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1 From monotone Hurwitz numbers to topological Narayana
polynomials

Monotone Hurwitz numbers enumerate factorisations of permutations into transpos-
itions, with a certain monotonicity constraint [3]. They arise naturally as coefficients
in the large N topological expansion of the well-studied HCIZ integral over the
space of N×N unitary matrices. We introduce here a deformation of the monotone
Hurwitz numbers that produces a generalisation of the Narayana polynomials [1].
Numerical evidence leads to conjectures concerning real-rootedness and interlacing
of these so-called topological Narayana polynomials. It is then natural to investig-
ate whether these polynomials admit multivariate generalisations that exhibit some
form of stability.

Definition 1. Let g be a non-negative integer and let µ1,µ2, . . . ,µn be positive in-
tegers, whose sum we denote by |µ|. The monotone Hurwitz number

#„
Hg,n(µ1,µ2, . . . ,µn)

is defined to be 1
|µ|! times the number of tuples (τ1,τ2, . . . ,τm) of transpositions in

the symmetric group S|µ| such that

• m = |µ|+2g−2+n;
• τ1 ◦ τ2 ◦ · · · ◦ τm has n cycles labelled 1,2, . . . ,n, such that the length of cycle i is

µi;
• 〈τ1,τ2, . . . ,τm〉 is a transitive subgroup of S|µ|; and
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• if we write τi = (ai bi) with ai < bi, then b1 ≤ b2 ≤ ·· · ≤ bm.

The t-monotone Hurwitz number
#„
H t

g,n(µ1,µ2, . . . ,µn) is defined analogously, al-
though each tuple is now counted with weight t to the power of its hive number,
which is defined to be the number of distinct values in the tuple (b1,b2, . . . ,bm).

In the case (g,n) = (0,1), one obtains the Narayana polynomials via the equation

µ
#„
H t

0,1(µ) = Narayanaµ−1(t).

Thus, we refer to the t-monotone Hurwitz numbers collectively as topological
Narayana polynomials. The word “topological” here refers to the fact that the t-
monotone Hurwitz numbers fit into a large family of enumerative problems gov-
erned by the general theory of topological recursion [2]. In that context, the pair
(g,n) can be thought of as recording the genus and number of boundary compon-
ents of a surface.

Example 1. The t-monotone Hurwitz number
#„
H t

0,2(2,1) counts certain triples (τ1,τ2,τ3)
of transpositions in the symmetric group S3. All such triples appear in the table be-
low and we observe that their compositions always result in a permutation of cycle
type (2,1), as required.

//////////////////////(1 2)◦ (1 2)◦ (1 2) (1 2)◦ (1 3)◦ (1 2) (1 2)◦ (2 3)◦ (1 2)
(1 2)◦ (1 2)◦ (1 3) (1 2)◦ (1 3)◦ (1 3) (1 2)◦ (2 3)◦ (1 3)
(1 2)◦ (1 2)◦ (2 3) (1 2)◦ (1 3)◦ (2 3) (1 2)◦ (2 3)◦ (2 3)

(1 3)◦ (1 2)◦ (1 2) (1 3)◦ (1 3)◦ (1 2) (1 3)◦ (2 3)◦ (1 2)
(1 3)◦ (1 2)◦ (1 3) //////////////////////(1 3)◦ (1 3)◦ (1 3) (1 3)◦ (2 3)◦ (1 3)
(1 3)◦ (1 2)◦ (2 3) (1 3)◦ (1 3)◦ (2 3) (1 3)◦ (2 3)◦ (2 3)

(2 3)◦ (1 2)◦ (1 2) (2 3)◦ (1 3)◦ (1 2) (2 3)◦ (2 3)◦ (1 2)
(2 3)◦ (1 2)◦ (1 3) (2 3)◦ (1 3)◦ (1 3) (2 3)◦ (2 3)◦ (1 3)
(2 3)◦ (1 2)◦ (2 3) (2 3)◦ (1 3)◦ (2 3) //////////////////////(2 3)◦ (2 3)◦ (2 3)

The triples violating the transitivity and monotonicity conditions of Definition 1
are crossed out. Of the remaining twelve triples, the six in the top third of the table
have (b1,b2,b3) = (2,2,3) or (2,3,3) and hence hive number 2, while the remaining
six in the bottom two-thirds of the table have (b1,b2,b3) = (3,3,3) and hence hive
number 1. So with our normalisation, we have

#„
H t

0,2(2,1) =
1
3! (6t2 +6t) = t2 + t.

