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Abstract A tree-partition of a graph G is a partition of V (G) such that identifying
the vertices in each part gives a tree. It is known that every graph with treewidth k
and maximum degree ∆ has a tree-partition with parts of size O(k∆). We prove the
same result with the extra property that the underlying tree has maximum degree
O(∆).

1 Introduction

For a graph G and a tree T , a T -partition of G is a partition (Vx : x ∈V (T )) of V (G)
indexed by the nodes of T , such that for every edge vw of G, if v ∈Vx and w ∈Vy,
then x = y or xy ∈ E(T ). The width of a T -partition is max{|Vx| : x ∈V (T )}. The
tree-partition-width1 of a graph G is the minimum width of a tree-partition of G.

Tree-partitions were independently introduced by Seese [31] and Halin [24], and
have since been widely investigated [6–8, 15, 16, 21, 32, 33]. Applications of tree-
partitions include graph drawing [12, 14, 19, 20, 34], graphs of linear growth [11],
nonrepetitive graph colouring [2], clustered graph colouring [1, 27], monadic second-
order logic [26], network emulations [3, 4, 9, 22], statistical learning theory [35], and
the edge-Erdős-Pósa property [13, 23, 28]. Tree-partitions are also related to graph
product structure theory since a graph G has a T -partition of width at most k if and
only if G is isomorphic to a subgraph of T �Kk for some tree T ; see [10, 17, 18] for
example.
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1 Tree-partition-width has also been called strong treewidth [7, 31].
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Bounded tree-partition-width implies bounded treewidth2, as noted by Seese [31].
In particular, for every graph G,

tw(G)6 2tpw(G)−1.

Of course, tw(T ) = tpw(T ) = 1 for every tree T . But in general, tpw(G) can be
much larger than tw(G). For example, fan graphs on n vertices have treewidth 2 and
tree-partition-width Ω(

√
n). On the other hand, the referee of [15] showed that if the

maximum degree and treewidth are both bounded, then so is the tree-partition-width,
which is one of the most useful results about tree-partitions. A graph G is trivial if
E(G) =∅. Let ∆(G) be the maximum degree of G.

Theorem 1 ([15]). For any non-trivial graph G,

tpw(G)6 24(tw(G)+1)∆(G).

Theorem 1 is stated in [15] with “tw(G)” instead of “tw(G)+ 1”, but a close
inspection of the proof shows that “tw(G)+1” is needed. Wood [33] showed that
Theorem 1 is best possible up to the multiplicative constant, and also improved the
constant 24 to 9+6

√
2≈ 17.48.

This paper considers the maximum degree of T in a T -partition. Consider a
tree-partition (Bx : x ∈ V (T )) of a graph G with width k. For each node x ∈ V (T ),
there are at most ∑v∈Bx deg(v) edges between Bx and G−Bx. Thus we may assume
that degT (x)6 |Bx|∆(G)6 k∆(G), otherwise delete an ‘unused’ edge of T and add
an edge to T between leaf vertices of the resulting component subtrees. It follows
that if tpw(G) 6 k then G has a T -partition of width at most k for some tree T
with maximum degree at most max{k∆(G),2}. By Theorem 1, every graph G has
a T -partition of width at most 24(tw(G)+1)∆(G) for some tree T with maximum
degree at most 24(tw(G)+1)∆(G)2. This fact has been used in several applications
of Theorem 1 (see [12, 20] for example). The following theorem improves this upper
bound on ∆(T ). Indeed, ∆(T ) is independent of tw(G).

Theorem 2. Every non-trivial graph G has a T -partition of width at most

18(tw(G)+1)∆(G)

for some tree T with ∆(T )6 6∆(G).

Theorem 2 enables a tw(G)∆(G)2 term to be replaced by a ∆(G) term in various
results [12, 20].

