
Pachner’s Theorem

Stefan Friedl and Julian Hannes

Abstract Pachner’s Theorem is a purely combinatorial theorem which plays an im-
portant role in low-dimensional topology. We give a topology-free self-contained
proof of Pachner’s Theorem and we outline why Pachner’s Theorem is such an es-
sential tool in low-dimensional topology.

1 Introduction

We start out with our definition of an abstract simplicial complex.

Definition 1.

1. An abstract simplicial complex is a pair K = (V,S), where V is a finite set,
and S is a subset of the power set P(V ) of V satisfying the following three
conditions:

(a) Each element s ∈ S is a non-empty subset of V.
(b) Given s ∈ S and t ⊆ s with t 6=∅, we have t ∈ S.
(c) For all v ∈V, the singleton {v} lies in S.

We call elements in V vertices of K, elements in S simplices of K, and we
refer to V as the vertex set of K and to S as the simplex set of K.

2. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes. A simplicial
map from K to L is a map f : V →W on the vertex sets such that for all s ∈ S
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we have f (s) := { f (v)|v ∈ s} ∈ T. Such a simplicial map is called a sim-
plicial isomorphism if it is a bijection on the vertex sets and on the simplex
sets. (One way to view simplicial isomorphisms is simply as renaming the
vertices, of course in a way that fully preserves all the simplices.)

As an example we introduce two families of abstract simplicial complexes which
play an important role throughout. Let n ∈N0. We consider the set Vn := {0, . . . ,n}.
We set

Dn := (Vn,P(Vn)\{∅}) (standard simplicial n-disk),
Sn := (Vn+1,P(Vn+1)\{∅,Vn+1}) (standard simplicial n-sphere).

We furthermore define D−1 and S−1 to be the empty abstract simplicial complex
(∅,∅).
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Fig. 1: A visualisation of the abstract simplicial complexes D2 and S1

In Chapter 4 we introduce the purely combinatorial notion of a stellar subdivision
σs of an abstract simplicial complex K along a simplex s. Loosely speaking this is
defined as follows: we add the barycenter of s to the vertex set and we subdivide
all simplices that have s as a face accordingly. In Figure 2 we illustrate the stellar
subdivision along a 1-dimensional simplex.
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Fig. 2: Stellar subdivision at a 1-simplex

Two abstract simplicial complexes are called stellar equivalent if one can go
from one to the other through a finite sequence of stellar subdivisions, inverses of
stellar subdivisions and simplicial isomorphisms.

To any abstract simplicial complex K one can associate its topological realization
|K| and given two such topological realizations there is a natural notion of a PL-
homeomorphism between them, which is now a topological notion. We do not give
the precise definitions, instead we refer to [Gla70, Lic99, Fri23] for details. The
following theorem, which we do not use otherwise, now gives one reason why the
notion of stellar equivalence is so important.
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Theorem 1. (Alexander-Newman Theorem) Let K and L be two abstract simpli-
cial complexes. The following two statements are equivalent:

(1) The abstract simplicial complexes K and L are stellar equivalent.
(2) The topological realizations |K| and |L| are PL-homeomorphic.

Proof. The “(1)⇒(2)”-direction follows easily from the definitions. The much
harder “(2)⇒(1)”-direction was first proved by James Alexander [Ale30, Theorem
15:1] in 1930, building on work of Max Newman [New26]. More modern exposi-
tions of the proof are given in [Gla70, Theorem II.17] and in [Lic99, Theorem 4.5].

In Chapter 4 we introduce the purely combinatorial notion of a closed combinatorial
n-manifold. In a nutshell a closed combinatorial n-manifold is an abstract simplicial
complex K such that for every vertex v the link Lk(K,v) is stellar equivalent to the
standard simplicial n-sphere Sn.

Next, let K = (V,S) be a closed combinatorial n-manifold. Furthermore let s be a
k-simplex such the link Lk(K,s) is simplicially isomorphic to the standard simplicial
(n− k− 1)-sphere Sn−k−1 and such that the vertices of Lk(K,s) do not form a k-
simplex of K. Given such s we introduce in Chapter 6 the bistellar move along s to
obtain a new closed combinatorial n-manifold τsK. At this point we do not give the
precise definition, but we hope that Figure 3 gives the flavor of the definition.

K
s1

Lk(K,s1)∼=si S1

τs1K

s2

τs2K

Lk(K,s2)∼=si S0
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K

Lk(K,s4) is not a standard sphere

s4
τs3K

simplex s3 with Lk(K,s3)∼=si S−1

s3

Fig. 3: Examples for three bistellar moves and one impossible move
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We say that two closed combinatorial n-manifolds are bistellar equivalent if one
can go from one to the other through a finite sequence of bistellar moves and sim-
plicial isomorphisms. It follows immediately from the definitions that if two closed
combinatorial n-manifolds are bistellar equivalent, then they are also stellar equi-
valent. Amazingly the converse to this statement also holds:

Theorem 2. (Pachner’s Theorem) Let K = (V,S) and K′ = (V ′,S′) be closed com-
binatorial n-manifolds. Then K and K′ are bistellar equivalent if and only if they
are stellar equivalent.

The theorem was first proved by Udo Pachner [Pac91] in a seminal paper. Pach-
ner’s original paper is a highly cited and extremely influential paper in combinat-
orial topology. The significance of Pachner’s theorem lies in the fact that given an
n-dimensional combinatorial manifold there are infinitely many different types of
stellar moves, whereas there are only n+1 different type of bistellar moves.

The following combines some of the previous results with results on the topology
of smooth manifolds.

Theorem 3. Let n ∈ N. There exist natural bijections between the following sets:

(1) Closed combinatorial n-manifolds up to bistellar equivalence.
(2) Closed combinatorial n-manifolds up to stellar equivalence.
(3) Closed PL-manifolds up to PL-homeomorphisms.

If n ∈ {1, . . . ,6} there exists also a bijection of (1), (2) and (3) to the following set:

(4) Closed smooth n-manifolds up to diffeomorphism.

Proof. The equivalence of (1) and (2) is precisely Pachner’s Theorem 2. The equi-
valence of (2) and (3) follows from the Alexander-Newman Theorem 1. The equi-
valence of (3) and (4) in dimensions ≤ 6 is a consequence of many deep results in
geometric topology, we refer to [Cer68, p. IX] and [Sco05, p. 220] for an exposition
and precise references.

Theorem 3 gives us an approach to defining invariants of closed n-dimensional
PL-manifolds (or equivalently smooth manifolds for n≤ 6): we “just” need to define
an invariant for closed n-dimensional stellar manifolds that is invariant under the n+
1 bistellar moves. This approach to defining invariants has been used by Vladimir
Turaev and Oleg Viro [TV92] and John Barrett and Bruce Westbury [BW96] in the
3-dimensional setting and by Christopher Douglas and David Reutter [DR18] in the
4-dimensional setting.

Organization

Chapters 2 and 3 introduce the concept of abstract simplicial complexes, as well as
some of the standard notions related to them. Their main goal is to provide an over-
view for people who are unfamiliar with these concepts. An effort will be made to
keep everything free of topology, save for the pictures that illustrate the definitions.
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In Chapter 4, we turn our attention to introducing stellar equivalence, and follow
it up with an introduction to combinatorial balls, spheres, and combinatorial mani-
folds. A lot of the properties whose proofs are commonly omitted in literature are
proved in great detail.

We will use the results of Chapter 4 in Chapter 5 to introduce the concept of
starrability, and subsequently prove that all combinatorial balls are starrable.

At this point, the last two key ingredients required for the proof of Pachner’s
theorem, namely bistellar moves and elementary shellings, will be introduced in
Chapter 6. We also provide proof for some statements that will play a vital role in
proving Pachner’s theorem in Chapter 7.

Remark

These notes are based on the master thesis of the second author and on lecture
notes by the first author. Our goal was to write a detailed topology-free completely
combinatorial proof of Pachner’s theorem. In the near future we hope to implement
this proof in the proof assistant lean.

Acknowledgments

We wish to thank Lars Munser for crucial help in proving a particular lemma. We
also wish to thank the referee for helpful feedback. The first author was supported
by the SFB 1085 “higher invariants” funded by the DFG.

2 Preliminaries

In order to formulate and consequently prove the main results, these first two
chapters aim to introduce some of the basic concepts about simplicial complexes.
Most of the definitions and lemmas in this chapter are included for rigour’s sake,
and can therefore be skipped by readers who are already familiar with the notion of
(abstract) simplicial complexes. The less well-versed reader is invited to come up
with their own examples in order to acquaint themselves with the definitions.

The following definitions and conventions play a major role in the remainder of
these notes. It may look like a lot, but all of them are pretty much what one would
naively define them as.

Definition 2. Let K = (V,S) be an abstract simplicial complex.

(1) The dimension of a simplex s ∈ S is defined to be



6 Stefan Friedl and Julian Hannes

dims := #s−1 ∈ N0.

The dimension of K is defined as

dimK := sup
s∈S

dims ∈ N0

if K is not the empty abstract simplicial complex (∅,∅), and dimK :=−1 if it
is.

(2) If t ∈ S is a simplex and s⊆ t is a non-empty subset, then we call s a face of t.
(3) An abstract subcomplex of K is an abstract simplicial complex L = (W,T ) such

that we have inclusions W ⊆V and T ⊆ S.
(4) Let n ∈ N0. The n-skeleton of K, defined as

Kn :=
(

V,{s ∈ S : dims≤ n}
)
.

