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Abstract The Riley slice is arguably the simplest example of a moduli space of
Kleinian groups; it is naturally embedded in C, and has a natural coordinate system
(introduced by Linda Keen and Caroline Series in the early 1990s) which reflects the
geometry of the underlying 3-manifold deformations. The Riley slice arises in the
study of arithmetic Kleinian groups, the theory of two-bridge knots, the theory of
Schottky groups, and the theory of hyperbolic 3-manifolds; because of its simplicity
it provides an easy source of examples and deep questions related to these subjects.
We give an introduction for the non-expert to the Riley slice and much of the related
background material, assuming only graduate level complex analysis and topology;
we review the history of and literature surrounding the Riley slice; and we announce
some results of our own, extending the work of Keen and Series to the one complex
dimensional moduli spaces of Kleinian groups isomorphic to Z/aZ ∗Z/bZ acting
on the Riemann sphere, 2 ≤ a,b ≤ ∞. The Riley slice is the case of two parabolic
generators where a = b = ∞.
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1 Introduction

The Riley slice is a one complex dimensional moduli space of Kleinian groups
which can be embedded naturally in C and so is particularly amenable to study.
In this article, we will define these words (Kleinian groups and moduli spaces), out-
line the history of the Riley slice, and finally briefly mention some of our own results
which are in the process of appearing in full.

We have written this article in order to be accessible to the non-expert: we assume
only a good understanding of areas which are plausibly familiar to most beginning
graduate students (in particular, topology and complex analysis) and define almost
everything else which we need from scratch. Though many of the results require
only a little work to state, the study of the Riley slice has required a great deal of
high-powered machinery developed in complex analysis and hyperbolic geometry
in the late 20th and early 21st centuries (for instance: the theory of quasiconformal
mappings and holomorphic motions, Ahlfors’ null-measure conjecture, the theory
of measured laminations, hyperbolic knot theory, and so forth). This is both an ad-
vantage (in that studying this rather concrete object gives an excuse to explore many
of the great achievements of 20th century geometry) and a disadvantage (in that it
is essentially impossible to give all detail in a short format like this article); as such
we will give copious references (so that the reader inclined to explore has a variety
of trails to follow) but sparse details (though we will always point towards a place
where the more expert reader can look them up).

1.1 Agenda

Broadly speaking, each section of this article is split into two parts (which may cor-
respond to one or more subsections): the first part of each section will be a general
introduction to some broad area which is important to the study of the Riley slice
(for example, hyperbolic knot theory). Then in the second part of the section, we will
explain how this area is related to the Riley slice, giving some literature references
for the details.

• The remainder of the introduction, consisting of Section 1.2, is dedicated to mo-
tivation for the study of the Riley slice from other areas of mathematics: compu-
tational group theory, arithmetic groups, and 3-dimensional geometry. It requires
more background than the rest of the article and may be skipped by readers not
familiar with the fields discussed.

• Section 2 defines the notion of a Kleinian group as a discrete group of Möbius
transformations (2.1) and gives the definition of the closed Riley slice R as a
subsection of C together with the classical bounds on it (2.2).

• Section 3 describes how Kleinian groups act on hyperbolic space (3.1) and then
gives a very fast introduction to hyperbolic knot theory (3.2) before explaining
how the Riley slice appears naturally in the study of two-bridge knots (3.3).
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• Section 4 first runs quickly through the classical theory of Riemann moduli space
(4.1) before explaining the definition of a moduli space —or ‘quasiconformal
deformation space’—of Kleinian groups motivated by the theory of holomorphic
motions (4.2) and then checking that the set R is in fact the closure of the Riley
slice as defined in Section 3 (4.3).

• Section 5 explains the philosophy of the Thurston boundary of quasi-Fuchsian
space and measured laminations (5.1) before briefly sketching the Keen–Series
coordinate system of the Riley slice (5.2).

• Finally, Section 6 indicates some of our recent work which is currently appearing
in detail in preprint form: we have extended the Keen–Series coordinate system
to the so-called elliptic Riley slices (6.1); we have found open neighbourhoods
of pleating rays in the Riley slice (6.2) and the elliptic Riley slices; and we have
established combinatorial and dynamical results concerning pleating rays and
their defining polynomials (6.3).

This arrangement gives some flexibility in terms of the way in which the reader
might approach this paper. Experts may wish to skim the sections introducing the
Riley slice (2.2, 3.3, 4.3, and 5.2) and then read Section 6 in detail; students just
learning the theory of Kleinian groups may want to restrict themselves to the sec-
tions introducing general aspects of the theory and only read some of the Riley slice
material for context.

1.2 Motivation and applications

We discuss in this section three different motivations for this work, in order to con-
textualise it. In the following loose discussion we avoid many technical details and
definitions; those that are important for the understanding of the Riley slice and
associated work can be found in the body of this article.

The discreteness problem

Our first motivation is the decision problem for discrete groups, and in particular
subgroups of SL(2,C) or PSL(2,C); the latter being isomorphic as a topological
group to the orientation preserving isometry group of hyperbolic 3-space and hence
containing the fundamental groups of the most interesting class of three-dimensional
geometric objects, namely hyperbolic 3-manifolds and orbifolds. The problem is
this:

Decision problem. Given matrices A1,A2, . . . ,An ∈ PSL(2,C), decide if the group
〈A1,A2, . . . ,An〉 is discrete, and if so give a presentation for it.

We skip a discussion of what “decide” means (see for example Chapter 9 of
[136]), but basically we seek a practical way to answer this question.
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If there is simply one generator, then the answer is “easy”—〈A〉 is discrete if and
only if trA 6∈ (−2,2) or if trA ∈ (−2,2) (in the latter case, trA = 2cos(rπ/s) for
some r,s ∈ Z. If there are three or more generators, then the problem is likely com-
pletely intractable. This leaves the case of two-generateds. The decision problem for
two-generated subgroups of PSL(2,R) has been completely resolved by the work
of Gilman [56, 58], and the classification of discrete two-generated Fuchsian groups
into isomorphism classes can be found in earlier work of Purzitsky and Rosenberger,
[121].

This leaves the more general question of groups generated by two matrices in
PSL(2,C). This problem goes back to to the 1950s, and we discuss its history in
some detail in the main body of the article. For our discussion here, it suffices to
note that it started with the case that both generators are parabolic. There is a good
geometric reason for examining this case first as it is associated with the moduli
space of the four-times punctured sphere, the simplest Riemann surface with a non-
trivial Teichmüller space. A theorem of Jørgensen [61] asserts that any subgroup of
PSL(2,C) is discrete if and only if all of its two-generated subgroups are discrete
(a result true in much more generality [91]); this gives utility in an effective way to
determine discreteness of two-generated groups.

In a real sense the special case of two parabolic generators is now resolved. Up
to conjugacy—which preserves both discreteness and isomorphism type—there is
a single complex parameter which determines the group. The closure of the Riley
slice, R, consists of those parameters where the group is discrete and free (there is
a lot of theory behind this statement). The boundary of R is a closed Jordan curve
[109], but not much is known beyond this. In particular, we ask if we can deter-
mine (in an effective, or algorithmic, way) whether a given complex number lies
in R. This set has a lot of additional structure: in the mid 1990s Keen and Series
[67] gave geometrically relevant coordinates for the interior of this set, primarily
through “pleating rays”—a dense set of algebraically defined curves in C which
“land” at a dense set of the boundary ∂R (the so-called “cusp” groups, which are
dense by a famous result of McMullen [101]). Our results which we announce here
give canonical open neighbourhoods of these rays which fill R. Using these one
can construct an effective process to decide if a group is in R or not. A group on
the boundary ∂R is either a cusp group (and therefore the associated parameter is
a root of a countable list of “Farey polynomials” defined below) or is geometrically
infinite with limit set the entire complex plane (and seemingly intractable compu-
tationally). In C \R the question is resolved by the recent works [12, 10] where
Aimi, Lee, Sakai, and Sakuma, and also Akiyoshi, Sakuma, Wada, and Yamashita,
resolve a conjecture of Agol. They identify with topological methods descriptions
of all the quotient orbifolds (from which one may write down explicit presenta-
tions for the holonomy groups) for the parameters in C\R which represent discrete
groups. These associated groups cannot be free and all these groups lie on “extended
pleating rays”—where a Farey word is the identity (giving knot and link groups) or
elliptic (giving a so-called Heckoid group). Away from these parameters, the groups
are not discrete and their structure is quite wild [92].
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Our work seeks to extend the programme of understanding the Riley slice to
groups generated by two elements of finite order. Such groups include all gener-
alised triangle groups, groups with a presentation of the form

〈x,y : xa = yb = R(x,y)r = 1〉

and many groups beside. A reasonable conjecture seems to be the following.

Conjecture 1. Let Γ be a discrete representation of 〈x,y : xa = yb = 1〉 ' Z/aZ ∗
Z/bZ in PSL(2,C) and suppose Γ is not faithful (i.e. not isomorphic to Z/aZ ∗
Z/bZ). Then there is a Farey word wr/s(x,y) ∈ Γ which is either the identity or
elliptic.

In the case that the Farey word is the identity, one would expect that the group is
the orbifold fundamental group of (a,0),(b,0) Dehn surgery on a two-bridge knot
or link. Otherwise, the group should have a Heckoid-like structure analogous to that
outlined in [12, 10].

Arithmetic groups

This brings us to another application. Since the very beginnings of the theory of
discrete groups, mathematicians have observed deep connections between arith-
metic and geometry: for instance, through special functions and the modular group
PSL(2,C); the Selberg trace formula (generally an expression for the character of
the unitary representation of a Lie group G on the space L2(G/Γ ) for a discrete
lattice in G, but initially for the traces of powers of a Laplacian defining the Selberg
zeta function and the strong connections with explicit formulas in prime number
theory, [128]); and Margulis super-rigidity, which is a partial converse to the Borel
and Harish-Chandra theorem that an arithmetic subgroup in a semisimple Lie group
is of finite covolume—Margulis showed that any irreducible lattice in a semisimple
Lie group of real rank larger than two is arithmetic.