2 A tree-decomposition of a graph G is a collection (Bx ⊆ V (G) : x ∈ V (T )) of subsets of V (G)
(called bags) indexed by the nodes of a tree T , such that: (a) for every edge uv ∈ E(G), some bag
Bx contains both u and v; and (b) for every vertex v ∈V (G), the set {x ∈V (T ) : v ∈ Bx} induces a
non-empty subtree of T . The width of a tree-decomposition is the size of the largest bag, minus 1.
The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree-decomposition of G.
Treewidth is the standard measure of how similar a graph is to a tree. Indeed, a connected graph
has treewidth 1 if and only if it is a tree. Treewidth is of fundamental importance in structural and
algorithmic graph theory; see [25, 29? ] for surveys.
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As mentioned above, Wood [33] improved the constant 24 to 9+6
√

2 in Theo-
rem 1. By tweaking the constants in the proof of Theorem 2, we match this constant
with a small increase in the bound on ∆(T ); see Section 3. We choose to first present
the proof with integer coefficients for ease of understanding.

Our final result shows that the linear upper bound on ∆(T ) in Theorem 2 is best
possible even for trees.

Proposition 3. For any integer ∆ > 3 there exist α > 0 such that there are infinitely
many trees X with maximum degree ∆ such that for every tree T with maximum
degree less than ∆ , every T -partition of X has width at least |V (X)|α . Moreover, if
∆ = 3 then α can be taken to be arbitrarily close to 1.

2 Main Proofs

Theorem 2 is implied by the following lemma. The proof is identical to the proof of
Theorem 1, except that we pay attention to ∆(T ). Let N= {1,2, . . .}.

Lemma 4. Fix k,d ∈ N. Let G be a graph with tw(G)6 k−1 and ∆(G)6 d. Then
G has a tree-partition (Bx : x ∈V (T )) of width at most 18kd such that ∆(T )6 6d.
Moreover, for any set S ⊆V (G) with 4k 6 |S|6 12kd, there exists a tree-partition
(Bx : x ∈V (T )) of G with width at most 18kd, such that ∆(T )6 6d and there exists
z ∈V (T ) such that:
• S⊆ Bz,
• |Bz|6 3

2 |S|−2k,

• degT (z)6
|S|
2k −1.

Proof. We proceed by induction on |V (G)|.
Case 1. |V (G)| < 4k: Then S is not specified. Let T be the 1-vertex tree with

V (T ) = {x}, and let Bx :=V (G). Then (Bx : x ∈V (T )) is the desired tree-partition,
since |Bx|= |V (G)|< 4k 6 18kd and ∆(T ) = 06 6d.

Now assume that |V (G)| > 4k. If S is not specified, then let S be any set of 4k
vertices in G.

Case 2. |V (G− S)| 6 18kd: Let T be the 2-vertex tree with V (T ) = {y,z} and
E(T ) = {yz}. Note that ∆(T ) = 16 6d and degT (z) = 16 |S|2k −1. Let Bz := S and
By :=V (G−S). Thus |Bz|= |S|6 3

2 |S|−2k 6 18kd and |By|6 |V (G−S)|6 18kd.
Hence (Bx : x ∈V (T )) is the desired tree-partition of G.

Now assume that |V (G−S)|> 18kd.
Case 3. 4k 6 |S|6 12k: Let S′ :=

⋃
{NG(v)\S : v ∈ S}. Thus |S′|6 d|S|6 12kd.

If |S′|< 4k then add 4k−|S′| vertices from V (G−S−S′) to S′, so that |S′|= 4k. This
is well-defined since |V (G−S)|> 18kd > 4k, implying |V (G−S−S′)|> 4k−|S′|.
By induction, there exists a tree-partition (Bx : x ∈ V (T ′)) of G− S with width at
most 18kd, such that ∆(T ′)6 6d and there exists z′ ∈V (T ′) such that:
• S′ ⊆ Bz′ ,
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• |Bz′ |6 3
2 |S
′|−2k 6 18kd−2k,

• degT ′(z
′)6 |S

′|
2k −16 6d−1.