This is an abstract subcomplex of K. For readers unfamiliar with abstract sim-
plicial complexes, it can be a worthwhile exercise to prove this fact.

The following is another important example of abstract subcomplexes.

Remark 1. Let K = (V,S) be an abstract simplicial complex, and let s ∈ S be a k-
simplex. Then we often view (s,P(s) \ {∅}) as an abstract subcomplex, and thus
as an abstract simplicial complex in its own right, which we also refer to as s by an
abuse of notation. It is furthermore simplicially isomorphic1 to Dk.

3 Some More Constructions on Abstract Simplicial Complexes

Before we can start with the actual topics, we need more methods of constructing
new abstract simplicial complexes from existing ones. We start out with an operation
that at first may seem rather “out of the blue” but will shortly become one of the core
concepts of these notes.

Definition 3.

1. Let V and W be two sets. We define their disjoint union as

V tW := (V ×{1})∪ (W ×{2})

and we view V and W as subsets of V tW in the obvious way.
2. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes. We define their

join to be the abstract simplicial complex

K ∗L :=

(
V tW,

{
st t

∣∣∣∣∣s ∈ S∪{∅}, t ∈ T ∪{∅},
at least one of s and t non-empty

})
.

1 This concept will be defined in the subsequent definition.
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Pictorially, the join operation means “connecting every point of K to every point
of L”. However, we are technically talking about an operation on abstract simplicial
complexes so the reader should take that intuition as well as the following suggestive
pictures with the usual grain of salt.
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D1 D0 ∗D1 D1 D1 D1 ∗D1D0

Fig. 4: What one might imagine the joins D0 ∗D1 and D1 ∗D1 to look like.

Remark 2. Many an author will move on to say that the join operation is clearly
associative and commutative. However, one has to be careful when taking disjoint
unions as it is only commutative up to a bijection. Therefore, it is only reasonable
to claim that the join operation is commutative up to a simplicial isomorphism.
However, since this would be quite a hassle, we will ignore this problem for the
remainder of these notes, and only take joins of abstract simplicial complexes whose
vertex sets are disjoint already. In that case, commutativity and associativity follow
quite easily from the definition.
It also follows immediately from the definition that the empty complex (∅,∅) is
a neutral element with respect to taking joins, i.e., that for any abstract simplicial
complex K, we have K ∗ (∅,∅) = K.

The following elementary statement will be used a lot, often without even expli-
citly mentioning it. Its proof is an easy yet refreshing exercise in set theory.

Lemma 1. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes. Then

dim(K ∗L) = dimK +dimL+1.

Recall that we had defined the dimension of the empty complex (∅,∅) to be −1.

Proof. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes. If one of
K or L is the empty complex, then the equation is a tautology. Now assume neither
K nor L are empty. Denote by k and l the dimensions of K and L, respectively. By
definition, that means there is a simplex s ∈ S with #s = k+1, and a simplex t ∈ T
with #t = l +1 and no simplices in S or T that are of higher dimension than s or t,
respectively. But then

#(st t) = #s+#t = k+ l +2,

and dim(st t) = #(st t)−1 = k+ l+1, and there are no simplices in StT that are
of higher dimension. Therefore, dim(K ∗L) = dimK +dimL+1.

Remark 3. There are natural injective simplicial maps K→K ∗L and L→K ∗L. We
will use these maps to view K and L as abstract subcomplexes of K ∗L. Looking at
Figure 4 above, it should become clear what we mean by that.
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One important example for joins is the cone of an abstract simplicial complex.

Example 1. Let K = (V,S) be an abstract simplicial complex. We define the cone of
K to be

Cone(K) := D0 ∗K,

where D0 is the abstract simplicial complex ({0},{{0}}) that we had defined
back in Chapter 2. From the remark above, it follows that we can view K as
an abstract subcomplex of Cone(K). Furthermore, it follows from Lemma 1 that
dimCone(K) = dimK +1.

Definition 4. Let K = (V,S) be an abstract simplicial complex, let s ∈ S be a sim-
plex. We define the following abstract subcomplexes:

St(K,s) :=
( ⋃

t∈S, s⊆t
t, {t ∈ S|s∪ t ∈ S}

)
Lk(K,s) :=

( ⋃
t∈S s⊆t

t \ s, {t ∈ S|s∪ t ∈ S and s∩ t =∅}
)

K \ S̊t(K,s) :=

{
(V \{v},{t ∈ S|s * t}), if s = {v} is a 0-simplex
(V,{t ∈ S|s * t}), else

∂ s :=

{
(∅,∅), if s is a 0-simplex
(s,P(s)\{∅,s}), else

They are called the (closed) star of s in K, the link of s in K, the complement2 of the
star of s in K, and the boundary of the simplex s, respectively.

The sketches below show some of the definitions. For better understanding, the
reader could go ahead and draw their own abstract simplicial complexes. Note that3

St(K,s)∩
(
K \ S̊t(K,s)

)
= Lk(K,s).

This next lemma is of technical nature and is used every so often throughout
these notes.

Lemma 2. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes, and let
s ∈ S be a simplex. Then we have

(1) L∗Lk(K,s) = Lk(K ∗L,s),
(2) L∗St(K,s) = St(K ∗L,s), and
(3) L∗

(
K \ S̊t(K,s)

)
= (K ∗L)\ S̊t(K ∗L,s),

2 It is important to remember that K \ S̊t(K,s) is simply a notation for what one might pictorially
draw as the closure of the complement. By itself, “S̊t(K,s)” is in no way an abstract simplicial
complex!
3 The intersection of abstract simplicial complexes will be defined shortly.
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K \ S̊t(K,s)

s

St(K,s)

Lk(K,s)

Fig. 5: Star, link, and complement of the star of a 0-simplex

Proof. For the equality involving links, we calculate on the simplex sets

Lk(K∗L,s)=

{
t tu

∣∣∣∣∣t ∈ S∪{∅},u ∈ T ∪{∅},(t tu)∩ s =∅,(t tu)∪ s ∈ StT,

at least one of t and u non-empty

}

Now, we use the fact that s is a simplex of K to simplify the conditions, namely we
can simplify (t tu)∩ s =∅ to t ∩ s =∅, and (t tu)∪ s ∈ StT to t ∪ s ∈ S. Doing
so yields

Lk(K∗L,s)=

{
t tu

∣∣∣∣∣t ∈ S∪{∅},u ∈ T ∪{∅}, t ∩ s =∅, t ∪ s ∈ S,

at least one of t and u non-empty

}
=L∗Lk(K,s).

The proof of the other two equalities follows essentially the same strategy.

Since working with links in joins is so much fun, we also formulate the following
statement, which will be very useful later on.

Lemma 3. Let K = (V,S) and L = (W,T ) be abstract simplicial complexes, and let
s ∈ S and t ∈ T be simplices. Then we have

Lk(K ∗L,s∗ t) = Lk(K,s)∗Lk(L, t).

Proof. We perform the following elementary calculation

Lk(K ∗L,s∗ t) = {u ∈ K ∗L|u∩ (st t) =∅,u∪ (st t) ∈ StT}=
= {u1tu2 ∈ K ∗L|(u1tu2)∩ (st t) =∅,(u1tu2)∪ (st t) ∈ StT}=
= {u1 ∈ S|u1∩ s =∅,u1∪ s ∈ S}∗{u2 ∈ T |u2∩ t =∅,u2∪ t ∈ T}=
= Lk(K,s)∗Lk(L, t).ut
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The union and intersection of abstract simplicial complexes are exactly what one
would expect it to be, to the point where most authors do not even bother defining
them.

Definition 5. Let K = (V,S) and L = (W,T ) be simplicial complexes. Their union
is defined as the abstract simplicial complex4

K∪L := (V ∪W,S∪T ),

their intersection as
K∩L := (V ∩W,S∩T ).

The following lemma states a sort of distributivity law for joins with unions and
intersections. We will not mention it every time we use it.

Lemma 4. Let K = (V,S), L1 = (W1,T1), and L2 = (W2,T2) be abstract simplicial
complexes. Then we have

K ∗ (L1∪L2) = K ∗L1∪K ∗L2

and
K ∗ (L1∩L2) = K ∗L1∩K ∗L2.

Proof. We leave this proof as an exercise to the reader.

The following definition is our way to create vertices that are not in a given
abstract simplicial complex.

Definition 6. Let K = (V,S) be an abstract simplicial complex, let s ∈ S be a sim-
plex. We define the barycentre of s to be s := 1

#s ∑v∈s v ∈ RV .

For the remainder of these notes, the following slogan works: “If something is un-
derlined, it is a barycentre and therefore a 0-simplex not in the vertex set of whatever
abstract simplicial complex we are currently working with.” Pictorially, we draw the
barycentre of a simplex at the actual “physical” barycentre of the simplex.

4 Stellar Moves and Combinatorial Manifolds

Having finished two chapters that were riddled with definitions and conventions,
we now start actually proving statements. This chapter loosely follows the approach
pursued by Lickorish (cf. [Lic99, Chapter 3]), but in much more detail, and with an
added focus on mathematical rigour.

We start out with the following definition, the second half of which is mostly
about semantics.