Roughly, an arithmetic group is a group obtained as the integer points of an alge-
braic group such as SL(n,Z). A subgroup of PSL(2,C) is arithmetic if it is commen-
surable with another subgroup of PSL(2,C) isomorphic to such a group. We refer to
the book of Machlachlan and Reid [83] for a comprehensive account of the theory
of arithmetic subgroups of PSL(2,C). Expanding on results of Borel [25] a neces-
sary and sufficient criteria has been given to decide if a two-generated subgroup of
PSL(2,C) is a subgroup of an arithmetic group [53]. From this in [80] it was shown
that there are only finitely many subgroups of PSL(2,C) which are either arithmetic
or a subgroup of an arithmetic group which is not free, and which is generated by
two elliptic or parabolic elements. More generally we have the following conjecture.

Conjecture 2. There are only finitely many two-generated arithmetic subgroups of
PSL(2,C).

This might not seem too surprising as there are, for instance, only finitely many
arithmetic subgroups of PSL(2,C) which lie in groups generated by reflections, [4,
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5]. It is not difficult to see that every two-generated group PSL(2,C) is a subgroup
of a group generated by three involutions (elements of order two). There seems a
big difference between reflections and involutions though, and so the conjecture
remains.

There are infinitely many arithmetic groups generated by three elements. One
may see this, for instance, by noting the figure 8 knot group is generated by two
parabolic elements, is arithmetic, and fibres over the circle (these sorts of things
were first observed by Riley [115, 116] and Jørgensen [62]) and unwrapping the
fibre to give a sequence of higher, but finite,index subgroups generated by three
elements and these which are obviously arithmetic.

Rather surprisingly, there are only four arithmetic groups generated by two
parabolic elements [52], and they are all fundamental groups of knot or link comple-
ments. A programme was instigated to identify all the arithmetic groups generated
by two elliptic or parabolic elements: for instance, there are 40 such non-uniform
lattices (non-compact quotient) in PSL(2,C) [82]. This programme will soon be
completed using the work announced in this paper. Using very recent discriminant
bounds on fields with one complex place, the arithmetic criterion [53] identifies
finitely many (though sometimes many thousands) parameters. The issue is then de-
ciding which of these possibilities are free groups, and this is the primary question
which we give an effective way to decide. Previous efforts in this direction tried to
construct a finite volume fundamental domain for the group [82], or show the group
in question has infinite index in a Bianchi group or other known maximal arithmetic
group [36].

Geodesic neighbourhoods in hyperbolic 3-orbifolds

Finally we discuss one more potential application. In an important work [50], Gabai
gave the following very strong generalisation of the Mostow rigity theorem in
three dimensions, provided a certain condition holds. This is the concept of exis-
tence of “non-coalescable insulator families”—structures associated to an embed-
ded geodesic loop in a hyperbolic 3-manifold M. If M has this property, if M is a
closed irreducible 3-manifold, and if f : M→ N is a homotopy equivalence, then f
is homotopic to a homeomorphism. If f and g are homotopic homeomorphisms of
N, then they are isotopic and finally the space of hyperbolic metrics on N is path
connected. Gabai constructs a non-coalescable insulator family for a simple closed
geodesic whenever it has an embedded tubular neighbourhood in M of radius larger
than log(3)/2. Not every shortest geodesic has a tubular neighborhood of this radius;
for example, the 3-manifold conjectured to have the third-smallest volume obtained
by (−3,2), (−6,1)-surgery on the left-handed Whitehead link. It is believed that
only six hyperbolic 3-manifolds have shortest geodesics which do not satisfy this
condition, and for them other methods produce non-coalescable insulator families.

The question of log(3)/2 embedded neighbourhoods is really a question about
two-generated groups, with one generator of order two. To see this, observe that a
geodesic will have such an embedded neighbourhood if its nearest translate (when
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we look at the group acting on hyperbolic 3-space) is further away than log3. Con-
sider the group generated by the short geodesic g and its nearest translate h. As g
and h are conjugate, there is an involution φ so that φgφ = h, and 〈g,φ〉 contains
〈g,h〉 with index at most two. The space of all such groups 〈g,φ〉 up to conjugacy,
discrete or not, has two complex dimensions. Further, if the shortest geodesic in
M is quite short, then there is always an embedded log(3)/2 neighbourhood (this
is an elementary consequence of Jørgensen’s inequality). On the other hand, if the
shortest geodesic is long, then its nearest translate is obviously far away. Thus one
should explore a compact part of the moduli space of discrete groups generated by
two elements, one of which has order two, and whose axes (the invariant hyperbolic
line projecting to the geodesic representative in M) are relatively close. We expect
there are only finitely many such groups and very few manifold groups among them.
This is very roughly the setup for the computational exploration [51] which estab-
lishes the results mentioned above in complete generality. If there are only finitely
many such exceptions in this region, then the remaining groups cannot be discrete.
A contradiction to discreteness can be found by identifying a word in the group suf-
ficiently close to the identity. Distance to the identity is a continuous function of the
parameters, so a word sufficiently close to the identity persists, and rules out nearby
groups as possibilities as well, removing an open region from the search space.
But how should one find these words certifying non-discreteness? These words are
called “killer words” in [51] and are obtained via an ad-hoc process (really a search
itself). In [54, 89] a similar search was carried out to identify the minimal covolume
lattice in PSL(2,C) using “good words”. Given that Farey words are likely relators
in such discrete groups (as per Conjecture 1) and that, as we will describe below, the
set of roots of Farey words is dense in the complement of the space of discrete free
and geometrically finite groups, concrete descriptions of these root sets may well
facilitate these searches. In addition, clearing up the relationships between killer
words, good words, Farey words and even the palindromic words (see [57]) used in
discreteness criteria might yield useful insights into questions of discreteness.

2 Some free groups of matrices

The title of this section is taken from the title of the 1955 paper of Brenner [26], who
(to our knowledge) was the first to explicitly study the family of matrices which we
are interested in here in the way that we are considering. We begin in Section 2.1
by defining Kleinian groups as Poincaré defined them; then in Section 2.2 we define
the particular set of groups which we will study in the sequel.
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2.1 Kleinian groups

The notion of a Kleinian group was first defined by Poincaré in 1883 [111], as a
group of fractional linear transformations which acts discontinuously on an open
subset of the Riemann sphere; the name ‘Kleinian’ was given by Poincaré after
Klein objected to the name ‘Fuchsian’ which Poincaré had previously given to dis-
crete subgroups of Isom(H2) [87, p.xvi]. We will take a slightly more general view
than Poincaré, but before giving our definition we recall some facts from complex
analysis and define all of the terms which we have just used. Two nice introductory
texts which take this classical angle are [16] and [98]. More modern surveys of the
field from the view of Kleinian groups (rather than, say, 3-manifolds) include those
by Matsuzaki and Taniguchi [100], by Marden [87], by Kapovich [63], and the very
nice paper by Series [130].

We use Ĉ to denote the Riemann sphere C∪{∞}; it is well-known that if f : Ĉ→
Ĉ is an entire homeomorphism then there exist a,b,c,d ∈ C satisfying ad−bc 6= 0
such that

f (z) =
az+b
cz+d

for all z ∈ Ĉ (with the obvious conventions f (−d/c) := ∞ and f (∞) := a/c). Maps
of this form are called fractional linear transformations, or Möbius transformations
(c.f. Chapter 3 of [9]). We denote the group of all fractional linear transformations
by M.

Observe next that Ĉ is identified with PC1 (one-dimensional projective space
over C). Consider the action of the projective transformation

A =

[
a b
c d

]
∈ PSL(2,C)

on ξ = (u,v)t ∈ PC1 (where we use homogenous coordinates):

Aξ =

[
a b
c d

][
u
v

]
=

[
au+bv
cu+dv

]
;

assuming v 6= 0 (so ξ 6= ∞) we have that A acts on C as

A(u/v) =
[

a(u/v)+b
c(u/v)+d

]
=

a(u/v)+b
c(u/v)+d

and so the action of PSL(2,C) on PC1 agrees with the action of M on Ĉ; just as we
identify the two spheres, we identify the two groups. The matrix group PSL(2,C)
has an obvious topology (identify SL(2,C) with a subset of C4 and take the Eu-
clidean norm; then this norm behaves well when passing to the projective quotient),
and we use this topology also for M.

Definition 1. A Kleinian group is a discrete subgroup of M.
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We now define the term ‘discontinuous’ which we used in giving Poincaré’s def-
inition of a Kleinian group, and explain why our definition is slightly more general.
Let G be a group acting by homeomorphisms on a topological space X . We can view
this action as a dynamical object, and ask for the orbits of points under the group
action. We say that x ∈ X is a limit point of G if there is some u ∈ X such that x is an
accumulation point of the orbit Gu; the set of all limit points is denoted by Λ(G,X).
In our case, the set X will always be Ĉ and so we simply write Λ(G) for the limit
set of a group of Möbius transformations G. Directly from its definition the limit set
is always a closed set. We exhibit an example as Fig. 1.

Fig. 1: The limit set of a Kleinian group, generated by two matrices with respective
traces 2±0.2i (c.f. Figure 8.5(iv) of [106]).

For a proof of the following proposition, see Section II.E of [98].

Proposition 1. Suppose that G ≤M. The following two conditions are equivalent
for x ∈ Ĉ:

1. x ∈ Ĉ\Λ(G)
2. There exists a neighbourhood U of x such that U ∩gU 6= /0 for only finitely many

g ∈ G. ut

If x satisfies condition (2), then we say that G acts discontinuously at x; the set of all
points at which G acts discontinuously, which is identical to the open set Ĉ\Λ(G)
by the proposition, is denoted by Ω(G) and is called the ordinary set of G. If G
is a Kleinian group and Ω(G) is non-empty, then Ω(G)/G naturally has a com-
plex structure; if G is finitely generated, by Alhfors’ finiteness theorem the space
Ω(G)/G is a finite union of Riemann surfaces, each with finitely many punctures
and no other boundary components [7, 8] (for a modern proof and references to
several other proofs see [63, §8.14]).
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Poincaré’s definition of a Kleinian group was a group G such that Ω(G) 6= /0; it is
not too hard to prove that if G≤M acts discontinuously at a point x ∈ Ĉ, then G is
discrete (one uses the fact that a subgroup of M is discrete iff there are no nontrivial
sequences in the group converging to the identity, see [98, II.C.3]); on the other
hand, there are discrete groups of Möbius transformations which act discontinuously
nowhere [98, VIII.G], so our definition is strictly more general than Poincaré’s. (The
advantage of our definition is that it includes groups which act discontinuously on
the half-space model of hyperbolic space whose sphere at infinity is Ĉ, even if they
do not act discontinuously at infinity; we will take this story up again in Section 3.1.)