Let T be the tree obtained from T ′ by adding one new node z adjacent to z′. Let Bz :=
S. So (Bx : x ∈V (T )) is a tree-partition of G with width at most max{18kd, |S|}6
max{18kd,12k} = 18kd. By construction, degT (z) = 1 6 |S|2k − 1 and degT (z

′) =
degT ′(z

′)+16 (6d−1)+1 = 6d. Every other vertex in T has the same degree as
in T ′. Hence ∆(T )6 6d, as desired. Finally, S = Bz and |Bz|= |S|6 3

2 |S|−2k.
Case 4. 12k6 |S|6 12kd: By the separator lemma of Robertson and Seymour [30,

(2.6)], there are induced subgraphs G1 and G2 of G with G1∪G2 = G and |V (G1∩
G2)|6 k, where |S∩V (Gi)|6 2

3 |S| for each i∈{1,2}. Let Si :=(S∩V (Gi))∪V (G1∩
G2) for each i ∈ {1,2}.

We now bound |Si|. For a lower bound, since |S∩V (G1)|6 2
3 |S|, we have |S2|>

|S\V (G1)|> 1
3 |S|> 4k. By symmetry, |S1|> 4k. For an upper bound, |Si|6 2

3 |S|+
k 6 8kd + k 6 12kd. Also note that |S1|+ |S2|6 |S|+2k.

We have shown that 4k 6 |Si| 6 12kd for each i ∈ {1,2}. Thus we may apply
induction to Gi with Si the specified set. Hence there exists a tree-partition (Bi

x :
x ∈ V (Ti)) of Gi with width at most 18kd, such that ∆(Ti) 6 6d and there exists
zi ∈V (Ti) such that:
• Si ⊆ Bzi ,
• |Bzi |6 3

2 |Si|−2k,

• degTi
(zi)6

|Si|
2k −1.

Let T be the tree obtained from the disjoint union of T1 and T2 by merging z1 and
z2 into a vertex z. Let Bz := B1

z1
∪B2

z2
. Let Bx := Bi

x for each x ∈V (Ti)\{zi}. Since
G = G1 ∪G2 and V (G1 ∩G2) ⊆ B1

z1
∩B2

z2
⊆ Bz, we have that (Bx : x ∈ V (T )) is a

tree-partition of G. By construction, S⊆ Bz and since V (G1∩G2)⊆ Bi
zi

for each i,

|Bz|6 |B1
z1
|+ |B2

z2
|− |V (G1∩G2)|

6 ( 3
2 |S1|−2k)+( 3

2 |S2|−2k)−|V (G1∩G2)|
= 3

2 (|S1|+ |S2|)−4k−|V (G1∩G2)|
6 3

2 (|S|+2|V (G1∩G2)|)−4k−|V (G1∩G2)|
6 3

2 |S|+2|V (G1∩G2)|−4k

6 3
2 |S|−2k

< 18kd.

Every other part has the same size as in the tree-partition of G1 or G2. So this
tree-partition of G has width at most 18kd. Note that

degT (z) = degT1
(z1)+degT2

(z2)6 ( |S1|
2k −1)+( |S2|

2k −1)

= |S1|+|S2|
2k −2

6 |S|+2k
2k −2
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= |S|
2k −1

< 6d.

Every other node of T has the same degree as in T1 or T2. Thus ∆(T ) 6 6d. This
completes the proof. ut

We now prove the lower bound. For ∆ ,d ∈ N with ∆ > 2, let X∆ ,d be the tree
rooted at a vertex r such that every leaf is at distance d from r and every non-leaf
vertex has degree ∆ . Observe that X∆ ,d has the maximum number of vertices in a
tree with maximum degree ∆ and radius d, where

|V (X∆ ,d)|= 1+∆

d−1

∑
i=0

(∆ −1)i.