4 Note that here, we explicitly do not ask for the vertex (or simplex) sets to be disjoint.
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Definition 7. Let K = (V,S) be an abstract simplicial complex, let s ∈ S be a sim-
plex. We call the abstract simplicial complex5

σsK :=
(

K \ S̊t(K,s)
)
∪ s∗∂ s∗Lk(K,s)

the abstract simplicial complex obtained from K by stellar subdivision at s. We also
refer to the operation of going from K to σsK as a stellar subdivision.
If an abstract simplicial complex K′ is obtained from K via a stellar subdivision,
then we say K is obtained from K′ via a stellar weld, and the operation of going
from K′ to K is called likewise.
A stellar move is either a stellar subdivision or a stellar weld.

The intuition one should have about stellar subdivision is, at least for simplices of
dimension at least 1, to add a vertex at the centre of that simplex, and subsequently
split its entire star along that point in order for it to “become a simplicial complex
again.” If that description seems confusing at first, the reader is invited to refer to
Figures 2 in the introduction and Figure 6 below, or come up with and draw their
own examples.
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Fig. 6: Stellar subdivision at a 2-simplex

It follows immediately from the definition that stellar subdivision at a 0-simplex
creates an abstract simplicial complex that is simplicially isomorphic to the original
complex.

Definition 8. Let K = (V,S) and K′ = (V ′,S′) be abstract simplicial complexes. We
call K and K′ stellar equivalent if there exists a sequence Ki = (Vi,Si), i = 1, . . . ,n,
such that K1 = K, Kn = K′, and for each i ∈ {1, . . . ,n−1} we have that Ki+1 is
a stellar subdivision of, a stellar weld of, or simplicially isomorphic to, Ki. This
is clearly an equivalence relation, and we write K ≈st K′ if K and K′ are stellar
equivalent.

Now that we have some shiny new definitions, we want to put them to use. The
following lemma probably comes as no big surprise, and might be used in the future
without explicit mention.

Lemma 5. Let K, K′, L, and L′ be abstract simplicial complexes. If K ≈st K′ and
L≈st L′, then K ∗L≈st K′ ∗L′.

5 Note that while the barycentre s is inspired by the topological setting, it is ultimately just a
natural way to choose a vertex that is not already in V. Most authors just define it the latter way.
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Proof. From the commutativity of the join and the fact that joins clearly commute
with simplicial isomorphisms it follows that it suffices to show that for abstract
simplicial complexes K = (V,S) and L = (W,T ), and a simplex s ∈ S, we have the
equality

(σsK)∗L = σs(K ∗L).

By definition and using Lemma 4 and Lemma 2 (1) and (3), one calculates

σs(K ∗L) = (K ∗L)\ S̊t(K ∗L,s)︸ ︷︷ ︸
=(K\S̊t(K,s))∗L

∪s∗∂ s∗Lk(K ∗L,s)︸ ︷︷ ︸
=Lk(K,s)∗L

=

=
(

K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s)
)
∗L =

= (σsK)∗L.

This concludes the proof.

Next, we want to take a look at abstract simplicial complexes that have an espe-
cially nice relationship with stellar equivalences.

Definition 9. Let K = (V,S) be an abstract simplicial complex, let n ∈ N0.

(1) We call K a combinatorial n-ball if K ≈st Dn.
(2) We call K a combinatorial n-sphere if K ≈st Sn.
(3) We call K a combinatorial n-manifold if for every vertex v∈V, its link Lk(K,v)

is a combinatorial (n−1)-ball or a combinatorial (n−1)-sphere.

The reader is invited to refer to Figure 7 below in order to acquaint themselves
with the definition of a combinatorial manifold. We leave the formal proof that this
abstract simplicial complex is a combinatorial manifold to the reader.

K

Lk(K,v2)≈st S1Lk(K,v1)≈st D1

v2
v1K

Fig. 7: A combinatorial 2-manifold with the different types of links

Lemma 6. Let n ∈ N0, then Dn and Sn are combinatorial n-manifolds.

In order to allow the reader to grow used to this topic, we shall be especially
thorough in proving this statement.

Proof. Let v be a vertex of Dn. Its link is by definition the subcomplex of Dn that
consists of all simplices whose union with {v} is again a simplex and whose inter-
section with {v} is empty. Since the simplex set of Dn is just P({0, . . . ,n})\{∅},
it follows that
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Lk(Dn,v) =
(

Vn \{v},P
(
Vn \{v}

)
\{∅}

)
,

which is simplicially isomorphic to Dn−1. But by definition, a simplicial isomorph-
ism is in particular also a stellar equivalence, so the link of v is in fact a combinat-
orial (n−1)-ball.
Now let v be a vertex of Sn. Using the same logic as before, we arrive at the conclu-
sion that the link of v in Sn is given by

Lk(Sn,v) =
(

Vn+1 \{v},P
(
Vn+1 \{v}

)
\
{
∅,Vn+1 \{v}

})
,

where we had to exclude Vn+1 \{v} as a simplex because Vn+1 = {v}∪ (Vn+1 \{v})
is not a simplex of Sn. But now we can, analogously to the case of Dn, write down
a simplicial isomorphism from Lk(Sn,v) to Sn−1, therefore the link of v is in fact a
combinatorial (n−1)-sphere.
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Lk(S2,v)Lk(D3,v)
v v

Fig. 8: The links of a vertex in D3 and S2 look a lot like D2 and S1

In order to get used to the concept of combinatorial balls and spheres, we start
out by proving the following lemma about their behaviour under the join operation.

Lemma 7. Let m,n ∈ N0, and let K and L be abstract simplicial complexes. Then
the following are true.

(1) If K is a combinatorial m-ball and L is a combinatorial n-ball, then K ∗L is a
combinatorial (m+n+1)-ball.

(2) If K is a combinatorial m-sphere and L is a combinatorial n-sphere, then K ∗L
is a combinatorial (m+n+1)-sphere.

(3) If K is a combinatorial m-ball and L is a combinatorial n-sphere, then K ∗L is
a combinatorial (m+n+1)-ball.

Proof. Let m,n ∈ N0, and let K and L be abstract simplicial complexes.

(1) Assume K ≈st Dm and L≈st Dn. From Lemma 5, it follows that

K ∗L≈st Dm ∗Dn.

We can give an explicit simplicial isomorphism from Dm ∗Dn to Dm+n+1 as
follows6

6 Remember that the disjoint union of two sets A and B is defined as ({0}×A)∪ ({1}×B).
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{0}×{0, . . . ,m}∪{1}×{0, . . . ,n}→ {0, . . . ,m+n+1}
(0, i) 7→ i

(1, i) 7→ m+ i+1

Since simplicial isomorphisms are stellar equivalences, this implies that K ∗L
is a combinatorial (m+n+1)-ball.

(2) Assume K ≈st Sm and L≈st Sn. As in the proof of (1), it follows from Lemma 5
that K ∗L ≈st Sm ∗ Sn. It remains to show that Sm ∗ Sn ≈st Sm+n+1. For this, we
inductively prove that for any k ∈ N0, we have

Sk ≈st S0 ∗ · · · ∗S0︸ ︷︷ ︸
(k+1)-times

.

The case k = 0 is a tautology. Now let k ∈ N. Let s = {0, . . . ,k} be one of the
k-simplices of Sk. Now consider

σsSk = Sk \ S̊t(Sk,s)︸ ︷︷ ︸
={k+1}∗∂ s

∪s∗∂ s∗Lk(Sk,s)︸ ︷︷ ︸
=(∅,∅)

= ({k+1}∪ s)︸ ︷︷ ︸
∼=siS0

∗ ∂ s︸︷︷︸
=Sk−1

∼=si S0 ∗Sk−1.

Applying the induction hypothesis yields

Sk ≈st S0 ∗Sk−1 ≈st S0 ∗ · · · ∗S0︸ ︷︷ ︸
(k+1)-times

.

This result implies that Sm ∗Sn is stellar equivalent to the join of

(m+1)+(n+1) = m+n+2

copies of S0, but so is Sm+n+1. In Figure 9, the idea behind the induction step is
shown for k = 2. It may not look like it, but it works the same for all dimensions,
as the calculation above shows.

��
��
��

��
��
��

S2
σsS2

s
∼=si

S1 ∗S0

Fig. 9: The subdivision of S2 is simplicially isomorphic to the join S1 ∗S0

(3) Assume K ≈st Dm and L ≈st Sn. As above, this implies that K ∗L ≈st Dm ∗ Sn,
and it suffices to show Dm ∗Sn ≈st Dm+n+1. We first show that D0 ∗Sn ≈st Dn+1.
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For this, let s :=Vn+1 = {0, . . . ,n+1} be the maximal simplex of Dn+1. Then7

σsDn+1 = Dn+1 \ S̊t(Dn+1,s)︸ ︷︷ ︸
=(∅,∅)

∪s∗ ∂ s︸︷︷︸
=Sn

∗Lk(Dn+1,s)︸ ︷︷ ︸
=(∅,∅)

∼=si D0 ∗Sn.

Now we can use the result from part (1) to calculate

Dm ∗Sn ∼=si Dm−1 ∗D0 ∗Sn︸ ︷︷ ︸
≈stDn+1

≈st D(m−1)+(n+1)+1 = Dm+n+1,

which concludes the proof of the third statement.

Thus, all three statements have been proved.

The following proposition aims to summarise two nice properties of combinat-
orial manifolds. Both the statement and its proof are based on [Lic99, Lemma 3.2],
however steps were taken to fill in some of the gaps.