As we outlined in the introduction, in general, the question of deciding whether
an arbitrary subgroup G≤M is discrete (as well as the related problems of comput-
ing Ω(G) and Λ(G) explicitly) is a hard one. In the next section, we will describe
the particular space of groups of Möbius transformations which we are interested in;
we will see that the boundary between the set of discrete groups and the set of non-
discrete groups in this space is highly intricate, even though the space is arguably
the simplest possible space of groups for which we might ask this question.

2.2 The space of discrete, free groups generated by 2-parabolics

We return briefly to the subject of orbits of a group of Möbius transformations.

Proposition 2. For λ ∈ C \ {0}, define the function fλ 2 by fλ 2(z) := λ 2z. Every
Möbius transformation is conjugate by an element of M either to z 7→ z+ 1, or to
exactly one of the functions fλ 2 . ut

This gives a taxonomy of Möbious transformations. Let g ∈M be non-trivial, that
is g is not the identify; then g is called

• parabolic, if it is conjugate to the translation z 7→ z+1 (equivalently, tr2 g = 4);
• elliptic, if it is conjugate to some rotation z 7→ λ 2z with |λ | = 1 (equivalently,

tr2 g ∈ [0,4));
• hyperbolic, if it is conjugate to some dilatation z 7→ λ 2z with λ ∈ R and |λ | 6= 1

(equivalently, tr2 g ∈ (4,∞));
• strictly loxodromic, if it is conjugate to z 7→ λ 2z with λ ∈ C \R and |λ | 6= 1

(equivalently, tr2 g ∈ C\ [0,∞)).

Parabolic elements have exactly one fixed point on the Riemann sphere Ĉ; all other
non-identity elements have exactly two fixed points, and in the case of hyperbolic
and strictly loxodromic elements (which together form the class of loxodromic ele-
ments) these fixed points form a source-sink pair (Fig. 2).

In 1947, Sanov [125] gave the following example of a free Kleinian group:〈[
1 2
0 1

]
,

[
1 0
2 1

]〉
.
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Fig. 2: The flow of points on Ĉ under the four kinds of elements of M.

This group was of interest because it was a free subgroup of PSL(2,Z); previous
work had found free subgroups of M, but all of these had transcendental entries. In
1955, Brenner [26] extended this result, showing that whenever |m| ≥ 2,

Gm =

〈
Am =

[
1 m
0 1

]
,Bm =

[
1 0
m 1

]〉
.

is free. Observe that both generators of this group are parabolic (since they both
have trace 2). Let T ∈ PSL(2,C) be a matrix conjugating Am to the matrix[

1 1
0 1

]
which represents z 7→ z+1; for example, we can choose

T =

[√
m 0

0 1√
m

]

and then compute that

T−1GmT =

〈[
1 1
0 1

]
,

[
1 0

m2 1

]〉
.

There is a famous inequality due to Shimizu [132] and Leutbecher [75] (see
also [98, II.C.5]) which gives a necessary condition for a group of this form to be
discrete:

Lemma 1 (Shimizu–Leutbecher lemma). Suppose A,B ∈ PSL(2,C) are of the
form

A =

[
1 1
0 1

]
,B =

[
a b
c d

]
.

If 〈A,B〉 is discrete, then either c = 0 or |c| ≥ 1. ut

Combining this with the result of Brenner, we obtain bounds on the set of ρ ∈ C
such that

Γρ :=
〈

X =

[
1 1
0 1

]
,Yρ =

[
1 0
ρ 1

]〉
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is free and discrete. LetR be this set:

Lemma 2. Let ρ ∈ C. If ρ ∈ R, then |ρ| ≥ 1. On the other hand, if |ρ| ≥ 4, then
ρ ∈R. ut

We will call the set R the closed Riley slice (we will explain this terminology
in the next section). Using techniques which we will reference in Section 5 and
Section 6, we are able to draw a picture of this set which shows that it has a very
intricate structure which is not captured by the crude bounds of Lemma 2; the closed
Riley slice is the region of C which is outside the shaded ‘eye’ of Fig. 3, and the
bounds of Lemma 2 are the two red circles.

Fig. 3: Crude bounds on the Riley slice.

In 1958, Chang, Jenning, and Ree [35] improved the bound on the interior of the
Riley slice from ‘|ρ| ≥ 4’ to ‘ρ lies outside the three circles of radius 2 centred at
−2, 0, and 2 respectively’; this is shown in blue in Fig. 3. A couple of years later,
Ree [114] showed various density results for the complement of the Riley slice: for
instance, that non-free groups are dense in the closed unit disc {ρ ∈ C : |ρ| ≤ 1};
and that the two open intervals (−4,4) and (−2i,2i) are contained in open sets in
which non-free groups are dense.

Finally, in 1969, Lyndon and Ullman [78] improved the interior bound once
more; this bound is shown in green on Fig. 3.

Theorem 1 (Lyndon and Ullman). Let LU be the convex hull in C of the circle
{z ∈ C : |z|= 2} and the two points ±4. ThenR is contained in C\LU. ut

For some further study of the structure of the Riley slice boundary using Lyndon and
Ullman’s result, see Section 4.2 of [44]. Beardon has given improvements of some
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of the other results of Lyndon and Ullman on the set of free groups of the form Γρ

[17].
Some more modern bounds on sets intimately related to the Riley slice as defined

here (and the elliptic Riley slice which we will describe in Section 6) are given in
[93]. The non-discrete groups of the form Γρ have also been studied, for example by
Beardon [18] and Martin [92]; the non-free groups have been studied by Bamberg
[15]; and the arithmetic groups (whose definition would take us too far afield, see
the elementary book by Voight [145] and the more difficult book by Maclachlan and
Reid [83]) have been studied by Gehring, Maclachlan, and Martin [52], see also the
discussion and citations in the introduction to [44]. Work on parabolic conjugacy
classes in the groups Γρ , whether free or not, was done by Gilman [55] in an attempt
to explain the patterns of density seen in pictures of the Riley slice exterior like those
of Fig. 3 above (which was drawn, following Keen and Series [67], by drawing the
set of groups where certain Farey words become accidentally parabolic—we discuss
this more in Section 5 below).

3 Riley’s study of knot groups

In this section we study hyperbolic geometry, and show that the Riley slice ap-
pears naturally in association with representations of the fundamental groups of
two-bridge knot groups.

3.1 Hyperbolic geometry

We do not give an account here of the interesting history of ‘non-Euclidean geom-
etry’; some reading on this matter includes the first chapter of [39] as well as the
monograph [122]. We simply note that hyperbolic geometry was first studied as the
geometry in which Euclid’s Postulate V

For every point A, and any line r not through A, there is not more than one line through A,
in the plane spanned by A and r, which does not meet r

(here formulated as in [40, §16.1]) is replaced by the postulate

For every point A, and any line r not through A, there is more than one line through A, in
the plane spanned by A and r, which does not meet r,

and in this form the first people to study it seriously were Lobačevskiı̆ [77] and J.
Bolyai [23].

For us, hyperbolic n-space is the upper half-plane Hn := {(x1, . . . ,xn)∈Rn : xn >
0} endowed with the metric given by the differential

ds2 =
dx2

1 + · · ·+dx2
n

x2
n

;
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geodesics in this metric are the intersections with Hn of lines and circles in Rn or-
thogonal to the plane xn = 0. This space is isometric (after taking a sphere inversion
through a sphere tangent to xn = 0, translating, and scaling) to the space consisting
of the interior of the n-disc Bn := {x ∈ Rn : |x|< 1} with the metric

ds2 =
2dx2

1 + · · ·+2dx2
n

(1−dx2
1−·· ·−dx2

n)
2 ,

in which geodesics are circle arcs orthogonal to the boundary Sn−1 (see Fig. 4).

Fig. 4: A polygon X in the ball model of H2, with four edges given by hyperbolic
geodesic segments and two edges on the sphere S1 at infinity.

We call Hn the half-space model and Bn the ball model of hyperbolic n-space;
these are two views of the unique Riemann manifold of constant curvature−1. Some
introductory texts on hyperbolic geometry include [40, Chapter 16] (which takes an
axiomatic view), [16, Chapter 7] (which takes an analytic view like that we take
here), and [113, Chapters 1–5] (which starts with the point of view of Lorentzian
space and proceeds to discuss both axiomatic and geometric views).

Clearly both models of hyperbolic space have some kind of ‘boundary’: this is
a common feature of metric spaces of non-positive curvature [27, Chapters 8 and
9] and in this case, the boundary of hyperbolic space is a sphere (either Rn−1 ∪
{∞} for the half-plane model, or the usual unit sphere Sn−1 for the ball model). We
will primarily be interested in hyperbolic 3-space, in which case we can naturally
identify R2 with C and hence the sphere at infinity with the Riemann sphere Ĉ.