2 Recursions

It is natural to ask whether properties of the usual monotone Hurwitz numbers or
of the usual Narayana polynomials can be generalised to the setting of topological
Narayana polynomials. For example, the known linear recursions for monotone Hur-
witz numbers and for Narayana polynomials have the following common general-



Topological Narayana polynomials and interlacing conjectures 3

isation, for which the original results can be recovered by specialising to t = 1 and
g = 0, respectively.

Proposition 1 (Linear recursion). For g≥ 0 and µ ≥ 1 such that (g,µ) 6= (0,1) or
(0,2), the “one-point” t-monotone Hurwitz numbers satisfy the recursion

µ
2 #„

H t
g,1(µ) = (µ−1)(2µ−3)(t +1)

#„
H t

g,1(µ−1)

− (µ−2)(µ−3)(t−1)2 #„
H t

g,1(µ−2)+µ
2(µ−1)2 #„

H t
g−1,1(µ).

In this equation, we set
#„
H t

g,1(µ) = 0 if g < 0 or µ < 1.

Similarly, the known quadratic recursions for monotone Hurwitz numbers and
for Narayana polynomials have the following common generalisation, for which the
original results can be recovered by specialising to t = 1 and g = 0, respectively.

Proposition 2 (Quadratic recursion). Let S = {2,3, . . . ,n}. For all g≥ 0 and µ1+
µ2 + · · ·+µn > 1, the t-monotone Hurwitz numbers satisfy the recursion

µ1
#„
H t

g,n(µ1,µS)=
n

∑
i=2

(µ1+µi)
#„
H t

g,n−1(µ1+µi,µS\{i})+ ∑
α+β=µ1

αβ
#„
H t

g−1,n+1(α,β ,µS)

+ ∑
α+β=µ1

∑
g1+g2=g

ItJ=S

αβ
#„
H t

g1,|I|+1(α,µ I)
#„
H t

g2,|J|+1(β ,µJ)+(t−1)(µ1−1)
#„
H t

g,n(µ1−1,µS).

In this equation, we set
#„
H t

g,n(µ1,µ2, . . . ,µn) = 0 if g < 0 or µi < 1 for some i and,
for I = {i1, i2, . . . , ik}, we use µ I to denote the sequence µi1 ,µi2 , . . . ,µik .

Along with the base cases
#„
H t

0,1(1) = 1 and
#„
H t

g,1(1) = 0 for g≥ 1, the quadratic
recursion uniquely recovers all t-monotone Hurwitz numbers.

Observe that although
#„
H t

g,n(µ1, . . . ,µn) is inherently symmetric in its arguments,
the quadratic recursion is manifestly asymmetric. This provides an instance of a
much more general phenomenon exhibited by problems governed by the topological
recursion. Although we have already hinted at the fact that t-monotone Hurwitz
numbers are indeed governed by the topological recursion, we will not state the
result explicitly nor consider the consequences thereof in the present note.

3 Real-rootedness, interlacing, and stability?

The usual Narayana polynomials are known to have only real roots and we conjec-
ture that the same is true for topological Narayana polynomials more generally.

Conjecture 1 (Real-rootedness). Each topological Narayana polynomial
#„
H t

g,n(µ1, . . . ,µn)
only has real roots.
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One approach to proving the real-rootedness of Narayana polynomials is to show
the stronger fact that any two consecutive Narayana polynomials interlace. A poly-
nomial of degree d is said to interlace with a polynomial of degree d+1 if the roots
α1 ≤ α2 ≤ ·· · ≤ αd of the first and the roots β1 ≤ β2 ≤ ·· · ≤ βd+1 of the second are
real and satisfy

β1 ≤ α1 ≤ β2 ≤ α2 ≤ ·· · ≤ βd ≤ αd ≤ βd+1.

