
By the Helly property, T̃ := T1∩·· ·∩Tc∩TX is a non-empty subtree of T . For each
x ∈V (T̃ ), we have |Wx|6 c+1 and so Wx = {v1, . . . ,vc,u} for some u ∈V (X). First
assume |V (T̃ )|> 2. Then there are adjacent x,y ∈V (T̃ ) with Wx = {v1, . . . ,vc,u}
and Wy = {v1, . . . ,vc,v} for u,v ∈V (X). Since Wx 6=Wy, we have u 6= v and thus
there is no (u,v)-path in H−{v1, . . . ,vc}, contradicting the connectedness of X .
Hence T̃ consists of a single vertex z; thus Wz = {v1, . . . ,vc,u} for some u ∈V (X).
Let Q := {u} and consider a component Y of X−Q. Let TY be the subtree of T
induced by {y ∈V (T ) : V (Y )∩Wy 6=∅}. Since TY is connected and does not con-
tain z, it is disjoint from some Ti. As above, NH(vi)∩V (Y ) =∅, as required.

We have shown that the singleton partition of H is (c,c)-disjointed. Now focus
on G. By assumption, β is an `-partition of G. Let Vv1 , . . . ,Vvc be parts in β , and let X
be a component of G− (Vv1 ∪·· ·∪Vvc). Then X ⊆

⋃
{Vh : h ∈ X ′} where X ′ is a

component of H−{v1, . . . ,vc}. Since H is (c,c)-disjointed, there exists Q′ ⊆V (X ′)
of size at most c such that each component X ′−Q′ is disjoint from some NH(vi).
Let Q :=

⋃
{Vh : h ∈ Q′}, which has size at most c`. Each component of X−Q is

disjoint from some NG(Vvi). ut

The next lemma lies at the heart of the paper.

Lemma 6. Let k,c, ` ∈ N and f : N→ R+. For any graph G, if tw(G) < k and
G has a (c, f )-disjointed `-covering, then G has c-tree-partition-width at most
max{12`k,2c` f (12k)}.

Lemmas 4 and 6 imply the following result:

Corollary 1. Let k,c,d, ` ∈ N. For any graph G, if tw(G) < k and G has a (c,d)-
disjointed `-covering, then G has c-tree-partition-width at most 2cd`(12k)c.

Observe that the singleton partition of any graph with maximum degree ∆ is
(1,∆)-disjointed. So Corollary 1 with c = `= 1 and d = ∆ implies Lemma 1 (even
with the same constant 24). Indeed, the proof of Lemma 6 in the case of graphs with
bounded degree is equivalent to the proof of Lemma 1.



8 Campbell, et al.

To conclude this section, Lemmas 5 and 6 imply the following characterisation
of underlying treewidth.

Theorem 7. The underlying treewidth of a graph class G is equal to the mini-
mum c ∈ N0 such that, for some function g : N→ N, every graph G ∈ G has a
(c,g(tw(G)))-disjointed g(tw(G))-partition.

4 Lower Bounds

We now define two graphs that provide lower bounds on the underlying treewidth
of various graph classes. For a graph G and ` ∈ N, let `G be the union of ` vertex-
disjoint copies of G. Let Ĝ be the graph obtained from G by adding one dominant
vertex. Observe that tw(Ĝ) = tw(G)+1 and tw(`G) = tw(G) for any ` ∈ N, im-
plying tw(̂̀G) = tw(G)+1. For c, ` ∈ N, define graphs Gc,` and Cc,` recursively as
follows. First, G1,` := P̀ +1 is the path on `+ 1 vertices, and C1,` := K1,` is the star
with ` leaves. Further, for c> 2, let Gc,` := ̂`Gc−1,` and Cc,` := `̂Cc−1,`.

The next lemma collects together some useful and well-known properties of Gc,`
and Cc,`.

Lemma 8. For all c, ` ∈ N,

(i) tw(Gc,`) = tw(Cc,`) = c;
(ii) for any `-partition of G ∈ {Gc,`,Cc,`}, there is a (c + 1)-clique in G whose

vertices are in distinct parts;
(iii) Gc,` and Cc,` both have (c−1)-tree-partition-width greater than `;
(iv) G2,` is outerplanar, and G3,` is planar;
(v) Gc,` is Kc,max{c,3}-minor-free;

(vi) Cc,` does not contain P4 as an induced subgraph;
(vii) Cc,` does not contain Pn as a subgraph for n> 2c+1.

Proof. Since tw(̂̀G) = tw(G)+1 for any graph G and ` ∈ N, part (i) follows by
induction.