Note that |V (X2,d)|= 2d +1, and if ∆ > 3 then

(∆ −1)d 6 |V (X∆ ,d)|= 1+ ∆

∆−2

(
(∆ −1)d−1

)
6 3(∆ −1)d .

Proposition 3. For any integer ∆ > 3 there exist α > 0 such that there are infinitely
many trees X with maximum degree ∆ such that for every tree T with maximum
degree less than ∆ , every T -partition of X has width at least |V (X)|α . Moreover, if
∆ = 3 then α can be taken to be arbitrarily close to 1.

Proof. First suppose that ∆ > 4. Let d0 ∈N be sufficiently large so that (∆−1
∆−2 )

d0 > 3.
Let α := 1− log∆−1(3

1/d0(∆ −2)), which is positive by the choice of d0. Let d ∈ N
with d > d0. It follows that (∆ −1)(1−α)d > 3(∆ −2)d . Consider any tree-partition
(Bu : u ∈V (T )) of X∆ ,d , where T is any tree with maximum degree at most ∆ −1.
Let z be the vertex of T such that the root r ∈ Bz. Since adjacent vertices in X∆ ,d
belong to adjacent parts or the same part in T , every vertex in T is at distance at most
d from z. Thus T has radius at most d, and

|V (T )|6 |V (X∆−1,d)|6 3(∆ −2)d 6 (∆ −1)(1−α)d 6 |V (X∆ ,d)|1−α .

By the pigeon-hole principle, there is a vertex u ∈V (T ) such that |Bu|>
|V (X∆ ,d)|
|V (T )| >

|V (X∆ ,d)|α .
Now assume that ∆ = 3. Let α ∈ (0,1), let d0 ∈ N be sufficiently large so that

2d0 +16 2(1−α)d0 , and let d > d0. So 2d +16 2(1−α)d . Consider any tree-partition
(Bu : u ∈V (T )) of X3,d , where T is any tree with maximum degree at most 2. By the
argument above, T has radius at most d, implying

|V (T )|6 |V (X2,d)|= 2d +16 2(1−α)d 6 |V (X3,d)|1−α .

Again, there is a vertex u ∈V (T ) such that |Bu|>
|V (X3,d)|
|V (T )| > |V (X3,d)|α . ut
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3 Tweaking the Constants

Consider the following generalisation of Lemma 4.

Lemma 5. Fix k,d ∈N and α ∈R with α > 2. Let G be a graph with tw(G)6 k−1
and ∆(G)6 d. Then G has a tree-partition (Bx : x ∈V (T )) of width at most

3α(α−1)
α−2 kd− α

α−2 k

such that ∆(T ) 6 3α

α−2 d + α−4
α−2 . Moreover, for any set S ⊆ V (G) with αk 6

|S| 6 3αkd, there exists a tree-partition (Bx : x ∈ V (T )) of G with width at most
3α(α−1)

α−2 kd− α

α−2 k, such that ∆(T ) 6 3α

α−2 d + α−4
α−2 and there exists z ∈ V (T ) such

that:
• S⊆ Bz,
• |Bz|6 α−1

α−2 |S|−
α

α−2 k,

• degT (z)6
1

(α−2)k |S|−
2

α−2 .

Proof. We proceed by induction on |V (G)|.
Case 1. |V (G)| < αk: Then S is not specified. Let T be the 1-vertex tree with

V (T ) = {x}, and let Bx :=V (G). Then (Bx : x ∈V (T )) is the desired tree-partition,
since |Bx|= |V (G)|< αk 6 3α(α−1)

α−2 kd− α

α−2 k and ∆(T ) = 06 3α

α−2 d + α−4
α−2 .

Now assume that |V (G)|> αk. If S is not specified, then let S be any set of dαke
vertices in G (implying |S|6 3αkd).