Let φ be an (orientation-preserving) isometry of H3. Then φ extends naturally
to a conformal homeomorphism (hence Möbius transformation) on the boundary
∂H3 = Ĉ—this is a non-trivial observation but isn’t too hard to check, see [98,
IV.A]—and in fact this map Isom(H3)→M is invertible (which is not a feature of all
metric spaces of non-positive curvature). The inverse map is the so-called Poincaré
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Fig. 5: A conformal map φ : Ĉ→ Ĉ extends uniquely to an hyperbolic isometry
on H3: the map φ , in sending the points a,b,c,d to their images, induces a map
on the hyperbolic segments [a,c] and [b,d]; if the original segments intersect at
some x ∈H3, then their images intersect at some point which is defined to be φ(x).
The difficulty is in checking that, for any x ∈ H3, different choices of segments
intersecting at x induce the same image φ(x).

extension, where to define the action of a conformal map φ on the boundary Ĉ on
a point x ∈ Hn one first finds a pair of intersecting geodesics through x, computes
the images of the endpoints at infinity of these geodesics under φ , and uses these to
draw two new geodesics which will intersect at the image of x under the extension
of φ to H3; this process is depicted in Fig. 5 (see also the final paragraph of [98,
A.13], or for more detail [16, §3.3] and [113, §4.4]). In any case, once we accept
that there is a natural geometry-respecting bijection between M and the group of
isometries of H3 (which in fact is compatible with the compact-open topology on
the isometry group) then we may give an alternative definition of a Kleinian group:
a discrete group of isometries of H3.

We now follow Thurston [143] (see also [113, Chapter 8] and [19]) to define
hyperbolic 3-manifolds. A hyperbolic 3-manifold is a Hausdorff second-countable
topological space M equipped with a hyperbolic atlas: an open cover Uα with topo-
logical embeddings φα : Uα → H3 (α in some index set A) where every transition
map φβ φ−1

α (α,β ∈ A) is the restriction of some isometry of H3 to the domain of
definition. The holonomy group of M is a structure which detects the tiling that is
induced when M is rolled out onto its universal cover H3 in a way that respects
the geometry (this process is called developing; see [143, §3.4] for an intuitive de-
scription, much more detail may be found in [113, §8.4]). If Γ is the holonomy
group of a connected and metrically complete hyperbolic 3-manifold M, then it is
a Kleinian group and M is isometric to H3/Γ [113, Theorem 8.5.9]. Conversely, if
Γ is a Kleinian group then H3/Γ is a hyperbolic manifold if Γ is torsion-free; if
Γ is allowed to have torsion then the quotient is a hyperbolic orbifold (i.e. a hy-
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perbolic manifold with possible cone points—see Chapter 13 of Thurston’s notes
[140], Chapter 13 of [113], Chapter 6 of [63], and Chapter III.G of [27]).

Hyperbolic 3-manifolds are a special class of so-called geometric manifolds.
These are manifolds with atlases that give a structure locally modelled on a met-
ric space X which satisfies five axioms generalising Euclid’s five (written below,
verbatim from [40, Section 1.2], in italics). This generalisation is described in much
more detail in Chapter 8 of [113], and a more differentio-geometric definition of
geometric metric spaces is given by Thurston in Section 3.8 of [143].

1. A straight line may be drawn from any point to any other point. For any pair
x,y ∈ X there exists a geodesic segment joining x to y.

2. A finite straight line may be extended continuously in a straight line. Given a
geodesic segment γ : [0,1]→ X there exists a unique geodesic line γ̂ : R→ X
with γ̂ �[0,1]= γ .

3. A circle may be described with any centre and any radius. There exists a contin-
uous function σ : Rn→ X and a real number ε > 0 such that σ is a homeomor-
phism of B(0,ε) onto B(σ(0),ε), such that for any x ∈ Sn−1 the map γ : R→ X
defined by γ(t) = σ(tx) is a geodesic line such that γ �[−ε,ε] is a geodesic seg-
ment.

4. All right angles are equal to each other. X is homogeneous (i.e. for all x,y ∈ X
there exist isometric neighbourhoods U of x and V of y).

There are eight such geometries in three dimensions: Euclidean space E3, spher-
ical space S3, and hyperbolic space H3; the two product geometries S2×E1 and
H2×E1; the universal cover of SL(2,R); solvegeometry Sol; and nilgeometry Nil.
Some excellent visualisation work has been done with these geometries; for in-
stance, the work of Coulon, Matsumoto, Segerman, and Trettel [37, 38].

It is a great insight of Thurston that ‘most’ geometric manifolds are hyperbolic.
He established this in many interesting cases, particularly the Haken case (a Haken
manifold is a compact, orientable, irreducible 3-manifold that contains an orientable,
incompressible surface;1 see [63] for the details) and promoted the geometrisa-
tion conjecture which was completely proved by Grigori Perelman using ideas of
Richard S. Hamilton who developed the the Ricci flow (see the book [105]).

3.2 Knots

The theory of knots was found to be related to hyperbolic geometry by Robert Riley
and William Thurston in the mid 1970s. In this section, we define some of the basic
concepts from geometric knot theory and explain exactly how hyperbolic geometry
comes into it all. The three most useful references for the parts of knot theory which

1 If S is a properly embedded surface in a 3-manifold M, then a compression disc D (for S) is an
embedded disk in M such that D∩S = ∂D and such that the loop ∂D⊂ S does not bound a disc in
S. If no such compression disk exists, then S is is said to be incompressible.
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are of interest to our story are (in rough order of expected prior knowledge) the
books by Purcell [112], Rolfsen [120], and Burde and Zieschang [32]. Unfortunately
there seems not to be a detailed monograph on the history of knot theory; [32] has
some historical notes at the end of each chapter, and the book chapter by Epple
[47], though focused primarily on the history of knot invariants, does have some
discussion of the history of knot geometry. In addition, Chapter 3 of In the tradition
of Thurston [110] has a detailed description of Thurston’s contributions as well as
some earlier history.

Definition 2. A link is a topological embedding of a collection of disjoint circles
into S3; the image of each circle is called a component of the link, and a knot is a
link with a single component. We restrict ourselves to links which are tame: every
component must be ambient isotopic in R3 to a simple closed piecewise linear curve.
In general, we view two links as equivalent if they are ambient isotopic in S3.

Clearly the topological type of the complement of a knot k in S3 (formally, S3 \V
where V is an open tubular neighbourhood of k) is an isotopy invariant of the knot.
That the converse is also true is a famous result of Gorden and Luecke [41]. It
follows that studying the topology of knot complements is equivalent to studying
the structure of knots. (The corresponding result is not true for links.) It is an insight
of Thurston’s programme of geometry that one can study the topology of spaces by
studying their geometry.

In 1982, Thurston announced the following pair of results, Theorems 2 and 3 in
his seminal paper [141].

Theorem 2 (Corollary 2.5 of [141]). If k ⊆ S3 is a knot, S3 \ k has a geometric
structure (i.e. admits a geometric atlas) iff k is not a satellite knot. It has a hyperbolic
structure iff, in addition, k is not a torus knot. ut

Thurston conjectured Theorem 2, which essentially shows that most knot comple-
ments admit a hyperbolic structure, based on the work of Riley which we discuss in
the next section. The history surrounding this discovery is very interesting; various
accounts beyond [141] include [119] and the accompanying commentary [28], and
the additional references given in the historical notes to Section 10.3 on p.504 of
[113].

If L is a link in a 3-manifold M, then a Dehn surgery along L is effected by
cutting out a tubular neighborhood of L, performing a diffeomorphism on each torus
component of that neighbourhood, and gluing it back into M (see Section 1.5 of
[113], Chapter 6 of [112], Section E.4 of [19]).

Theorem 3 (Theorem 2.6 of [141]). Suppose L is a link in a 3-manifold M such that
M \L has a hyperbolic structure. Then most manifolds obtained from M by Dehn
surgery along L have hyperbolic structures.

Every closed 3-manifold is obtained from S3 by Dehn surgery along some link
whose complement is hyperbolic; this follows from the Lickorish-Wallace theorem
(which shows that every manifold comes from Dehn surgery along some link) [146,
76] (see also [120, §9I] and Theorem 6.5 of [112]) together with the observation that
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every link in the 3-sphere is a sublink of a hyperbolic link [107]: just do the trivial
Dehn surgery on the added components. Thus Theorem 3 shows that most closed
3-manifolds admit hyperbolic structures.

3.3 Riley’s study of two-bridge knots and links

The Riley slice arises naturally in the study of knots. In particular, a dense subset
of the groups in the Riley slice can be viewed as degenerations of holonomy groups
of two-bridge knot complements. In this section we briefly discuss Riley’s study of
these groups, and explain how to obtain the Riley slice from them. Much more detail
may be found in Section 2 of our upcoming preprint, [45], as well as in the papers
of Akiyoshi, Ohshika, Parker, Sakuma, and Yoshida [12] and Aimi, Lee, Sakai, and
Sakuma [10].

We first define two-bridge links, following the treatment of [112, Chapter 10]. A
rational tangle is obtained by drawing two disjoint arcs on the boundary of a 3-ball
B and then pushing the interiors of the arcs slightly into the 3-ball, forming a pair of
disjoint arcs embedded in B with endpoints on ∂B so the boundary is a sphere with
four marked points. A two-bridge link is a link obtained by joining these marked
points up with a pair of disjoint arcs on the boundary (the bridge arcs). There is a
natural bijection due to Schubert [126], described in detail as Algorithm 2.1 of [45],
which sets up a bijection between the set of two-bridge links (up to ambient isotopy)
and Q̂ :=Q∪{∞}; the rational number associated to a link is called the slope of the
link.2

One of the simplest examples of a two-bridge link is the figure 8 knot k (which
has slope 3/5). It is important historically as it was the first known example of a
link whose complement manifold admits a hyperbolic structure; it is Riley’s proof
of this which (according to Thurston [141]) inspired the conjecture of Theorem 2.

Riley’s proof of the hyperbolicity is described in [117]; it is a consequence of his
algebraic theory of parabolic representations of two-bridge link groups developed
in [115, 116]. The main idea is to consider a representation θ : G→ PSL(2,C)
(where G = 〈x,y : x−1yxy−1x = yx−1yxy−1〉 is the fundamental group of the knot
complement) defined by

θx := A =

[
1 1
0 1

]
θy := B =

[
1 0
−ω 1

]
where ω is a primitive cube root of unity. Then:

Theorem 4 (Theorem 1 of [117]). If Γ := 〈θx,θy〉 then Γ has presentation

〈A,B : WAW−1 = B〉 (1)

where W = A−1BAB−1, and so θ gives an isomorphism G' Γ . ut
2 Our ‘slope’ is actually the reciprocal of Schubert’s normal form.
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Hyperbolicity of the complement manifold (Corollary on p.284 of [117]) now fol-
lows from this theorem and some standard results on 3-manifold topology.