One observes a similar phenomenon for topological Narayana polynomials.

Conjecture 2 (Interlacing). The topological Narayana polynomial
#„
H t

g,n(µ1, . . . ,µn)
interlaces with each of the topological Narayana polynomials

#„
H t

g,n(µ1 +1,µ2, . . . ,µn),
#„
H t

g,n(µ1,µ2 +1, . . . ,µn), . . . ,
#„
H t

g,n(µ1,µ2, . . . ,µn +1).

The quadratic recursion gives an effective way to compute topological Narayana
polynomials, from which one can then test the above predictions. Real-rootedness
and interlacing have been confirmed for all g+n≤ 5 and |µ| ≤ 10. This amounts to
over 300 checks, thus providing strong numerical evidence for the conjectures.

Given the close connection between real-rootedness for polynomials of one vari-
able and stability for polynomials of many, one is led to consider whether the topolo-
gical Narayana polynomials admit a natural multivariate generalisation that exhibits
stability. Recall that a multivariate polynomial is said to be stable if it is non-zero
whenever its arguments are evaluated at complex numbers with positive imaginary
part.

An obvious way to define a multivariate version of the t-monotone Hurwitz num-
bers is to mimic the enumeration of Definition 1, associating to a tuple of transpos-
itions ((a1 b1),(a2 b2), . . . ,(am bm)) the weight

∏
k∈(b1,b2,...,bm)

tk,

where we ignore multiplicities in the tuple (b1,b2, . . . ,bm). One then obtains mul-
tiaffine polynomials in Q[t2, t3, . . .] for which the corresponding t-monotone Hurwitz
numbers are recovered by setting tk 7→ t for all k. It is natural to wonder whether such
polynomials are stable.

4 Data

The following table gives some examples of t-monotone Hurwitz numbers.
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(µ1, . . . ,µn) µ1 · · ·µn
#„
H t

0,n(µ1, . . . ,µn) µ1 · · ·µn
#„
H t

1,n(µ1, . . . ,µn) µ1 · · ·µn
#„
H t

2,n(µ1, . . . ,µn)

(1) 1 0 0
(2) t t t
(3) t2 + t 5t2 +5t 21t2 +21t
(4) t3 +3t2 + t 15t3 +40t2 +15t 161t3 +413t2 +161t
(5) t4 +6t3 +6t2 + t 35t4 +175t3 +175t2 +35t 777t4 +3612t3 +3612t2 +777t

(1,1) t t t
(2,1) 2t2 +2t 10t2 +10t 42t2 +42t
(3,1) 3t3 +9t2 +3t 45t3 +120t2 +45t 483t3 +1239t2 +483t
(2,2) 4t3 +10t2 +4t 50t3 +128t2 +50t 504t3 +1278t2 +504t
(4,1) 4t4 +24t3 +24t2 +4t 140t4 +700t3 +700t2 +140t 3108t4 +14448t3 +14448t2 +3108t
(3,2) 6t4 +30t3 +30t2 +6t 168t4 +792t3 +792t2 +168t 3402t4 +15450t3 +15450t2 +3402t

(1,1,1) 4t2 +4t 20t2 +20t 84t2 +84t
(2,1,1) 10t3 +28t2 +10t 140t3 +368t2 +140t 1470t3 +3756t2 +1470t
(3,1,1) 18t4 +102t3 +102t2 +18t 588t4 +2892t3 +2892t2 +588t 12726t4 +58794t3 +58794t2 +12726t
(2,2,1) 24t4 +120t3 +120t2 +24t 672t4 +3168t3 +3168t2 +672t 13608t4 +61800t3 +61800t2 +13608t
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