We establish (ii) by induction on c. In the case c = 1, every `-partition of P̀ +1
or K1,` contains an edge whose endpoints are in different parts, and we are done.
Now assume the claim for c−1 (c> 2) and let G ∈ {Gc−1,`,Cc−1,`}. Consider an
`-partition of ̂̀G. At most `−1 copies of G contain a vertex in the same part as
the dominant vertex v. Thus, some copy G0 of G contains no vertices in the same
part as v. By induction, G0 contains a c-clique K whose vertices are in distinct parts.
Since v is dominant, K∪{v} satisfies the induction hypothesis.

Let G ∈ {Gc,`,Cc,`}. Consider an H-partition of G of width at most `. By (ii),
G contains a (c+1)-clique whose vertices are in distinct parts. So ω(H)> c+1,
implying tw(H)> c. This establishes (iii).

Observe that G2,` is outerplanar (called a fan graph). The disjoint union of outer-
planar graphs is outerplanar and the graph obtained from any outerplanar graph by
adding a dominant vertex is planar; thus G3,` is planar.
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We next show that Gc,` is Kc,max{c,3}-minor-free. G1,` is a path and so has no
K1,3-minor. G2,` is outerplanar and so has no K2,3-minor. Let c> 3 and assume the
result holds for smaller c. Suppose that Gc,` contains a Kc,c-minor. Since Kc,c is 2-
connected, some copy of Gc−1,` in Gc,` contains a Kc−1,c-minor. This contradiction
establishes (v).

We show that Cc,` contains no induced P4 by induction on c. First, C1,` = K1,`
does not contain P4. Next, suppose that Cc−1,` does not contain an induced P4. P4
does not have a dominant vertex and so any induced P4 in Cc,` must lie entirely
within one copy of Cc−1,`. In particular, Cc,` does not contain an induced P4. This
proves (vi).

Finally, Nešetřil and Ossona de Mendez [26] proved (vii). ut

The underlying treewidth of the class of graphs of treewidth at most k is obvi-
ously at most k. Lemma 8 (i) and (iii) imply the following.

Corollary 2. The underlying treewidth of the class of graphs of treewidth at most k
equals k.

Corollary 3. The classes {Gc,` : c, `∈N} and {Cc,` : c, `∈N} both have unbounded
underlying treewidth.

Proof. Suppose that {Gc,` : c, ` ∈ N} has underlying treewidth b. Thus, for some
function f , for all c, ` ∈ N, we have tpwb(Gc,`)6 f (tw(Gc,`)) = f (c). In partic-
ular, with c := b+1 and ` := f (c), we have tpwc−1(Gc,`)6 `, which contradicts
Lemma 8 (iii). The proof for {Cc,` : c, ` ∈ N} is analogous. ut

5 Excluding a Minor

This section uses disjointed partitions to determine the underlying treewidth of sev-
eral minor-closed classes of interest.

The next definition enables Kt -minor-free graphs and Ks,t -minor-free graphs to be
handled simultaneously. For s, t ∈ N, let Ks,t be the class of graphs G for which there
is a partition {A,B} of V (G) such that |A|= s and |B|= t; vw ∈ E(G) for all v ∈ A
and w ∈ B; and G[B] is connected. Obviously, every graph in Ks,t contains Ks,t .
Similarly, we obtain Kt as a minor of any G ∈Kt−2,t by contracting a matching
between A and B of size t−2 whose end-vertices are distinct from the end-vertices
of some edge of G[B].

The next lemma is proved by a well-known technique [23, 24].

Lemma 9. Let G be a graph with no minor in Ks,t . Assume {A,B} is a partition
of V (G) such that G[B] is connected and every vertex in B has at least s neighbours
in A. Then |B|6 δ |A| for some δ = δ (s, t).

The following well-known Erdős–Pósa type result is useful for showing disjoint-
edness.
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Lemma 10. Let H be a set of connected subgraphs of a graph G. Then, for every
non-negative integer `, either there are `+ 1 vertex-disjoint graphs in H or there
is a set Q ⊆ V (G) of size at most `(tw(G)+ 1) such that G−Q contains no graph
of H .

Lemma 11. For fixed s, t ∈ N, every graph G with no minor in Ks,t and of
treewidth k has s-tree-partition-width O(k2).