Proposition 1. Let n ∈ N0, and let K = (V,S) be a combinatorial n-manifold. Then
the following two statements hold true:

(1) For any k-simplex s ∈ S, its link Lk(K,s) is a combinatorial (n− k−1)-ball or
a combinatorial (n− k−1)-sphere.

(2) If K′ = (V ′,S′) is an abstract simplicial complex that is stellar equivalent to K,
then K′ is a combinatorial n-manifold.

Remark 4. It shall be stressed that somewhat counter-intuitively, the second state-
ment does not immediately follow from the definitions. In the future, however, we
use part (2) without explicitly mentioning it.

We need the following technical lemma.

Lemma 8. Let K = (V,S) be an abstract simplicial complex, let s ∈ S be a simplex.
If t ⊆ s is a face of s, then we have the equality

Lk(K,s) = Lk(Lk(K, t),s\ t) .

Proof. If s = t, then the equality holds since we had set the link of the empty set in
an abstract simplicial complex to be that complex. Therefore, we now assume that t
is a proper face of s.
We prove this claim set-theoretically for the simplex sets

Lk
(

Lk(K, t),s\ t
)
=
{

u ∈ Lk(K, t)
∣∣u∩ (s\ t) =∅∧u∪ (s\ t) ∈ Lk(K, t)

}
=

= {u ∈ S|u∩ t =∅∧u∩ (s\ t) =∅∧u∪ s ∈ S}=
= {u ∈ S|u∩ s =∅∧u∪ s ∈ S}=
= Lk(K,s).ut

7 Both Dn+1 \ S̊t(Dn+1,s) and Lk(Dn+1,s) are empty because the star of s is already all of Dn+1.
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Lk(K,v)K
v s

t

Lk(Lk(K,v), t)

t

Lk(K,s)

Fig. 10: Sketch of Lemma 8

Now that this is out of the way, we can turn to the proof of Proposition 1.

Proof. We perform induction on the dimension n. The case n = 0 is rather trivial: a
combinatorial 0-manifold is a finite collection of 0-simplices, because every vertex
v ∈ V has an empty link Lk(K,v), so K cannot have any 1-simplices. Since every
simplex is a 0-simplex, the first property follows immediately from the definition of
a combinatorial manifold. The second property follows from the fact that any stellar
move on a 0-simplex is trivial, therefore the stellar equivalence between K and K′ is
essentially a simplicial isomorphism, which restricts to the links and therefore turns
any link in K′ into a combinatorial (−1)-ball.
Now assume that K is a combinatorial n-manifold for some n ∈N, and both (1) and
(2) are true for dimensions less than n.

(1) Let s ∈ S be a k-simplex of K. If k = 0, then (1) follows immediately from the
definition since any 0-simplex is a vertex. If k > 0, we write s = {v}t t, for v a
vertex of s and t := s\{v}. Note that t is a (k−1)-simplex of K. From Lemma
8, we obtain that

Lk(K,s) = Lk(Lk(K,v), t) .

Since K is a combinatorial n-manifold, the link Lk(K,v) is a combinatorial
(n−1)-ball or a combinatorial (n−1)-sphere. By Lemma 6 and property (2), in
dimension n−1, this implies that Lk(K,v) is a combinatorial (n−1)-manifold.
Now we can use property (1), in dimension n−1, to obtain that Lk(Lk(K,v), t)
is a combinatorial ball or a combinatorial sphere of dimension(

(n−1)︸ ︷︷ ︸
dimLk(v)

−(k−1)︸ ︷︷ ︸
dim(t)

−1
)
= (n− k−1).

Therefore, it follows from the claim that Lk(K,s) is a combinatorial (n−k−1)-
ball or a combinatorial (n− k− 1)-sphere. Since s was chosen arbitrarily, this
concludes the proof of (1) in dimension n.

(2) Clearly, an abstract simplicial complex that is simplicially isomorphic to a com-
binatorial n-manifold is itself a combinatorial manifold. Thus, it suffices to
show that if K′ = σsK for some k-simplex s ∈ S and K is a combinatorial mani-
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fold, then K′ is a combinatorial manifold. For this, let v ∈V ′ be a vertex of K′.
We consider the following cases8:

Case 1: v /∈ St(K,s). In this case, it follows from the definition of stellar subdivision
that we have the equality Lk(K′,v) = Lk(K,v), because the stellar subdi-
vision σs does not change the abstract simplicial complex outside of the
star of s. Since K is a combinatorial n-manifold, the link Lk(K,v) is a com-
binatorial (n− 1)-ball or a combinatorial (n− 1)-sphere, and hence so is
Lk(K′,v).

Case 2: v ∈ Lk(K,s). In this case, we know that s ∈ Lk(K,v). It follows from set
theory, similar to the arguments used at the end of chapter 3, that

Lk(K′,v)∼=si σs Lk(K,v).

In other words, a stellar move connects the links of v in K and K′, respect-
ively. Therefore, Lk(K,v) is a combinatorial (n−1)-ball or a combinatorial
(n−1)-sphere if and only if Lk(K′,v) is.

Case 3: v ∈ s. We let t := s \ {v}, thus s = {v} ∗ t. Just as in the second case, it
follows that Lk(K′,v)∼=si σt Lk(K,v). Therefore, the links again differ by a
stellar move.

Case 4: v = s. By definition of K′ = K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s), we have

Lk(K′,s) = ∂ s∗Lk(K,s).

Again, Lk(K,s) is a combinatorial (n− k−1)-ball or a combinatorial (n−
k−1)-sphere by property (1), in dimension n. But since ∂ s is the boundary
of a k-simplex, it is simplicially isomorphic to Sk−1, and thus in particular
a combinatorial (k− 1)-sphere. By Lemma 7 (2) and (3), we obtain that
Lk(K′,s) is a combinatorial ball or a combinatorial sphere of dimension
(k−1)+(n− k−1)+1 = n−1.

In each of the cases, Lk(K′,v) is a combinatorial (n−1)-ball or a combinatorial
(n−1)-sphere, and therefore, K′ is a combinatorial manifold.

This concludes the proof by induction.

Next, we shall define the boundary of a combinatorial manifold.

Definition 10. Let K = (V,S) be a combinatorial n-manifold. By Proposition 1, we
know that the link of every simplex is a combinatorial ball or a combinatorial sphere.
We define the boundary ∂K of K as the abstract subcomplex consisting of all the
vertices and simplices of K whose link in K is not a combinatorial sphere9. Often,
we slightly abuse notation and also denote the simplex set of ∂K by ∂K.
We say a combinatorial manifold K is closed if its boundary is the empty simplicial
complex, in other words if the links of all simplices are combinatorial spheres.

8 It can be a helpful exercise to think about why these four cases are the ones one has to consider.
9 It is important to define it this way, because a (−1)-ball is the same as a (−1)-sphere.
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Example 2. As one would expect, we have ∂Dn = Sn−1. This becomes evident as
follows: If s is a k-simplex of Dn, then by definition of the link we have

Lk(Dn,s) =
(

Vn \ s,P
(
Vn \ s

)
\{∅}

)
.

This is a fancy way of writing down what one would intuitively call “the opposite
face of s.” Due to the nature of this abstract simplicial complex, it is easy to write
down a simplicial isomorphism to Dn−k−1. However, this is a combinatorial sphere
if and only if k = n, thus the abstract subcomplex ∂Dn consists of all the simplices
of Dn that are of dimension strictly less than n, which just happens to be Sn−1.

We use the following technical lemma on multiple occasions.

Lemma 9. Let K = (V,S) be a combinatorial n-manifold, let s ∈ S be a k-simplex
with s ∈ ∂K. Then we have10 Lk(∂K,s) = ∂Lk(K,s).

Proof. Using Lemma 8, we have11

∂ Lk(K,s) = {u ∈ Lk(K,s)|Lk(Lk(K,s),u)≈st Dl}=
= {u ∈ K|u∩ s =∅,u∪ s ∈ K,Lk(K,u∪ s)≈st Dl ,Lk(K,u)≈st Dm}=
= {u ∈ ∂K|u∩ s =∅,u∪ s ∈ ∂K}=
= Lk(∂K,s).

Note that for legibility’s sake, we did notationally not distinguish between simplicial
complexes and their simplex sets. The dimensions of the combinatorial balls follow
immediately from Lemma 7 (1) and (3).

For rigour’s sake, it is also important to prove the following unsurprising state-
ment.

Lemma 10. Let K = (V,S) be a combinatorial n-manifold. Then its boundary is in
fact an abstract subcomplex, and it is furthermore a closed combinatorial (n− 1)-
manifold.

Proof. Let K = (V,S) be a combinatorial n-manifold, and let s ∈ S be a k-simplex
of K whose link in K is a combinatorial (n− k− 1)-ball but not a combinatorial
(n− k− 1)-sphere. Since for k = n, this combinatorial (−1)-ball would also be
a combinatorial (−1)-sphere, we can assume for the remainder of the proof that
k < n.
For the first claim, we have to show that the link in K of any face of s is also
a combinatorial ball. So let t ( s be a proper face of s. From Proposition 1, we
know that Lk(K, t) is a combinatorial ball or a combinatorial sphere, so it suffices to

10 Here, we implicitly use that the link of s in K is a combinatorial ball, hence in particular a
combinatorial manifold by Lemma 6 and Proposition 1 (1).
11 Here, we set l = l(u) := n− k− 2− dimu and m = m(u) := n− 1− dimu. The diligent reader
can check for themselves that this is in fact the correct dimension for those links.
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exclude the possibility of it being a sphere. Let us assume that it is a combinatorial
sphere. Note that it follows from Lemma 8 that

Lk(K,s) = Lk(Lk(K, t),s\ t) .