Every two-bridge link has a fundamental group with an presentation on two-
generateds like (1) for the figure 8 knot (such a representation is called an over-
presentation—the two-generateds correspond to loops about the two-bridge arcs),
and Riley showed that every such group admits a non-abelian representation with the
images of the two-generateds being parabolic (Theorem 2 of [115]). In fact, in 2002
Agol [2] announced a full classification of the non-free discrete groups generated
by two non-parabolic elements (later given a formal and correct presentation in [12]
and [10], see also Section 2.2 of [45]).

If X and Y are two parabolics which do not share fixed points then, up to conju-
gacy, they are represented by matrices

X =

[
1 1
0 1

]
,Yρ =

[
1 0
ρ 1

]
where ρ ∈ C. This normalisation associates a complex number ρ with each two-
bridge link group representation. Riley devoted much effort to finding the set of
ρ ∈ C such that

Γρ := 〈X ,Yρ〉

is a two-bridge link group, producing the famous image in Figure 6.

Fig. 6: Riley’s plot of two-bridge link groups in the (+,+)-quadrant of C.
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The most obvious feature of Figure 6 is the fractal curve running diagonally
across the centre of the frame. This is the set of so-called cusp groups. The half of the
plot on the left (closer to 0) contains (marked with + or ×) various Heckoid groups
(introduced by Riley in [118] and formalised by Lee and Sakuma in [73]), which
are the non-free Kleinian groups mentioned above in association to Agol’s 2002
announcement. Observe that these points appear to lie on curves (called extended
pleating rays) which end on the diagonal boundary curve.

Fig. 7: A two-bridge knot with four braid regions (in black) together with upper and
lower unknotting tunnels (in red).

Let Γρ0 = 〈X ,Yρ0 : WX = Yρ0W 〉 be a faithful representation of the two-bridge
link group of slope p/q (where W is a word in X and Yρ0 depending on the slope;
compare (1) and [115, Proposition 1]). An unknotting tunnel for a link L is a prop-
erly embedded arc t in the complement manifold M for L such that if N is a tubular
neighbourhood of t then M\N is a handlebody; a two-bridge link has two natural un-
knotting tunnels, depicted in Figure 7, called the upper and lower tunnels [124]. The
element in Γρ0 corresponding to a loop around the upper tunnel t is WXY−1

ρ0
W−1;

in Γρ0 , this element is the identity. The discrete groups on the extended pleating ray
which contains Γρ0 correspond to the values of ρ ∈ C for which the corresponding
word in Γρ becomes elliptic of ever-increasing order; in the limit (when the curve
reaches the boundary) this word becomes parabolic and the corresponding manifold
has a third deleted arc (and the Riemann surface of the group has become a pair
of disjoint 3-punctured spheres). The limit group is called a cusp group. Pushing
further along this curve, the group becomes free and the quotient surface becomes
a 4-times punctured sphere. (A more in-depth look at this process may be found
in [45, §2.2].) An alternative way of seeing that the quotient, for ρ large, is a 4-
times punctured sphere is via the Poincaré polyhedron theorem (for which see [113,
§11.2] or [98, IV.H]); we explain this in a little more detail in [45, §5.1].

The quotient manifolds which occur along the curve are sketched in Figure 8.
Looking back at Riley’s plot, Figure 6, the fractal boundary is the set of cusp groups,
and the empty space in the upper right half of the plot is the moduli space of four-
times punctured spheres.

Definition 3. The parabolic Riley slice, which we will often shorten to Riley slice
and denote by R, is the set of ρ ∈ C such that Γρ is free, discrete, and the Riemann
surface Ω(Γρ)/Γρ is homeomorphic to a 4-times punctured sphere.



Concrete one complex dimensional moduli spaces 21

Fig. 8: The four kinds of orbifolds found along an extended pleating ray.

Indeed, R as we defined it in Section 2.2 is the closure in C of this set, and R is
the interior of R in C; this is a 2010 result of Ohshika and Miyahi [109] (see also
Section 3.3 of [45] for a thorough discussion of the topology of the boundary).

Finally, we remark that of course not every group Γρ for ρ ∈ R is obtained by
twisting out from a two-bridge link group; the ones that can be obtained in this way
are the groups lying on the so-called rational pleating rays of Keen and Series [67]
(see Section 5 below). The remainder of the groups in R are obtained by pushing
out from geometrically infinite groups, and can be traced back to the fundamental
groups of wild knots, c.f. [64].

4 Quasiconformal deformation spaces

In this section we define formally what we mean by a moduli space of Kleinian
groups; the first two sections (4.1 and 4.2) give a fast introduction to the general
theory, and the third section (4.3) explains what this theory means for the Riley
slice.

4.1 Riemann moduli theory

We begin by quickly recapping the classical theory of Riemann moduli space; some
nice introductory books on this subject include those by Farb and Margalit [48], by
Imayoshi and Taniguchi [59], and by Lehto [74]. These books all assume comfort
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with Riemann surfaces; an introductory text on these which has the advantage of
being cowritten by one of the founders of the moduli theory of Kleinian groups is
the book by Farkas and Kra [49]. Historical accounts of Teichmüller and moduli
theory include [1, 60, 6]; some further history may be found in [127, pp.442–450].

For the Riley slice, we are only interested in finite hyperbolic Riemann surfaces
(i.e. Riemann surfaces S with Euler characteristic χ(S)< 0 and which may be com-
pactified by filling in finitely many punctures) and so we restrict ourselves to this
case here. A discussion about what changes need to be made in order to deal with
the case of possibly non-hyperbolic Riemann surfaces with more general boundary
components can be found at the start of Section 5.1.1 of [59].

A hyperbolic structure on a Riemann surface S is a pair (X ,φ) where X is a sur-
face with a complete hyperbolic metric of finite area with totally geodesic boundary
and where φ : S→ X is a diffeomorphism. We say that two hyperbolic structures
(X1,φ1), (X2,φ2) are equivalent if there exists an isometry ι : X1→ X2 such that the
diagram

S

X1 X2

φ1 φ2

ι

commutes up to homotopy. The Teichmüller space of S, Teich(S), is the set of all
hyperbolic structures on S modulo equivalence. It has a natural metric space struc-
ture, but defining the metric requires quasiconformal machinery and so we put off
the explanation until Section 4.2.

The mapping class group of a Riemann surface S, denoted Mod(S) (also called
the modular group of S), is the group of orientation-preserving homeomorphisms of
S, moduli isotopies. (Observe that these homeomorphisms are allowed to permute
the punctures. In the general case, we define the mapping class group in such a way
that punctures are permuted, but all other boundary components are fixed pointwise;
see [48, §2.1] and [59, §6.3.1].) This group has a natural action on Teich(S): if
f is a representative of an element of the mapping class group, and (X ,φ) is a
representative of an element of the Teichmüller space, then

f · (X ,φ) := (X ,φ ◦ f−1).

(The use of f−1 rather than f is necessary for the axioms for a group action to hold.)
The mapping class group acts disconti fundamental group nuously as a group

of isometries on Teich(S) [59, Theorem 6.18], and the quotient Teich(S)/Mod(S)
is called the (Riemann) moduli space and denoted byM(S). The Riemann moduli
space parameterises hyperbolic structures but now doesn’t care about the position
of punctures in the metric; quoting Thurston [143, p.259]:

Informally, in Teichmüller space, we pay attention not just to what metric a surface is wear-
ing, but also to how it is worn. In moduli space, all surfaces wearing the same metric are
equivalent. The importance of the distinction will be clear to anybody who, after putting a
pajama suit on an infant, has found one leg to be twisted.

We give two examples.
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Example 1 (Tori). The canonical first example of a moduli space is that of genus 1
Riemann surfaces (i.e. elliptic curves). A complex structure on the torus is deter-
mined by the lengths of the meridian and longitude; equivalently, every complex
torus is of the form C/Gτ where τ ∈H2 and

Gτ := {m+nτ : m,n ∈ Z}.

Further, the tori corresponding to τ1 and τ2 are biholomorphic iff τ ′ = Aτ for some
A ∈ PSL(2,Z) (acting on the upper half-plane as a fractional linear transformation).
We therefore get the following for a complex torus T :

Teich(T ) =H2, Mod(T ) = PSL(2,Z),
and M(T ) =H2/PSL(2,Z)'bihol. S(2,3,∞).

Here the space S(2,3,∞) is topologically the complex plane; however, the natural ge-
ometric structure it inherits as a quotient by the group action is hyperbolic: S(2,3,∞)

is the finite area (in fact, area π/3) Riemann surface obtained as the 2-sphere with
two cone points of order 2 and 3 and a single puncture. There is a unique hyperbolic
metric on this space.

For further detail see [59, §1.2] and [48, §10.2, §12.2]. As we alluded to, this
is very closely related to the arithmetic study of elliptic curves and the theory of
modular forms: see for instance [133, C.12].

Example 2 (Four-punctured spheres). The Teichmüller theory of the 4-times punc-
tured sphere S0,4 is intimately related to that of the once punctured torus T∗, since
there is a natural involution (the hyperelliptic involution) which swaps the homo-
topy classes of non-boundary-parallel simple closed curves on T∗ and S0,4 (see [48,
§2.2.5] and [11, Chapter 2]). In fact T∗ can be obtained much as in the previous
example,

T∗ =
(
C\{Gτ(0)}

)
/Gτ , τ ∈H2

and if we put the complete hyperbolic metric on C\{Gτ(0)}, the action of Gτ will
be by isometry. This construction gives all the complex structures on T∗. In any case,
it can be shown that

Teich(S0,4) =H2 and Mod(S0,4) = PSL(2,Z)n (Z/2Z×Z/2Z);

one can also show thatM(S0,4) is topologically a thrice-punctured sphere.