Proof. By Lemma 6 it suffices to show that the singleton partition of G is (s, f )-
disjointed, where f (n) := δ sn(k+1) and δ := δ (s, t) from Lemma 9. Let S1, . . . ,Ss
be subsets of V (G) of size at most n, let S := S1∪·· ·∪Ss, and for each i ∈ {1, . . . ,s}
let S′i := Si \ (S1∪·· ·∪Si−1). Let X be a connected component of G−S. Let H be
the set of connected subgraphs H of X such that H ∩N(S′i) 6=∅ for all i ∈ {1, . . . ,s}.
Say R is a maximum-sized set of pairwise disjoint subgraphs in H . We may assume
that

⋃
{V (R) : R ∈R}=V (X). Let X ′ be the graph obtained from G[S∪V (X)] by

contracting each subgraph R ∈R into a vertex vR. So V (X ′) = S∪{vR : R ∈R}.
Since X is connected, {vR : R ∈R} induces a connected subgraph of X ′. By con-
struction, in X ′, each vertex vR has at least s neighbours in S. By Lemma 9,
|R|6 δ |S|. By Lemma 10, there is a set Q⊆V (X) of size at most δ |S|(k+1)6 f (n)
such that X−Q contains no graph in H . Thus each component Y of X−Q satis-
fies V (Y )∩NG(S′i) =∅ for some i ∈ {1, . . . ,s}. Hence, the singleton partition of G
is (s, f )-disjointed. ut

We now determine the underlying treewidth of Kt - and Ks,t -minor-free graphs.

Theorem 12. For fixed t ∈N with t > 2, the underlying treewidth of the class of Kt -
minor-free graphs equals t−2. In particular, every Kt -minor-free graph of treewidth
k has (t−2)-tree-partition-width O(k2).

Proof. Since Kt is a minor of every graph in Kt−2,t , Lemma 11 implies that every
Kt -minor-free graph of treewidth k has (t−2)-tree-partition-width O(k2). Thus the
underlying treewidth of the class of Kt -minor-free graphs is at most t−2. Suppose
for contradiction that equality does not hold. That is, for some function f , every
Kt -minor-free graph G has (t− 3)-tree-partition-width at most f (tw(G)). Let ` :=
f (t−2). The graph Gt−2,` in Lemma 8 has treewidth t−2 and is thus Kt -minor-free.
However, by Lemma 8, tpwt−3(Gt−2,`)> `= f (t−2) = f (tw(Gt−2,`)), which is the
required contradiction. ut

A similar proof shows:

Theorem 13. For fixed s, t ∈ N with t >max{s,3}, the underlying treewidth of the
class of Ks,t -minor-free graphs equals s. For s, t ∈ N with s6 t 6 2, the underlying
treewidth of the class of Ks,t -minor-free graphs equals s−1.

The class of planar graphs is minor-closed. Since planar graphs are K5- and K3,3-
minor-free, Theorem 12 or Theorem 13 imply the next result (where the lower bound
holds since the graph G3,` in Lemma 8 is planar).
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Theorem 14. The underlying treewidth of the class of planar graphs equals 3. In
particular, every planar graph of treewidth k has 3-tree-partition-width O(k2).

The class of graphs embeddable on a given surface (that is, a closed compact
2-manifold) is minor-closed. The Euler genus of a surface with h handles and c
cross-caps is 2h+ c. The Euler genus of a graph G is the minimum g ∈ N0 such that
there is an embedding of G in a surface of Euler genus g; see [25] for more about
graph embeddings in surfaces.

It follows from Euler’s formula that every graph with Euler genus at most g is
K3,2g+3-minor-free. Thus Lemma 8 and Theorem 13 imply the following.

Theorem 15. The underlying treewidth of the class of graphs embeddable on
any fixed surface Σ equals 3. In particular, every graph embeddable in Σ and of
treewidth k has 3-tree-partition-width O(k2).

6 Excluding a Topological Minor

A graph G̃ is a subdivision of a graph G if G̃ can be obtained from G by replacing
each edge vw by a path Pvw with endpoints v and w (internally disjoint from the rest
of G̃). If each Pvw has t internal vertices, then G̃ is the t-subdivision of G. If each Pvw
has at most t internal vertices, then G̃ is a (6 t)-subdivision of G. A graph H is a
topological minor of G if a subgraph of G is isomorphic to a subdivision of H. A
graph G is H-topological-minor-free if H is not a topological minor of G. Using
disjointed partitions, we prove:

Theorem 16. For every fixed multigraph X with p vertices, every X-topological
minor-free graph G of treewidth k has p-tree-partition-width O(k2).

Theorem 16 implies the upper bound in the next result, which we show is tight.

Theorem 17. The underlying treewidth of the class of Kt -topological-minor-free
graphs equals t−2 if t ∈ {2,3,4} and equals t if t > 5.

Determining the underlying treewidth of the class of Ks,t -topological-minor-free
graphs is an interesting open problem (for s> 4).