Since we had assumed Lk(K, t) to be a combinatorial sphere, this is a combinatorial
sphere of dimension12

dimLk(K, t)−dim(s\ t)−1 = n− l−1− (k− l−1)−1 = n− k−1≥ 0,

in contradiction to Lk(K,s) being a combinatorial ball.
For the second claim, we have to show that the link of s in ∂K is a combinatorial
(n−k−2)-sphere. Since by Corollary 113, the boundary ∂ Lk(K,s) of the combinat-
orial (n− k−1)-ball Lk(K,s) is a combinatorial (n− k−2)-sphere, it follows from
Lemma 9 that the links of all simplices of ∂K in ∂K are combinatorial (n− k−2)-
spheres, which implies that the boundary of ∂K is empty.

The following lemma may not come as a surprise, but many authors fail to ac-
knowledge that it is something that needs proof.

Lemma 11. Let K = (V,S) be a combinatorial ball, and let s ∈ S be a simplex. If
s /∈ ∂K, then ∂ (σsK) = ∂K.

Proof. Let K = (V,S) be a combinatorial ball, and let s∈ S be a k-simplex not in ∂K.
This implies that Lk(K,s) ≈st Sn−k−1. Using the definition of a stellar subdivision,
we have

Lk(σsK,s∗∂ s) = Lk(K,s)≈st Sn−k−1,

thus s∗∂ s /∈ ∂ (σsK). But since the only way that σs could potentially change ∂K is
by changing s ∗ ∂ s, it follows that the boundary remains unchanged under σs, i.e.,
that ∂ (σsK) = ∂K.

In the following we state two nice corollaries, which we will use occasionally.

Corollary 1. Let K = (V,S) be a combinatorial n-ball. Then ∂K is a combinatorial
(n−1)-sphere.

Proof. Let K = (V,S) be a combinatorial n-ball, i.e., there exists a sequence of stel-
lar moves (and simplicial isomorphisms) from K to Dn. Our goal is to observe
how a stellar move affects ∂K. If for a stellar move σ±1

s the simplex s does not
lie in the boundary, then it follows from Lemma 11 that the stellar move does not
change the boundary. If on the other hand, the simplex s lies in the boundary, then
∂ (σ±1

s K) = σ±1
s (∂K), so the boundaries of K and σ±1

s K are related by a stellar
move. Either way, we have ∂K ≈st ∂Dn = Sn−1, where the last equality was shown
in the example on page 18.

12 Here, we denote the dimension of t by l.
13 A closer look shows that we indeed do not use the statement that the boundary has no boundary
anywhere leading up to Corollary 1, so we can, in fact, use it here.
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This next corollary is another well-known statement in the topological setting,
but it does require some thought.

Corollary 2. Let K = (V,S) be a combinatorial n-sphere. Then K is closed, i.e., ∂K
is the empty abstract simplicial complex.

Proof. So let K = (V,S) be a combinatorial n-sphere. Recall that it follows from
the example on page 18 and Lemma 10 that ∂Sn is the empty abstract simplicial
complex. Therefore, we can apply Lemma 11 for a sequence of stellar moves (and
simplicial isomorphisms) from K to Sn in order to obtain that ∂K = ∂Sn = (∅,∅).

We will also often use the following statement, which may look similar to state-
ments from other fields of mathematics.

Proposition 2.

(1) Let K = (V,S) and L = (W,T ) be combinatorial balls. Then

∂ (K ∗L) = (K ∗∂L)∪ (∂K ∗L).

(2) Let K = (V,S) be a combinatorial sphere and L = (W,T ) be a combinatorial
ball. Then

∂ (K ∗L) = K ∗∂L.

Proof. We prove both statements individually on a set-theoretic level. Unsurpris-
ingly, one of the main ingredients for the proof is Lemma 7. Note that by a slight
abuse of notation, we will sometimes not differentiate between simplicial complexes
and their simplex sets.

(1) Let K and L be combinatorial balls as above. We prove this equation by proving
both that both sides are included in one another. For the “⊆” inclusion we let
s ∗ t ∈ ∂ (K ∗L), i.e., we have s ∈ S∪{∅} and t ∈ T ∪{∅} not both empty, in
such a way that14

Lk(K ∗L,s∗ t)≈st D.

Our goal is to show that s∗ t lies in (K ∗∂L)∪ (∂K ∗L).
If s =∅, then

s∗ t = t ∈ T ⊆ ∂K ∗L,

and if t =∅, then
s∗ t = s ∈ S⊆ K ∗∂L.

The final case is that neither s nor t are empty. From Lemma 3, we obtain that

Lk(K,s)∗Lk(L, t) = Lk(K ∗L,s∗ t)≈st D,

which then implies by Lemmas 7, 6, and 1 (2) that at least one of the links of s
and t is a combinatorial ball; in other words, we have s ∈ ∂K or t ∈ ∂L, which

14 In the remainder of this proof, we omit the dimensions of our combinatorial balls and spheres,
and briefly write “≈st D” and “≈st S” for combinatorial balls and spheres, respectively.
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concludes this inclusion.
For the opposite direction, it suffices to show that ∂K ∗L ⊆ ∂ (K ∗L), because
the expression on the right-hand side is symmetric in K and L. Thus, let s ∈
∂K∪{∅} and t ∈ L∪{∅} not both empty. We want to show that s∗t ∈ ∂ (K∗L).
If s =∅, then s∗ t = t ∈ L⊆ K ∗L, and we have

Lk(K ∗L,s∗ t) = Lk(K ∗L, t) =
2 (1)

Lk(L, t)︸ ︷︷ ︸
≈stD or ≈stS

∗ K︸︷︷︸
≈stD

≈st D

by Lemma 7 (1) or (3). But by definition, this means that s∗ t ∈ ∂ (K ∗L).
If t =∅, then s∗ t = s ∈ ∂K ⊂ K ∗L, and we have

Lk(K ∗L,s∗ t) = Lk(K ∗L,s) =
2 (1)

Lk(K,s)︸ ︷︷ ︸
≈stD

∗ L︸︷︷︸
≈stD

≈st D

by Lemma 7 (1). But by definition, this means that s∗ t ∈ ∂ (K ∗L).
If neither s nor t are empty, we can apply Lemma 3 in order to obtain

Lk(K ∗L,s∗ t) = Lk(K,s)︸ ︷︷ ︸
≈stD

∗ Lk(L, t)︸ ︷︷ ︸
≈stD or ≈stS

≈st D

by Lemma 7 (1) or (3). But by definition, this means that s∗ t ∈ ∂ (K ∗L).
As mentioned above, the inclusion K ∗ ∂L ⊆ ∂ (K ∗ L) follows analogously,
which concludes the proof of the statement.

(2) Now assume that K is a combinatorial sphere and L is a combinatorial ball.
We again prove both inclusions, starting with “⊆”. So let s ∗ t ∈ ∂ (K ∗L), i.e.,
s ∈ S∪{∅} and t ∈ T ∪{∅} not both empty, with

Lk(K ∗L,s∗ t)≈st D.

We want to show that s∗ t ∈ K ∗∂L.
If s =∅, then s∗ t = t, and from

D≈st Lk(K ∗L,s∗ t) = Lk(K ∗L, t) = Lk(L, t)︸ ︷︷ ︸
≈stD or ≈stS

∗ K︸︷︷︸
≈stS

and Lemma 7 (2) and (3), we obtain that Lk(L, t) must be a combinatorial ball;
in other words, s∗ t = t ∈ ∂L⊆ K ∗∂L.
If t =∅, then we immediately obtain that s∗ t = s ∈ K ⊆ K ∗∂L.
If neither s nor t are empty, then we calculate using Lemma 3 that

D≈st Lk(K ∗L,s∗ t) = Lk(K,s)︸ ︷︷ ︸
≈stS by 2

∗ Lk(L, t)︸ ︷︷ ︸
≈stD or ≈stS

.

But by Lemma 7 (2) and (3), this again implies that Lk(L, t) must be a combin-
atorial ball; in other words, we have s∗ t ∈ K ∗∂L.
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For the converse inclusion, we let s ∗ t ∈ K ∗ ∂L, i.e., s ∈ S ∪ {∅} and t ∈
∂L∪{∅} not both empty. Our goal is to show that we have s∗ t ∈ ∂ (K ∗L).
If s =∅, then s∗ t = t, and we obtain from Lemma 7 (3) that

Lk(K ∗L,s∗ t) = Lk(K ∗L, t) = Lk(L, t)︸ ︷︷ ︸
≈stD

∗ K︸︷︷︸
≈stS

≈st D.

But this just means that s∗ t ∈ ∂ (K ∗L).
If t =∅, then s∗ t = s, and we obtain from Lemma 7 (3) that

Lk(K ∗L,s∗ t) = Lk(K ∗L,s) = Lk(K,s)︸ ︷︷ ︸
≈stS by 2

∗ L︸︷︷︸
≈stD

≈st D.