Moduli spaces of Riemann surfaces appear naturally in many interesting areas
of mathematics, through to the study of string interactions in physics [150, §22.6–
22.7]. We recommend the survey article by Alex Wright [147] of Mirzakhani’s work
on the moduli spaces of Riemann surfaces for an accessible update on the most
recent advances, ideas, and conjectures.
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4.2 Holomorphic motions and quasiconformal deformations

The analogue of the Riemann moduli space for hyperbolic 3-manifolds (moving
from parameterising the conformal boundary to the interior) requires the notion of
quasiconformal mappings. The goal of this section is to give an intuitive reason for
the occurence of this class of deformations in particular, via the theory of holomor-
phic motions; a more detailed exposition of this route may be found in Chapter 12
of the book of Astala, Iwaniec, and Martin [14]; it is known, following Sullivan and
McMullen [137, 138, 103, 102], that the entire theory is basically analogous to the
theory of complex dynamics and so the reader should try to focus on the deforma-
tions occuring in Ĉ (in this case, deformations of limit sets) as well as deformations
of the hyperbolic 3-manifolds: we find it much easier anyway to visualise points
moving around in Ĉ compared with trying to think about deforming large hyper-
bolic manifolds. The idea is that, although the Riemann surface cannot detect all of
the Kleinian structure (the Riemann moduli space is a quotient of the Kleinian mod-
uli space which we will define), the limit set can (as it should, since it is a global
reflection of the group orbits).

The basic definition is due to Mañé, Sad, and Sullivan [84]; it encodes what we
mean when we say that a parameter ‘varies holomorphically’ in a set.

Definition 4 (Holomorphic motions). Let A ⊆ Ĉ. A holomorphic motion of A is
a map Φ : B2×A→ Ĉ (where B2 is the unit disc in C) such that

1. For each a ∈ A, the map B2 3 λ 7→Φ(λ ,a) ∈ Ĉ is holomorphic;
2. For each λ ∈ B2, the map A 3 a 7→Φ(λ ,a) ∈ Ĉ is injective;
3. The mapping A 3 a 7→Φ(0,a) ∈ Ĉ is the identity on A.

See the schematic in Fig. 9.

Mañé, Sad, and Sullivan also proved the so-called ‘λ -lemma’; we need an ex-
tended version (Theorem 5), due to Słodkowski. The result shows that holomorphic
motions are ‘rigid’: they are determined everywhere on Ĉ even when only known
on ‘small’ sets, in such a way that the extension is (remarkably) almost conformal
in a. More precisely, its action on the tangent bundle of C maps circles to ellipses of
bounded eccentricity—this is the germ of the notion of quasiconformality, which we
pause to define following Section 1.4 and Chapter 4 of [59]. An extended treatment
can be found in [14], but this is perhaps too technical for bedtime reading.

Definition 5 (Quasiconformality). Let D,D′ be domains in C, and let f : D→ D′

be an orientation-preserving diffeomorphism. Define the two differential operators

∂z := (1/2)(∂x− i∂y) and ∂z := (1/2)(∂x + i∂y)

where x = ℜz and y = ℑz. The function

µ =
∂z f
∂z f
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Fig. 9: Images of A⊂ C under a holomorphic motion Φ .

is a smooth complex-valued function on D, and ‖µ‖∞ < 1. The function µ is called
the Beltrami coefficient of f , and the function f is called a quasiconformal mapping
if

K( f ) := sup
z∈D

1+ |µ(z)|
1−|µ(z)|

< ∞

in which case K( f ) is called the maximal dilatation of f .

This definition relates to the action on tangent bundle circles in the sense that
µ(z) measures the eccentricity of ellipses which are the images of circles in TzC
under the differential d f and K( f ) measures the maximal ratio of one axis of these
ellipses to the other, see [59, p.18] and Fig. 10.

Fig. 10: The image of circles in the tangent bundle to C under the differential of a
quasiconformal map f : C→ C.
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It turns out that this notion is the ‘correct’ weakening of conformality to enable
the extension of holomorphic motions.

Theorem 5 (Słodkowski’s extended λ -lemma [134, 135]). If Φ : B2×A→ Ĉ is
a holomorphic motion of A ⊆ C, then Φ has an extension to Φ̃ : B2× Ĉ→ Ĉ such
that

1. Φ̃ is a holomorphic motion of Ĉ;
2. For each λ ∈ B2, the map Φ̃λ defined by Ĉ 3 a 7→ Φ̃(λ ,a) ∈ Ĉ is a quasiconfor-

mal homeomorphism with maximal dilatation satisfying

K(Φ̃λ )≤
1+ |λ |
1−|λ |

;

3. Φ̃ is jointly continuous in B2× Ĉ; and
4. For all λ1,λ2 ∈ B2, Φ̃λ1Φ̃

−1
λ2

is quasiconformal with

logK
(

Φ̃λ1Φ̃
−1
λ2

)
≤ ρ(λ1,λ2)

(where ρ is the hyperbolic metric on B2). ut

There is also an equivarant version due to Earle, Kra, and Krushkal’, appearing
as Theorem 1 of their paper [42]:

Theorem 6 (Equivariant λ -lemma). Let A⊆ Ĉ have at least three points, and let Γ

be a group of conformal motions preserving A. Let Φ :B2×A→ Ĉ be a holomorphic
motion on A, and suppose that for each γ ∈ Γ and each λ ∈ B2 there is a conformal
map θλ (γ) such that

Φ(λ ,γ(z)) = θλ (γ)(Φ(λ ,z)) (2)

for all z ∈ A. Then Φ can be extended to a holomorphic motion on Ĉ such that (2)
holds for all z ∈ Ĉ. ut

Observe that, by the λ -lemmas, a holomorphic motion of the limit set of a
Kleinian group extends quasiconformally to the entire Riemann sphere; in partic-
ular, the ordinary set. This motivates:

Definition 6. The quasiconformal deformation space of a Kleinian group Γ , de-
noted by QH(Γ ), is the space of representations θ : Γ → PSL(2,C) (up to conju-
gacy) such that

1. θ is faithful and θΓ is discrete;
2. θ is type-preserving, that is if γ ∈ Γ is parabolic (resp. elliptic of order n) then

θγ is parabolic (resp. elliptic of order n); and
3. the groups θΓ are all quasiconformally conjugate (i.e. there exists some quasi-

conformal f : Ĉ→ Ĉ depending on θ such that, as functions, θΓ = fΓ f−1).

The space is equipped with a natural metric defined in roughly the same way as the
classical Teichmüller metric (the distance between two deformations is defined to
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be the log of the maximal dilatation of the composition of the two quasiconformal
homeomorphisms).

This definition was studied first by Bers [20, 22], Kra [71, 72] and Maskit [94,
95]; modern textbooks and monographs which discuss this theory include [100]
(essentially the whole book), [87, Chapter 5], and [63, Chapter 8]

The exact relationship between QH(Γ ) and Teich(Ω(Γ )/Γ ) is subtle to define
(see the references following the theorem), so we give only a rough version here.
This result is attibuted by Bers [22, §2.4] to Bers and Greenberg [21] and Marden
[85].

Theorem 7. Let Γ be a finitely generated non-elementary3 Kleinian group with
Ω(Γ ) 6= /0; let S = Ω(Γ )/Γ . Then there is a well-defined holomorphic surjection
p : Teich(S)→QH(Γ ). Further, there is a discrete subgroup M̂od(S)≤Mod(S) and
a natural bijection QH(Γ ) ≈ Teich(S)/M̂od(S) such that the two projection maps
agree. ut

In the case that Γ is geometrically finite (i.e. its quotient manifold arises as the
projection of a tiling of H3 by finite-sided hyperbolic polyhedra [98, VI]) , the group
M̂od(S) is the subgroup generated by Dehn twists along simple closed curves which
bound compression discs.

The torsion-free version of this theorem appears in [100] as Theorem 5.27 and
the following discussion. The proof given there actually works for the torsion case
as well, as long as we are careful to replace all manifold theorems and definitions
with the corresponding ‘orbi-theorems’ and ‘orbi-definitions’. Such a version of this
theorem is found as Theorem 5.1.3 of [87] (the proof is sketched as Exercise 5-35,
p.367ff).

In the case that a Kleinian group G is Fuchsian (that is it leaves a round disc ∆

in Ω(G) invariant—and hence acts as a group of hyperbolic isometries on ∆ , with
Λ(G) ⊆ ∂∆ , see the latter chapters of [16] and [98, V.G, IX, and X]) then the qua-
siconformal deformation space QH(G) is given the special name of quasi-Fuchsian
deformation space; a Kleinian group Γ is called quasi-Fuchsian if it is a quasicon-
formal conjugate of some Fuchsian group. The limit sets of quasi-Fuchsian groups
are contained in quasiconformal images of circles (called quasicircles) and the gen-
eral theory of these deformation spaces is fairly well-understood: for instance, see
[87, Chapter 4] and the (very accessible) [106]. The limit set of Fig. 1 is the limit set
of a quasi-Fuchsian group, and shows how intricate these quasicircles can become;
controling their large-scale geometry is one of the themes of our preprint [44], in
which we study how small quasi-deformations of limit sets modify the quotient sur-
face (see also Section 6.2 below).

3 An ‘elementary’ group is a Kleinian group G which is particularly simple, in the sense that
|Λ(G)| < ∞; basically this happens when most of the fixed points of group elements collide. We
do not need to worry so much since it turns out that Γρ is elementary iff ρ = 0, and this is excluded
from the Riley slice by Lemma 2. For more on elementary groups see [98, Chapter V] or [113,
§5.5].
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4.3 The Riley slice as a quasiconformal deformation space

In Section 2 and Section 3, we introduced the Riley slice R as a subset of the com-
plex plane C with no additional structure. However, this set was defined in a way
that seems at first glance to be compatible with holomorphic motions: if Γρ is free
and discrete with quotient surface a 4-times punctured sphere, then surely so is Γρ̃

for a small holomorphic motion ρ̃ of ρ? That this is the case is actually surprisingly
nontrivial to prove; we give full details in our preprint [45], and in this section we
give some of the history of the study of the Riley slice from a quasi-point of view.