Case 2. |V (G−S)|6 3α(α−1)
α−2 kd− α

α−2 k: Let T be the 2-vertex tree with V (T ) =
{y,z} and E(T ) = {yz}. Note that ∆(T ) = 1 6 3α

α−2 d + α−4
α−2 and degT (z) = 1 6

1
(α−2)k |S|−

2
α−2 . Let Bz := S and By :=V (G−S). Thus |Bz|= |S|6 α−1

α−2 |S|−
α

α−2 k6
3α(α−1)

α−2 kd− α

α−2 k and |By|6 |V (G−S)|6 3α(α−1)
α−2 kd. Hence (Bx : x ∈V (T )) is the

desired tree-partition of G.
Now assume that |V (G−S)|> 3α(α−1)

α−2 kd− α

α−2 k.
Case 3. αk 6 |S| 6 3αk: Let S′ :=

⋃
v∈S NG(v) \ S. Thus |S′| 6 d|S| 6 3αkd. If

|S′|<αk then add αk−|S′| vertices from V (G−S−S′) to S′, so that |S′|=αk. This is
well-defined since |V (G−S)|> 3α(α−1)

α−2 kd− α

α−2 k>αk, implying |V (G−S−S′)|>
αk−|S′|. By induction, there exists a tree-partition (Bx : x ∈V (T ′)) of G−S with
width at most 3α(α−1)

α−2 kd− α

α−2 k, such that ∆(T ′) 6 3α

α−2 d + α−4
α−2 and there exists

z′ ∈V (T ′) such that:
• S′ ⊆ Bz′ ,

• |Bz′ |6 α−1
α−2 |S

′|− α

α−2 k 6 3α(α−1)
α−2 kd− α

α−2 k,

• degT ′(z
′)6 1

(α−2)k |S
′|− 2

α−2 6
3α

α−2 d− 2
α−2 .

Let T be the tree obtained from T ′ by adding one new node z adjacent to z′. Let
Bz := S. So (Bx : x ∈V (T )) is a tree-partition of G with width at most

max{ 3α(α−1)
α−2 kd− α

α−2 k, |S|}6max{ 3α(α−1)
α−2 kd− α

α−2 k,3αk}= 3α(α−1)
α−2 kd− α

α−2 k.
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By construction,

degT (z) = 16 1
(α−2)k |S|−

2
α−2 and

degT (z
′) = degT ′(z

′)+16 3α

α−2 d− 2
α−2 +1 = 3α

α−2 d + α−4
α−2 .

Every other vertex in T has the same degree as in T ′. Hence ∆(T )6 3α

α−2 d + α−4
α−2 ,

as desired. Finally, S = Bz and |Bz|= |S|6 α−1
α−2 |S|−

α

α−2 k.
Case 4. 3αk 6 |S| 6 3αkd: By the separator lemma of Robertson and Sey-

mour [30, (2.6)], there are induced subgraphs G1 and G2 of G with G1 ∪G2 = G
and |V (G1 ∩G2)| 6 k, where |S ∩V (Gi)| 6 2

3 |S| for each i ∈ {1,2}. Let Si :=
(S∩V (Gi))∪V (G1∩G2) for each i ∈ {1,2}.

We now bound |Si|. For a lower bound, since |S∩V (G1)|6 2
3 |S|, we have |S2|>

|S \V (G1)| > 1
3 |S| >

1
3 3αk > αk. By symmetry, |S1| > αk. For an upper bound,

|Si|6 2
3 |S|+k6 2αkd+k6 3αkd. Also note that |S1|+ |S2|6 |S|+2|V (G1∩G2)|6

|S|+2k.
We have shown that αk 6 |Si| 6 3αkd for each i ∈ {1,2}. Thus we may apply

induction to Gi with Si the specified set. Hence there exists a tree-partition (Bi
x : x ∈

V (Ti)) of Gi with width at most 3α(α−1)
α−2 kd− α

α−2 k, such that ∆(Ti)6 3α

α−2 d + α−4
α−2

and there exists zi ∈V (Ti) such that:
• Si ⊆ Bzi ,
• |Bzi |6 α−1

α−2 |Si|− α

α−2 k,

• degTi
(zi)6 1

(α−2)k |Si|− 2
α−2 .