But this again just means that s∗ t ∈ ∂ (K ∗L).
The final case is that neither s nor t are empty. We use Lemmas 3 and 7 (3) in
order to obtain that

Lk(K ∗L,s∗ t) = Lk(K,s)︸ ︷︷ ︸
≈stS by 2

∗Lk(L, t)︸ ︷︷ ︸
≈stD

≈st D.

This shows that in all cases, we have s ∗ t ∈ ∂ (K ∗L). We have therefore seen
both inclusions, which concludes the proof. ut

The next Corollary, which is a direct consequence of Proposition 2 (1), will be
used in a lot of the proofs of the main statements of the next chapter.

Corollary 3. Let K be a combinatorial ball. Then ∂Cone(K) = Cone(∂K)∪K.

Proof. Let K be a combinatorial ball. Remember that Cone(K) = D0 ∗K. (In par-
ticular, the cone of K is in fact a combinatorial manifold by Lemmas 7 (1) and 6.) It
follows from Proposition 2 (1) that

∂Cone(K) = (D0 ∗∂K)∪ ( ∂D0︸︷︷︸
=(∅,∅)

∗K) = Cone(∂K)∪K,

where we used that taking the join with the empty abstract simplicial complex pre-
serves any abstract simplicial complex.

5 Starrability of Stellar Balls

Now that we know a fair bit about some of the properties of stellar moves, balls,
spheres, and manifolds, we want to introduce a concept of “especially nice” combin-
atorial balls, only to then prove that all combinatorial balls have this nice property.
Just like the previous one, this chapter is also modelled after the approach made by
Lickorish (cf. [Lic99, Chapter 3]), again however with a greater emphasis on details.
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Definition 11. Let K = (V,S) be a combinatorial n-ball. Denote by s := {0, . . . ,n}
the maximal simplex of Dn. We have the following chain of stellar equivalences

K ≈st Dn ≈st σsDn = s∗Sn−1 ≈st Cone(∂K),

where the last stellar equivalence is a consequence of Corollary 1 and Lemma 5. By
transitivity, this implies that there exists a sequence of stellar moves and simplicial
isomorphisms from K to Cone(∂K).

(1) A stellar subdivision σt is called internal if t /∈ ∂K.
(2) A stellar weld σ

−1
t is called internal if the stellar subdivision that is its inverse

is an internal stellar subdivision.
(3) A stellar move σ

±1
t is called an internal move if it is an internal stellar subdivi-

sion or an internal stellar weld.
(4) We call K starrable in r moves if there exists a sequence of r internal moves

(and any number of simplicial isomorphisms) that transforms K into Cone(∂K).
Such a sequence is called a starring of K.

Remark 5. One of the main goals of this chapter is to prove that all combinatorial
balls are starrable. Put another way, this means that any abstract simplicial com-
plex K that is stellar equivalent to Dn can be transformed into Cone(∂K) without
“changing the boundary.”

The following lemma may look harmless, but as mathematicians we know that
looks can be deceiving. It can be found in [Lic99, Lemma 3.4].

Lemma 12. Let K = (V,S) be a starrable n-ball. If L is a stellar subdivision of K,
then L is also starrable.

Proof. Let K = (V,S) be a starrable n-ball, i.e., there is a sequence of internal moves
(and simplicial isomorphisms) K ≈st v ∗ ∂K, and let L := σsK for some k-simplex
s ∈ S. If s /∈ ∂K, then ∂L = ∂K by Lemma 11, and therefore

L = σsK ≈st K ≈st v∗∂K = v∗∂L,

where all the stellar moves are internal since s /∈ ∂K. Hence, L is also starrable. For
the remainder of the proof, we can therefore assume that s ∈ ∂K.
We shall perform induction on r, which we define to be the minimum number of
stellar moves in a sequence K ≈st v∗∂K of internal moves and simplicial isomorph-
isms.
The case r = 0 is relatively straightforward: up to simplicial isomorphism, we have
the equation K = v∗∂K, and therefore

L = σsK ∼=si σs(v∗∂K) = v∗σs(∂K),

where the last equality follows from the fact that s ∈ ∂K. But since again s ∈ ∂K,
we have σs(∂K) = ∂L, thus it follows in fact that L ∼=si v ∗ ∂L, and L is (trivially)
starrable.
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Now assume that stellar subdivisions of combinatorial n-balls that are starrable in
less than r moves are themselves starrable. We have to consider two cases:

Case 1: The first of the r internal moves is a stellar subdivision (as opposed to a stellar
weld). We denote the result of this first subdivision by K1 := σtK for some t ∈ S
with t /∈ ∂K. Remember that K1 is, by construction, starrable in r− 1 moves.
Since σt is an internal move, we have ∂K1 = ∂K 3 s. Hence, we can perform
a stellar subdivision of K1 at s, and we denote the resulting abstract simplicial
complex by L1 :=σsK1. Since L1 is a stellar subdivision of K1, which is starrable
in r−1 moves, it follows from the induction hypothesis that L1 is starrable. For
clarity’s sake, it makes sense to consider the following three cases:

Case 1a: If s∩t =∅, then up to a simplicial isomorphism, σs and σt commute, hence

L1 = σsK1 = σsσtK ∼=si σtσsK = σtL.

But L1 is starrable and σt is an internal move, so L is starrable.
Case 1b: If there does not exist a simplex in K that has both s and t as its faces, then

the open stars of s and t in K do not intersect, and therefore σs and σt still
commute. The claim follows as in case 1a.

If one wanted to summarise cases 1a and 1b in a succinct way, the commutativ-
ity of the following diagram would be the key element.

K K1

L L1

σt

σs σs

σt

Case 1c: It remains to show the claim for the case that s and t are faces of a common
simplex, and that s∩ t = u for some simplex u ∈ S. If we define s0 := s\u
and t0 := t \ u, we have s = s0 ∗ u and t = t0 ∗ u, as well as s0 ∗ t0 ∗ u ∈ S.
The situation is illustrated at the very left of Figure 11. We want to invest-
igate the relationship between σsσtK and σtσsK. Note that by definition
of stellar subdivisions, the difference between these two abstract simplicial
complexes has to lie entirely in what happens on the star St(K,s0 ∗ t0 ∗u).
First we shall focus on the simplex s0 ∗ t0 ∗u itself. Using associativity and
commutativity of the simplicial join operation, one obtains

σtσs(s0 ∗u︸ ︷︷ ︸
=s

∗t0) = σt(s∗∂ s∗ t0)
2 (1)
=

= σt((s∗ s0 ∗∂u∗ t0)∪ (s∗∂ s0 ∗u∗ t0︸︷︷︸
=t

)) =

= (s∗ s0 ∗∂u∗ t0)∪ (s∗∂ s0 ∗ t ∗∂ t)
2 (1)
=

= (s∗ (s0∪∂ s0 ∗ t)∗ t0 ∗∂u)∪ (s∗∂ s0 ∗ t ∗∂ t0 ∗u)
2 (1)
=

= (s∗∂ (t ∗ s0)∗ t0 ∗∂u)∪ (s∗ t ∗∂ s0 ∗∂ t0 ∗u)
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where in the third step, the stellar subdivision σt does not change the first
part because the dimension of the second part is precisely the dimension of
s0 ∗ t0 ∗u and t is entirely contained in the second part15. In the last step, we
used the fact that ∂ t = (∅,∅) since it is a 0-simplex.
Figure 11 attempts to summarise the effects of the composition of two stel-
lar subdivisions σtσs.
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t = t0 ∗u u∗ s∗ t0 = t ∗ s
s = s0 ∗u

u

t0

s0 σtσs

∂ s∗ s

=

Fig. 11: The effects of σt σs in case 1c

If we define v := s∗ t0, then stellar subdivision yields

σvσtσs(s0 ∗u∗ t0) = σv((∂ (t ∗ s0)∗ v∗∂u)∪ (s∗ t ∗∂ s0 ∗∂ t0 ∗u)) =

= (∂ (t ∗ s0)∗ v∗∂v∗∂u)∪ (s∗ t ∗∂ s0 ∗∂ t0 ∗u) =

= (∂ (t ∗ s0)∗ v∗∂ (s∗ t0)∗∂u)∪ (s∗ t ∗∂ s0 ∗∂ t0 ∗u).

However, since this expression is symmetric in s and t, we can use the same
logic in order to perform another three subdivisions on the original s0 ∗u∗t0
to obtain a simplicially isomorphic abstract simplicial complex16:

σv′σsσt(s0 ∗u∗ t0) = (∂ (t ∗ s0)∗ v′ ∗∂ (s∗ t0)∗∂u)∪ (s∗ t ∗∂ s0 ∗∂ t0 ∗u).

Here, we set v′ := t ∗ s0 after performing σsσt .
We now take the join in K with Lk(K,s0 ∗u∗ t0) and obtain that

σvσtL = σvσtσsK ∼=si σv′σsσtK = σv′L1.

It now suffices to show that both v and v′ are internal moves. Since u⊆ s ∈
∂K implies u ∈ ∂K, and t0 ∗ u = t /∈ ∂K, the simplex t0 cannot lie in ∂K.
Therefore, v = s∗ t0 /∈ ∂K. Since t /∈ ∂K, the 0-simplex t cannot lie in ∂K,
thus also v′ = t ∗ s0 /∈ ∂K.
Therefore, since σt is also still an internal move, L and L1 differ by internal
moves, proving that L is starrable.