We show that c-tree-partition-width is well-behaved (in a certain sense) under
subdivisions. The next theorem follows.

Theorem 18. A monotone graph class G has bounded underlying treewidth if and
only if G excludes some fixed topological minor.

7 Excluding a Subgraph or Induced Subgraph

For a graph H, a graph G is H-free if G contains no subgraph isomorphic to H. For a
finite set of graphs H , we say that G is H -free if G is H-free for all H ∈H . Let GH
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be the class of H-free graphs and let GH be the class of H -free graphs. The next
result characterise when GH has bounded underlying treewidth, and determines
the exact underlying treewidth for several natural classes. The proof is based on
disjointed coverings.

Let Pn be the n-vertex path. A spider is a subdivision of a star and a spider-forest
is a subdivision of a star-forest. For s, t ∈ N with s > 2, the (s, t)-spider, denoted
Ss,t , is the (t−1)-subdivision of K1,s. If v is the centre of Ss,t , then each component
of Ss,t − v is called a leg.

Theorem 19. For all `,n,s, t ∈ N where n,s > 3 and ` > 2, and for every finite set
H of graphs,

(i) GH has bounded underlying treewidth if and only if H contains a spider-
forest;

(ii) the underlying treewidth of GPn equals blognc−1;
(iii) the underlying treewidth of G`Pn equals blognc;
(iv) the underlying treewidth of GSs,t equals blog tc+1;
(v) the underlying treewidth of G`Ss,t equals blog tc+2.

For a graph H, let IH be the class of graphs with no induced subgraph iso-
morphic to H. We characterise the graphs H such that IH has bounded underlying
treewidth, and determines the precise underlying treewidth for each such H.

Theorem 20. For any graph H,

(i) IH has bounded underlying treewidth if and only if H is a star-forest;
(ii) if H is a star-forest, then IH has underlying treewidth at most 2;

(iii) IH has underlying treewidth at most 1 if and only if H is a star or each com-
ponent of H is a path on at most three vertices;

(iv) IH has underlying treewidth 0 if and only if H is a path on at most three ver-
tices, or E(H) =∅.

8 Graph Drawings

A graph is k-planar if it has a drawing in the plane with at most k crossings on
each edge, where we assume that no three edges cross at the same point. Of course,
the class of 0-planar graphs is the class of planar graphs, which has underlying
treewidth 3 (Theorem 14). However, 1-planar graphs behave very differently. It is
well-known that every graph has a 1-planar subdivision: take an arbitrary drawing
of G and for each edge e add a subdivision vertex between consecutive crossings
on e. Since the class of 1-planar graphs is monotone, Theorem 18 implies that the
class of 1-planar graphs has unbounded underlying treewidth.

By restricting the type of drawing, we obtain positive results. A circular drawing
of a graph G positions each vertex on a circle in the plane, and draws each edge as an
arc across the circle, such that no two edges cross more than once. A graph is outer
k-planar if it has a circular drawing such that each edge is involved in at most k
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crossings. The outer 0-planar graphs are precisely the outerplanar graphs, which
have treewidth 2. We show below that for each k ∈ N, the class of outer k-planar
graphs has underlying treewidth 2. In fact, we prove a slightly more general result.
A graph is weakly outer k-planar if it has a circular drawing such that whenever two
edges e and f cross, e or f crosses at most k edges. Clearly every outer k-planar
graph is weakly outer k-planar.

Theorem 21. Each weakly outer k-planar graph has 2-tree-partition-width O(k3).

Theorem 21 implies the next result, where the lower bound holds since G2,` from
Lemma 8 is outerplanar.

Theorem 22. For every fixed k ∈ N, the underlying treewidth of the class of weakly
outer k-planar graphs equals 2, with constant treewidth-binding function.

9 Universal Graphs

A graph U is universal for a graph class G if U ∈ G and U contains every graph in G .
This definition is only interesting when considering infinite graphs. For each k ∈ N
there is a universal graph Tk for the class of countable graphs of treewidth k.
Huynh, Mohar, Šámal, Thomassen, and Wood [22] gave an explicit construction
for Tk, and showed how product structure theorems for finite graphs lead to univer-
sal graphs. Their results imply that for any hereditary class G of countable graphs,
if the class of finite graphs in G has underlying treewidth c with treewidth-binding
function f , then every graph in G of treewidth at most k is contained in Tc�K f (k).
This result is applicable to all minor-closed classes, monotone classes, and hered-
itary classes. For example, every countable Kt -minor free graph of treewidth k is
contained in Tt−2�KO(k2).
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