The first mention that R is a quasiconformal deformation space which we can
find in the literature is in the proof of Theorem 1 of Lyubich and Suvorov’s 1988
paper [79], though the proof is only sketched; a more detailed proof along the same
lines can be found in Section 3.3 of our preprint [45]. Using this equivalence, they
prove that:

• R is connected and has connected complement—note that their Γ is our C \R
[79, Theorem 1];

• There are only two maximal parabolic conjugacy classes in Γρ for ρ ∈ R [79,
Lemma 1];

• The Riley slice is invariant under a particular dynamical system [79, Lemma 2],
c.f. [90], [92], [13], [44, Section 3], and our upcoming preprint [46];

• The set of ρ such that Γρ is non-discrete is dense in C\R [79, Theorem 2].

The same proof (again, only sketched) was given by Maskit and Swarup in 1989
[99, §1]; in this paper, they show that if ρ ∈ R and Ω(Γρ) 6= /0 then the Riemann
surface Ω(Γρ)/Γρ is either a 4-times punctured sphere, or a disjoint union of 3-
punctured spheres. Thus, since quasiconformally conjugate groups have homeomor-
phic quotient surfaces, the boundary ∂R contains either groups with empty ordinary
set, or groups with surface a pair of 3-punctured spheres. The groups in the latter
class are called the cusp groups; they are exactly the maximal cusps of the Bers de-
formation theory [20, 94, 97, 108]. The 1989 paper also shows that every group in
R is geometrically finite; thus we can apply the theorem relating the quasiconformal
deformation space with the Teichmüller space (Theorem 7), along with Example 2,
to see that R is homeomorphic to an (open) annulus—this follows from the obser-
vation that M̂od(Γρ) is generated by a single parabolic element [45, Corollary 3.9].

Finally we note that the Riley slice is not just a quasiconformal deformation
space, it is a quasi-Fuchsian deformation space: when ρ ∈ R∩R, the group Γρ is
Fuchsian. (A detailed discussion of this point may be found in Section 6.3.1 of [45].)

5 A geometric coordinate system

In this section we motivate and describe the Bers-Thurston deformation theory of
quasi-Fuchsian groups in the geometrically finite case (5.1), and then describe how
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the Riley slice is a concrete example of this theory via the results of Keen and Series
(5.2).

5.1 Measured laminations and cusps

Given a quasi-Fuchsian space F , there are two natural definitions for the boundary
∂F .

1. The Bers boundary, which is defined analytically as the boundary of a particular
embedding of F into a particular Banach space of Γ -automorphic forms (origi-
nally defined by Bers [20], see also [100, Section 4.2] and [87, §5.11.1]); and

2. the Thurston boundary, which is defined geometrically in terms of measured
laminations; this appears in [144], see also [100, Chapter 6] and [87, §5.11.2].

In this paper, we are interested in the Thurston boundary; and in this section
we give a vague intuitive description which will be sufficient for motivating the
Keen–Series theory in the next subsection. For motivation of our description of this
boundary, we will use one of the major conjectures of hyperbolic 3-manifold the-
ory posed by Thurston [141, Problem 11 in §6] as a very strong generalisation of
Mostow rigidity; namely, the ending lamination conjecture/theorem. This conjec-
ture was ultimately proved by Brock, Canary and Minsky [29], and see earlier work
of Minsky [104], in the tame case; that this is sufficient follows from the resolution
of Marden’s tameness conjecture (posed in [86], proved independently by Agol [3]
and Calegari and Gabai [33]).

Our exposition follows [87] (though see also [63, Chapter 14], [130, Section 4],
and [140]); we will explain all of the words used in the theorem statement after
giving it.

Theorem 8 (Ending lamination theorem). A hyperbolic 3-manifold whose funda-
mental group is finitely generated is uniquely determined by its topological type and
its end invariants.

Here, ‘topological type’ just means homeomorphism class. Thus the only thing we
need to explain is what we mean by ‘end invariant’. This consists of two things: an
end of the manifold, and a measured lamination on that end. An end of a 3-manifold,
roughly speaking, is an ideal boundary component of the manifold; in the Riley slice
interior (the main case which we are interested in), all groups are geometrically finite
and in this case all ideal ends actually ‘exist’ in the sense that they are just boundary
components in the usual sense (the components of the quotient Riemann surface).

The definition of a measured lamination requires more work. A geodesic lami-
nation—or simply lamination—on a surface S is a compact subset of intS which is
a union of complete disjoint geodesics (each geodesic is called a leaf of the lamina-
tion); an example of a lamination with infinitely many windings around the surface
is given in Fig. 11, and many other pictures are found in [100, Chapter 6]. A mea-
sured lamination is a pair (Λ ,µ) where Λ is a lamination, and µ is a transverse
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measure supported on Λ . The reader is not expected to be familiar with the ins-
and-outs of measure theory; we only need the general idea that a measure is ‘a
density which accumulates on curves when integrating’. (A good reference, though,
is Rudin’s second textbook [123].) In this case we wish to assign to every curve γ

which is not tangent to any leaf of Λ (‘transverse’) a number
∫

γ
dµ in a consistent

way (‘measure’). The set of measured laminations on S admits a natural topology
(the weak convergence topology) and the resulting topological space is denoted by
ML(S).

Fig. 11: A lamination of infinite length on the 4-times punctured sphere.

Example 3 (Pleated surfaces). Take a surface S and fold it along some geodesics so
that along each geodesic the folding angle is constant. If the union of the geodesics
forms a lamination Λ , then the pleating measure on Λ is the measure which assigns
to each curve on S (...which is not tangent to any of the folds...) the sum of the
folding angles of the folds which it crosses.4 We draw a Euclidean example with
three folds in Fig. 12. A very common way that one runs into pleated surface is by
considering the hyperbolic convex hull of the limit set of a Kleinian group; two very
nice visualisations of this have been produced by Brock and Dumas [31, 30].

An ending invariant of a Kleinian group G in the sense of Theorem 8 (in the
geometrically finite case...) is just a connected component Ω ∗ of Ω(G)/G together
with a measured lamination on Ω ∗.

We now proceed to describe the Thurston boundary of quasi-Fuchsian space.
A measured lamination (Λ ,µ) on a hyperbolic surface S has a natural lamination
length, defined to be the measure on S which is locally the product of µ (in the di-
rection locally transverse to leaves of Λ ) and the usual hyperbolic length measure
(in the direction locally parallel to Λ ). If we change the complex structure on S by
shrinking the length of (Λ ,µ) then (intuitively) the topological type of the surface
does not change until the length is pinched down to 0; neighbourhoods of the leaves
of Λ will turn into neighbourhoods of deleted points on the surface (if the leaves

4 That all this is well-defined is really non-trivial, see Thurston’s description [140, §8.6] and the
paper by Canary, Epstein, and Green [34].
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Fig. 12: A (Euclidean) pleated surface, with pleating locus (set of folds) consisting
of three geodesics. The red curve γ (oriented from 0 to 1) has measure θ1 + θ2−
θ2 +θ2 +θ3 = θ1 +θ2 +θ3 with respect to the induced measured lamination.

are discrete), and we have hit the boundary of the Teichmüller space of the surface.
It turns out that this process gives quasiconformal deformations of the underlying
group, and (if everything is well-behaved) the union of all the surfaces obtained in
this way forms a boundary of the deformation space (in the sense that these bound-
ary surfaces, together with the deformation space itself, form a compact set).

Now observe that all of the surfaces which we have produced on the boundary
are essentially different (they have different complex structures); thus, we have a
natural bijection between this boundary and the set of measured-laminations-up-to-
length: this latter set is usually called the space of projective classes of measured
laminations, PML(S).

All of this (the geometrically finite ending lamination theorem and the Thurston
compactification theory) gives the following ‘picture’ of the quasiconformal defor-
mation space F : it consists of a set of groups representing a family of surfaces,
where the surfaces are all of the same topological type and where deforming the
group slightly either changes the length of a distinguished set of geodesics on the
surface (this is a ‘radial’ deformation, towards the boundary) or changes from one
distinguished set of geodesics to another which is ‘close’ in the sense both of the
closeness of the physical set of geodesics and of the measure on the geodesics.
The boundary is the set of groups which parameterise those surfaces in which these
geodesics have been pinched to deleted points. There is a subtlety here, in the sense
that this procedure a priori will only produce the geometrically finite groups on the
boundary since a measured lamination might correspond to a geodesic of infinite
length, and so some normalisation needs to take place to make sense of ‘decreasing
the length’; in the case of the deformation space of a once-punctured torus, this is
explained in [66, §6] and in the case of the Riley slice we explain the process in
[45, §6.3–6.4]. The groups obtained by pinching down geodesics of finite length are
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called the cusp groups, and if their corresponding surfaces are unions of 3-punctured
spheres then they are called maximal cusps; by a result of McMullen [101], these
are dense in the boundary. In terms of the group theory, the geodesics are initially
represented by loxodromic elements (the elements arising in the group as so-called
Farey words), the pinching corresponds to deforming these elements so their trace
approaches −2, and at the cusps the elements become parabolic. This process is
studied in general in [20, 94, 97, 108]. The groups produced by pinching geodesics
of infinite length have geometrically infinite ends, and correspond to the non-cusp
points on the boundary; a picture of this case is found as Fig. 6.5 of [100] (in the
case of the 4-times punctured sphere, there are no finite ends after pinching: this can
be seen by looking at a generic infinite lamination, like Fig. 11).

5.2 The Keen–Series coordinate system

We now discuss the measured lamination theory in the specific case of the Riley
slice; this was developed by Keen and Series [67] with minor corrections by Komori
and Series [68]; some of the theory was not developed in detail in those papers as
it is similar to the case of the once-punctured torus moduli space (the Maskit slice)
which Keen and Series had studied earlier [66, 129]. A full account of the theory
may be found in our preprint [45], though we develop the elliptic case at the same
time which adds some difficulty for the reader.

In any case, the first main theorem is the following.

Theorem 9 ([67, Theorem 5.4]). There is a natural homeomorphism

Π :R→ R/2Z×R>0.