15 In Figure 11, this argument effectively means that only the magenta portion experiences a change
from the stellar subdivision σt .
16 If one were to draw σsσt , the result would essentially be Figure 11, but mirrored along a vertical
axis.
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Case 2: The first of the r internal moves is a stellar weld. If we again denote the result of
this stellar weld by K1 :=σ

−1
t K, this time for some simplex t of K1 with t /∈ ∂K1,

we can use the same logic as before to conclude that s ∈ ∂K1, and again define
L1 := σsK1. Again, since L1 is a subdivision of K1, which is starrable in r− 1
moves, L1 is starrable. But we have already shown in Case 1 that L and L1 are
related by internal stellar moves, so L is also starrable. ut

Our next step on the way to proving that all combinatorial balls are starrable
is to consider the cones of starrable balls. As a reminder, the cone of an abstract
simplicial complex is its join with D0 = ({0},{{0}}) . Note that as a consequence
of Lemma 7 (1), the cone of a combinatorial n-ball is indeed a combinatorial (n+1)-
ball. Both the lemma and its proof can be found (albeit with less details) in [Lic99,
Lemma 3.5].

Lemma 13. Let K = (V,S) be a starrable n-ball. Then Cone(K) is starrable.

Proof. So let K = (V,S) be a starrable n-ball, that means K ≈st v ∗ ∂K by internal
moves. As in the previous proofs, we shall perform induction on r, the minimum
number of internal moves in such a sequence.
The case r = 0 means that K ∼=si v ∗ ∂K. Using associativity of the join operation,
we obtain

Cone(K) = D0 ∗K ∼=si D0 ∗ v∗∂K.

We now define a 1-simplex s := D0 ∗ v. Note that since by construction v /∈ ∂K,
we have s = D0 ∗ v /∈ ∂Cone(K) = Cone(∂K)∪K, where the last equality is just
Corollary 3, so performing a stellar subdivision along s in Cone(K) is an internal
move. By a slight abuse of notation, we also refer to the preimage of s under the
simplicial isomorphism as s. We then have

σsCone(K)∼=si σs(s∗∂K) = s∗ ∂ s︸︷︷︸
=D0∪v

∗Lk(Cone(K),s)︸ ︷︷ ︸
=∂K

.

By Corollary 3, we still have the identity ∂Cone(K) = Cone(∂K)∪K. Using this,
we can resume the above calculation to obtain

σsCone(K)∼=si s∗
(

D0 ∗∂K︸ ︷︷ ︸
=Cone(∂K)

∪v∗∂K︸ ︷︷ ︸
∼=siK

)
∼=si s∗∂Cone(K).

We have thus transformed Cone(K) into s ∗ ∂Cone(K) using the internal move σs
(together with some simplicial isomorphisms), so Cone(K) is starrable. This con-
cludes the case that r = 0. Figure 12 hopefully gives some insight on what happened.
Note that we intentionally avoided filling in the 2- and 3-simplices in order to keep
it legible.
Now let us assume that K ≈st v∗∂K in r moves, and that the cones of combinatorial
n-balls that are starrable in less than r moves are themselves starrable. Based on the
nature of the first of the r internal moves, we distinguish two cases:
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K ∼=si v∗∂K Cone(K) σsCone(K)∼=si s∗∂Cone(K)
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Fig. 12: The case r = 0 in the proof of Lemma 13

Case 1: If the first move is a stellar weld K1 = σ−1
s K for some internal simplex s of K1,

then K = σsK1 and Cone(K)∼=si σCone(s)Cone(K1). Since K1 is starrable in r−1
moves, Cone(K1) is starrable. By Lemma 12, Cone(K) is also starrable as it is
a stellar subdivision of Cone(K1).

Case 2: Now assume that the first of the r moves is a stellar subdivision K1 = σsK for
some simplex s ∈ S with s /∈ ∂K. We have

K = (K \ S̊t(K,s))∪St(K,s) = (K \ S̊t(K,s))∪ s∗Lk(K,s),

so taking the cone according to Lemma 4 yields

Cone(K) = Cone(K \ S̊t(K,s))∪Cone(s∗Lk(K,s)).

Now we want to perform stellar subdivision at the simplex t :=Cone(s) =D0 ∗s
in the subcomplex Cone(St(K,s)) = St(Cone(K), t) as follows:

σtCone(s∗Lk(K,s)) = t ∗∂ t ∗Lk(K,s) =

= t ∗Cone(∂ s)∗Lk(K,s)∪ t ∗ s∗Lk(K,s) =

= Cone(t ∗∂ s∗Lk(K,s))∪ t ∗ s∗Lk(K,s)

where we used that ∂ t = ∂Cone(s) = Cone(∂ s)∪ s by Corollary 3, and the
commutativity of the join operation, which allows us to “pull out the cone.”
Note that by definition of K1 = σsK, and by using Lemma 4, we have

Cone(K1) = Cone(K \ S̊t(K,s))∪Cone(s∗∂ s∗Lk(K,s)).

Now recall that, by our induction assumption, the cone on K1 is starrable as
K1 is starrable in r− 1 moves, so Cone(K1) ≈st Cone(∂Cone(K1)) by internal
moves. Using Corollary 3 to rewrite the boundary of the cone on K1, we are
now able to put everything together17:

17 From the induction hypothesis and the fact that s /∈ ∂K, thus t /∈ ∂Cone(K), it follows that all
the stellar moves are internal.
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σtCone(K) = Cone(K)\ S̊t(Cone(K), t))∪ t ∗∂ t ∗Lk(Cone(K), t)∼=si

∼=si Cone(K \ S̊t(K,s))∪Cone(t ∗∂ s∗Lk(K,s))∪ t ∗ s∗Lk(K,s)∼=si
∼=si Cone(K1)∪ t ∗ s∗Lk(K,s)≈st

≈st Cone(∂Cone(K1))∪ t ∗ s∗Lk(K,s) =

= Cone
(

Cone(∂K)∪K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s)
)
∪ t ∗ s∗Lk(K,s)∼=si

∼=si Cone
(

Cone(∂K)∪K︸ ︷︷ ︸
=∂Cone(K)

∪s∗∂ s∗Lk(K,s)
)
≈st

≈st Cone(∂Cone(K)).

In the fifth step, we again used Lemma 11 to replace ∂K1 by ∂K, as well as the
definition of K1 = σsK = K \ S̊t(K,s)∪ s ∗ ∂ s ∗Lk(K,s). We have thus shown
that Cone(K) is starrable by internal moves.

In both cases, we have thus performed the induction step, which concludes the proof.

After this extremely technical proof, we can reap the fruit of our labour in form
of the following theorem, which is essentially [Lic99, Theorem 3.6].

Theorem 4. Let n ∈ N0, and let K = (V,S) be a combinatorial n-ball. Then K is
starrable.

Proof. Unsurprisingly, we perform induction on n. The case n = 0 is rather trivial:
if K is a combinatorial 0-ball, it is by definition an abstract simplicial complex stel-
lar equivalent to D0. But stellar subdivisions and welds on D0 are just simplicial
isomorphisms, and therefore K is starrable.
Now suppose that combinatorial balls of dimension less than n are starrable. We per-
form another induction, this time on r, the number of stellar moves18 in K ≈st Dn.
If r = 0, then there exists a simplicial isomorphism f : Dn→ K. Let s := {0, . . . ,n}
be the maximal simplex of Dn. Since Lk(K, f (s))∼=si Lk(Dn,s) = (∅,∅), we have
f (s) /∈ ∂K, so

σ f (s)K ∼=si σsDn = s∗Sn−1 ∼=si f (s)∗∂K,

using an internal move, and K is starrable.
Now suppose K ≈st Dn in r stellar moves, and that combinatorial n-balls that are
stellar equivalent to Dn in less than r moves are starrable. We denote the result of
the first move by K1. By our induction hypothesis, K1 is starrable.
If the first move is internal, then K is starrable. If the first move is a weld K1 =
σ−1

s K, then K = σsK1 is a stellar subdivision of a starrable n-ball, and therefore
itself starrable by Lemma 12. We shall therefore assume for the remainder of the
proof that K1 = σsK for some k-simplex s ∈ ∂K.
Our plan now is as follows:

Step 1: Show that the star of s in K is starrable, and perform said starring.

18 Remember that these stellar moves are in general not internal.
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Step 2: From the resulting abstract simplicial complex, isolate a copy of
Step 3: Use the induction hypothesis to obtain a starring of this copy of K1.
Step 4: Perform the starring from Step 1 backwards to recover a starring of K.

We choose a vertex v ∈ s and call the “opposite face” t := s \ {v}. For the star of s
in K, the following equation holds:

St(K,s) = s∗Lk(K,s) = {v}∗ t ∗Lk(K,s)∼=si Cone
(
t ∗Lk(K,s)

)
.

We make the following observations:

1) Since t is a (k−1)-simplex, it is in particular a combinatorial (k−1)-ball.
2) The link Lk(K,s) is the link of a k-simplex from the boundary of a combinator-

ial manifold, therefore it is a combinatorial (n− k−1)-ball.
3) By Lemma 7 (1), the join of two combinatorial balls is a combinatorial ball, of

dimension

dim
(
t ∗Lk(K,s)

)
= (k−1)+(n− k−1)+1 = n−1.

By our induction hypothesis, this combinatorial (n−1)-ball is starrable.
4) The star St(K,s)∼=si Cone

(
t ∗Lk(K,s)

)
is therefore starrable by Lemma 13.