Let T be the tree obtained from the disjoint union of T1 and T2 by merging z1 and
z2 into a vertex z. Let Bz := B1

z1
∪B2

z2
. Let Bx := Bi

x for each x ∈V (Ti)\{zi}. Since
G = G1 ∪G2 and V (G1 ∩G2) = B1

z1
∩B2

z2
⊆ Bz, we have that (Bx : x ∈ V (T )) is a

tree-partition of G. By construction, S⊆ Bz and since V (G1∩G2)⊆ Bi
zi

for each i,

|Bz|6 |B1
z1
|+ |B2

z2
|− |V (G1∩G2)|

6 (α−1
α−2 |S1|− α

α−2 k)+(α−1
α−2 |S2|− α

α−2 k)−|V (G1∩G2)|
= α−1

α−2 (|S1|+ |S2|)− 2α

α−2 k−|V (G1∩G2)|
6 α−1

α−2 (|S|+2|V (G1∩G2)|)− 2α

α−2 k−|V (G1∩G2)|
= α−1

α−2 |S|−
2α

α−2 k+ α

α−2 |V (G1∩G2)|
6 α−1

α−2 |S|−
2α

α−2 k+ α

α−2 k

= α−1
α−2 |S|−

α

α−2 k

6 3α(α−1)
α−2 kd− α

α−2 k.

Every other part has the same size as in the tree-partition of G1 or G2. So this
tree-partition of G has width at most 3α(α−1)

α−2 kd− α

α−2 k. Note that

degT (z) = degT1
(z1)+degT2

(z2)
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6 1
(α−2)k |S1|− 2

α−2 +
1

(α−2)k |S2|− 2
α−2

6 1
(α−2)k (|S1|+ |S2|)− 4

α−2

6 1
(α−2)k (|S|+2k)− 4

α−2

6 1
(α−2)k |S|−

2
α−2

6 3α

α−2 d− 2
α−2

< 3α

α−2 d + α−4
α−2 .

Every other node of T has the same degree as in T1 or T2. Thus ∆(T )6 3α

α−2 d+ α−4
α−2 .

This completes the proof. ut

Lemma 5 with α = 4 implies the following slight strengthening of Theorem 2.

Theorem 6. Every non-trivial graph G has a T -partition of width at most

2(tw(G)+1)(9∆(G)−1),

for some tree T with ∆(T )6 6∆(G).

Lemma 5 with α = 2+
√

2 (chosen to minimise 3α(α−1)
α−2 ) implies the next result.

Theorem 7. Every non-trivial graph G has a T -partition of width at

(1+
√

2)(tw(G)+1)(3(1+
√

2)∆(G)−1),

for some tree T with ∆(T )6 (3+3
√

2)∆(G)−3(
√

2−1).
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[12] PAZ CARMI, VIDA DUJMOVIĆ, PAT MORIN, AND DAVID R. WOOD. Distinct
distances in graph drawings. Electron. J. Combin., 15:R107, 2008.

[13] DIMITRIS CHATZIDIMITRIOU, JEAN-FLORENT RAYMOND, IGNASI SAU,
AND DIMITRIOS M. THILIKOS. An O(log OPT)-approximation for covering
and packing minor models of θr. Algorithmica, 80(4):1330–1356, 2018.

[14] EMILIO DI GIACOMO, GIUSEPPE LIOTTA, AND HENK MEIJER. Computing
straight-line 3D grid drawings of graphs in linear volume. Comput. Geom.
Theory Appl., 32(1):26–58, 2005.

[15] GUOLI DING AND BOGDAN OPOROWSKI. Some results on tree decomposition
of graphs. J. Graph Theory, 20(4):481–499, 1995.

[16] GUOLI DING AND BOGDAN OPOROWSKI. On tree-partitions of graphs. Dis-
crete Math., 149(1–3):45–58, 1996.
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