To prove this theorem, one first shows that PML(S0,4) is naturally homeomor-
phic to R/2Z (see e.g. Section 2 of [67] and Section 5 of [45]—each measured
lamination on the surface can be assigned a ‘sloping angle’ πθ and the homeomor-
phism sends Λ 7→ θ(Λ)) and then defines Π to be the map which sends ρ ∈R to the
pair (θ(Λ), l) where Λ is the lamination on R coming from the ending lamination
theorem (which can be found very concretely in this case: if H is the hyperbolic
convex hull of the limit set Λ(Γρ) in H3, then H/Γρ is a deformation retract of
H3/Γρ whose boundary is a pleated surface; the lamination Λ is the corresponding
measured lamination), and l is its lamination length. The continuity then follows
from various known results about continuity of functionals associated to measured
laminations, discussed for example in [65].

In the process of showing Theorem 9, Keen and Series show that the fibres of Π

in R corresponding to fixed angles in R/2Z are analytic curves in C (the pleating
rays, corresponding to pinching a single measured lamination) and in the case that
it is a lamination of finite hyperbolic length that is being pinched (equivalently, de-
forming along a fibre above Q/2Z) these curves are branches of the inverse image of
(−∞,−2) under a certain polynomial in one complex variable. We call these poly-
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nomials the Farey polynomials since they are very closely related to the sequences
in number theory named after Farey; see the paper [12], the monograph [11], and
our preprint [46].

A rough map of the Riley slice may be found in Fig. 13. Various people have pro-
duced computer-generated images of the coordinate system and the rational pleating
rays; for example Wright [55, Fig. 1] and Yamashita [11, Fig. 0.2b], [44, Fig. 1].

Fig. 13: A map of the Keen–Series coordinate system of the Riley slice.

We believe that the following problem is open.

Problem 1. Prove or disprove that Π is conformal.

If it is true that Π is conformal, then the coordinate lines of the Keen–Series co-
ordinate system are Teichmüller geodesics (see [43, §10.2] for an argument). We
think that this is probably not the case, however we make a specific closely related
conjecture. Precise definitions and various facts concerning quasigeodesics can be
found in [27]. Roughly, α is a quasigeodesic if it is the image of a geodesic β under
a map f which which admits constants λ and ε so that

1
λ

d(z,w)− ε ≤ d( f (z), f (w))≤ λd(z,w)+ ε for all z,w ∈ β ;

the map f is called a quasiisometry. Notice such maps need not even be continuous,
but they are injective and bilipschitz “at large scales”.

Conjecture 3. The rational pleating rays are quasigeodesics in the Teichmüller met-
ric.
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Remark 1. We note that similar structures and coordinates have been worked out in
detail for many other moduli spaces beyond the Maskit and Riley slices we have
mentioned above; for instance, the so-called diagonal slice of Schottky space [131],
the Earle embedding [69], and various other linear slices through complex Fenchel-
Nielsen coordinates for the deformation space of quasi-Fuchsian once-punctured
torus groups [70].

6 Our recent work

In this final section we announce some of our recent work on the Riley slice; this
section is primarily written for people familiar with the Riley slice theory and we
rely on the previous sections to provide historical and mathematical context.

6.1 Extension of the Keen–Series theory to the elliptic case

There are two natural ways to motivate the study of groups generated by two elliptic
elements rather than two parabolic elements.

1. A group Γρ for ρ ∈ R is a Schottky type group: there are two disjoint tangent
pairs of circles in Ĉ, say C1,C′1 and C2,C′2 (where Ci and C′i are tangent for each
i) such that X(C1)=C′1, Yρ(C2)=C′2, and X and Yρ send the inside of the ‘domain
circle’ to the outside of the ‘target circle’ (see e.g. [106, Chapter 4], [98, Exer-
cises IV.J.21 and VII.F.9], and [43, §3.5] for some properties of Schottky groups).
These groups arise naturally from the study of (classical) Schottky groups, where
the paired circles are assumed disjoint and the quotient is a handlebody, by push-
ing the circles together and hence deforming the corresponding groups (in fact,
by some work of Maskit [96], the Riley slice is a slice through the boundary of
the space of Schottky groups—hence the name). If this deformation is continued
and the circles are pushed through each other to form two pairs of transversely
intersecting circles, then the pairing elements become elliptic.

2. If one prefers to motivate the Riley slice via knot theory, it is natural to consider
knot orbifolds rather than knot complement manifolds; more precisely, given a
two-bridge knot k we may produce a manifold M which is a branched cover of
the knot complement where the knot outlines ‘portals’ through which one may
step between the different covering sheets; since π1(S3 \ k) is two-generated, we
can choose the orders of two of these portals (and then the rest are determined);
the covering induces an orbifold structure on the knot complement, where the
orbifold has a knotted singular locus in the shape of k. This is visualised in
Thurston’s talk Knots to Narnia [142], and more modern visualisation work has
been done by Brakke [24] and Sümmerman [139].
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The generalised setting is now the following (where Z/nZ denotes the cyclic
group of order n):

Definition 7. Let a,b ∈ N̂ := N∪{∞} with max{a,b} ≥ 3. Define Γ
a,b

ρ to be the
subgroup of PSL(2,C) generated by

X =

[
exp(πi/a) 1

0 exp(−πi/a)

]
,Yρ =

[
exp(πi/b) 0

ρ exp(−πi/b)

]
.

The Riley slice, which we will denote by Ra,b, is the set of ρ ∈ C such that Γ
a,b

ρ is
discrete, isomorphic to Z/aZ∗Z/bZ, and such that Ω(Γ a,b

ρ )/Γ
a,b

ρ is a sphere with
four cone points—two of order a and two of order b. When a or b is equal to ∞ the
cone points are punctures, or geometrically cusps, in the quotient surface.

By convention, we take πi/∞ := 0; with this definition, R∞,∞ is the classical
parabolic Riley slice. We draw pictures of various Riley slices (analogous to the
parabolic slice drawn in Fig. 3 above) in Fig. 14.

Only limited study of the elliptic case has been carried out to this point; for exam-
ple, the PhD thesis [149], and the study of arithmetic groups in [80]. We remedy this
in our preprint [45], where we justify why all of the topological theory mentioned
above in Section 4.3 carries through in the elliptic case, and carefully generalise the
Keen–Series coordinate system of Theorem 9 to the elliptic case. The main diffi-
culty is in replacing topological arguments with orbi-analogues, and generalising
various hyperbolic arguments from ideal polyhedra to polyhedra with vertices con-
tained in hyperbolic space. We also take the opportunity to give more detail than
Keen and Series gave in [67] (who gave only sketches of some proofs which were
similar to those found in their earlier paper on the Maskit slice [66]) and give more
detailed motivation via knot theory in order to make the theory more accessible to
non-experts.

Observing Figure 14 one is struck by the apparent continuous deformations of
these slices as the ‘variables’ a,b move. One is tempted to conjecture that that
there are natural quasiconformal deformations which transition between the vari-
ous slices. As these regions are defined dynamically or analytically (assuming the
density of roots of Farey polynomials, which seems true based on our computer cal-
culations but which we have been unable to verify) this seems likely but we have
not been able to establish this.

6.2 Open neighbourhoods of pleating rays

The theory of Keen and Series depends on deforming the limit sets of Kleinian
groups in a conformal way. More precisely, and as they note, the rational pleating
rays are curves along which the combinatorics of certain patterns of circles in the
limit set are preserved. Allowing small deformations off the rational pleating rays
also preserves these combinatorics; however, the circles now become quasicircles.
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(a) (2,2) (b) (2,3) (c) (2,4) (d) (2,∞)

(e) (3,2) (f) (3,3) (g) (3,4) (h) (3,∞)

(i) (4,2) (j) (4,3) (k) (4,4) (l) (4,∞)

(m) (5,2) (n) (5,3) (o) (5,4) (p) (5,∞)

(q) (6,2) (r) (6,3) (s) (6,4) (t) (6,∞)

(u) (∞,2) (v) (∞,3) (w) (∞,4) (x) (∞,∞)

Fig. 14: Riley slices for various cone point orders (a,b).
The (2,2) picture is simply an interval as any group generated by two elements of order 2 is

virtually abelian and can be deformed until it becomes elliptic.

In our preprint [44], we show that the large-scale geometry of these quasicircles is
controllable and that the resulting groups still lie in the Riley slice; thus we can con-
struct open neighbourhoods of the pleating rays in the Riley slice, using the Farey
polynomials that are used to construct the rays themselves; these open neighbour-
hoods have well-behaved boundary, which gives some control of the geometry of
the Riley slice boundary. More precisely, it is a result of Keen and Series that if α

is a rational pleating ray inRa,b, then there is a rational slope r/s and a Farey poly-
nomial pr/s such that for a suitable choice of branch of p−1

r/s, the curve α is given by

p−1
r/s((−∞,−2]) and p−1

r/s(−2) represents a cusp group in ∂Ra,b. Choosing the same

branch of p−1
r/s, we prove that
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p−1
r/s(H)⊂Ra,b, where H = {x+ iy : x≤−2, y ∈ R\{0}} ,

which gives a neighbourhood of the pleating ray that lies inside the Riley slice and is
in some sense tangent to the boundary—we display some of these neighbourhoods
in Fig. 15. This gives some precise information about regularity of the boundary of
the Riley slice.

Fig. 15: Neighbourhoods of pleating rays “tangent” toRa,b.

Because of the useful coarse description of R∞,∞ given by Lyndon and Ullman
(see Fig. 3 and [78]) a somewhat stronger result is true in the parabolic case [44]. We
have been unable to completely replicate their result in the case of groups generated
by two elliptics (we discuss this further in the paper).

In the same preprint we also give some dynamical properties of the Farey poly-
nomials, both for use in studying these neighborhoods and for their own interest;
we note that many of these properties were known to Lyubich and Suvorov [79], but
were not studied by them in detail. This theory extends to the elliptic case in a sim-
ilar way to the extension of the ‘round-circle’ Keen–Series theory, and the details
will appear in the final part of [45].

6.3 Farey polynomials

The Farey polynomials introduced by Keen and Series in [67] also extend to the
elliptic case, and we study their combinatorics in [46]. More precisely, we derive a
recursion for these polynomials (using results similar to those developed by Mum-
ford, Series, and Wright [106, p.277], see also [148]), show formal analogies with
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the Chebyshev polynomials and other combinatorial objects, and give some possible
applications to the approximation of the Riley slice boundary.
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