In order to show that, in fact, the entire combinatorial n-ball K is starrable, we
perform the following calculation19

K = St(K,s)∪
(
K \ S̊t(K,s)

) 4)
≈st

≈st w∗∂ (St(K,s))∪
(
K \ S̊t(K,s)

) 2 (1)
=

= w∗ s∗Lk(∂K,s)∪w∗∂ s∗Lk(K,s)∪
(
K \ S̊t(K,s)

)︸ ︷︷ ︸
∼=siσsK=K1≈stu∗∂K1

≈st

≈st u∗∂

(
w∗∂ s∗Lk(K,s)∪

(
K \ S̊t(K,s)

))
︸ ︷︷ ︸

=w∗∂ s∗Lk(∂K,s)∪(∂K\S̊t(∂K,s))

∪w∗ s∗Lk(∂K,s) =

= u∗
(

w∗∂ s∗Lk(∂K,s)∪
(
∂K \ S̊t(∂K,s)

))
∪w∗ s∗Lk(∂K,s) =

= u∗w∗∂ s∗Lk(∂K,s)∪u∗
(
∂K \ S̊t(∂K,s)

)
∪w∗ s∗Lk(∂K,s).

In the second to last step, we used the fact that s ∈ ∂K to calculate the boundary of
K1.
Now we perform a stellar subdivision on u∗St(∂K,s) = u∗s∗Lk(∂K,s) as follows:

σu∗s
(
u∗St(∂K,s)

)∼=si w∗∂ (u∗ s)∗Lk(u∗St(∂K,s),s)︸ ︷︷ ︸
=Lk(∂K,s)

2 (1)
=

= u∗w∗∂ s∗Lk(∂K,s)∪w∗ s∗Lk(∂K,s).

19 We leave it to the reader to verify that all the stellar moves are, in fact, internal.
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Since u /∈ ∂K, and thus u∗ s /∈ ∂K, we can continue our sequence of internal stellar
equivalences from above by adding

K ≈st u∗w∗∂ s∗Lk(∂K,s)∪u∗
(
∂K \ S̊t(∂K,s)

)
∪w∗ s∗Lk(∂K,s)≈st

≈st u∗St(∂K,s)∪u∗
(
∂K \ S̊t(∂K,s)

)
=

= u∗∂K.

This finally completes our induction argument. The sketch below hopefully does a
good job at illustrating what happened, as much as our dimensionally limited view
allows.
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K1

u

Fig. 13: Sketch of the induction step in the proof of Theorem 4

We want to continue with a technical lemma about “gluing on the cone of a nice
piece of the boundary”. It can be found in [Lic99, Lemma 3.7].

Lemma 14. Let n ∈N. Let K = (V,S) be a combinatorial n-manifold. If L = (W,T )
is an abstract subcomplex of ∂K that is a combinatorial (n−1)-ball, then there is a
stellar equivalence20

K ≈st K∪Cone(L) = K∪u∗L.

The idea for the proof is to use Theorem 4 in order to find a combinator-
ial n-manifold that is stellar equivalent to K and that contains a “second copy of
Cone(L)”. Then, these two copies of Cone(L), which intersect in L, are a stellar
subdivision of a single Cone(L) if we also show that L is a cone in itself.

Proof. Let n ∈N. Let K = (V,S) be a combinatorial n-manifold, and let L = (W,T )
be an abstract subcomplex of ∂K with L ≈st Dn−1. Then L is starrable by Theorem
4, so we can choose a starring sequence for L, i.e., a sequence of internal stellar

20 Here, we assume that the cone point u does not lie in V.
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moves (and simplicial isomorphisms, which we ignore as usual) from L to v ∗ ∂L.
This leads us to the following claim:

Claim. We can extend this starring sequence to all of K ∪Cone(L), i.e., there is a
sequence of stellar moves on K ∪Cone(L) that changes the abstract subcomplex L
to v∗∂L.

Proof. Each stellar move in the sequence is either an internal stellar subdivision or
an internal stellar weld of L.
The stellar subdivisions in the sequence can easily be extended to all of K and to
Cone(L) since L is a subcomplex of both K and Cone(L), and thus any simplex of
L is also a simplex of these two abstract simplicial complexes.
If there is an internal stellar weld in the sequence, then without loss of generality we
may assume it is the first of the stellar moves. So we can write

L = σsL1 = K1 \ S̊t(L1,s)∪ s∗∂ s∗Lk(L1,s),

for some combinatorial (n− 1)-ball L1 and some k-simplex s of L1 with s /∈ ∂L1.
Clearly, the weld extends to Cone(L), the difficult problem is proving it also extends
to K. By construction, the star of s in K is given by

St(K,s) = s∗Lk(K,s).

Since s is a combinatorial 0-ball and Lk(K,s) is a combinatorial (n− 1)-sphere
we can conclude from Lemma 7 (3) that St(K,s) is a combinatorial n-ball, hence
starrable by Theorem 4. That means there is a stellar equivalence

K ≈st K′ :=
(
K \ S̊t(K,s)

)
∪ s∗∂

(
St(K,s)

)∼=si
(
K \ S̊t(K,s)

)
∪Cone

(
∂
(
St(K,s)

))
.

This stellar equivalence to the abstract simplicial complex K′, which contains the
cone on the boundary of St(K,s), allows us to extend the stellar weld to K′, and thus
also to the stellar equivalent K. This concludes the proof of the claim.

Since the stellar equivalence L≈st v∗∂L extends to K∪Cone(L), we may, without
loss of generality, assume that L = v∗∂L.
Just as before, the star St(K,v) is a combinatorial n-ball, which we star according to
Theorem 4 to obtain the result that K contains

w∗∂
(
St(K,v)

)
= w∗Lk(K,v)

as an abstract subcomplex. Since ∂L is an abstract subcomplex of Lk(K,v) by con-
struction, this implies that w∗L = w∗ v∗∂L is an abstract subcomplex of K.
Now, consider the following subcomplex of K∪Cone(L):

Cone(L)∪w∗ v∗∂L = Cone(v∗∂L)∪w∗ v∗∂L = u∗ v∗∂L∪w∗ v∗∂L.

These two copies of Cone(v∗∂L) are stellar equivalent to a single copy by welding
at v∗ (u∪w). Hence,
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K∪Cone(L)≈st K \ S̊t(K,s)∪w∗ v∗∂L∪Cone(L)≈st

≈st K \ S̊t(K,s)∪w∗ v∗∂L≈st K.

This concludes the proof. A sketch of the strategy for the proof when L consists of
a single simplex can be found below.
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Fig. 14: Strategy for the proof of Lemma 14

The next theorem, which is due to Newman (cf. [New26]), has a very intuitive
topological meaning, but is surprisingly tricky to prove in the abstract setting. It
states that “removing” a combinatorial n-ball from a combinatorial n-sphere leaves
behind another combinatorial n-ball. First, we have to define what we even mean by
that. Most authors would give the more topologically inspired definition of “closure
of K \L”, but we shall try and avoid topology at all costs in this chapter.

Definition 12. Let K = (V,S) be a combinatorial n-sphere, and let L = (W,T ) be an
abstract subcomplex that is a combinatorial n-ball. We define

K \ L̊ :=

({
v ∈V

∣∣∣∣∣there is an n-simplex
s ∈ S\T with v ∈ s

}
,

{
t ∈ S

∣∣∣∣∣there is an n-simplex
s ∈ S\T with t ⊆ s

})
.
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Fig. 15: Removing a 2-ball from a 2-sphere (indicated by the dotted lines)

This is a fancy way of saying to “keep only the vertices and simplices that ac-
tually contribute to something outside of L”. Using the transitivity of the subset
relation, it is an easy exercise to prove that K \ L̊ is in fact an abstract simplicial
complex, and hence it is also a subcomplex of K by definition of subcomplexes.
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Theorem 5. Let n ∈ N0, let K = (V,S) be a combinatorial n-sphere, and let L =
(W,T ) be an abstract subcomplex of K that is a combinatorial n-ball. Then K \ L̊ is
a combinatorial n-ball.

Proof. Let n ∈ N0, let K = (V,S) be a combinatorial n-sphere, and let L = (W,T )
be an abstract subcomplex of K that is a combinatorial n-ball. We start with an in-
duction on n.
The case n = 0 is quite simple: As a combinatorial 0-sphere, K is simplicially iso-
morphic to S0 since stellar moves at 0-simplices are just simplicial isomorphisms.
On the other hand, L, being a combinatorial 0-ball, is simplicially isomorphic to D0
for the same reason. So in the end, the statement for n = 0 boils down to the fact
that if one takes two 0-simplices and removes one of them, they end up with a single
0-simplex. But that just means that K \ L̊ is a combinatorial 0-ball.
Now let n∈N, and assume the claim is true for combinatorial spheres (and combin-
atorial balls) of dimension less than n.
In order to use some of the previous results, we first check that K \ L̊ is a combinat-
orial n-manifold21. Let v be a vertex of K \ L̊, i.e., there exists an n-simplex s ∈ S\T
with v ∈ s. If for all n-simplices t ∈ T we have v /∈ t, then all n-simplices of K that
v is a part of lie in K \ L̊, thus

Lk(K \ L̊,v) = Lk(K,v)≈st Sn−1,

because K is a combinatorial n-manifold. If, on the other hand, there does exist an
n-simplex t ∈ T with v ∈ t, then we have22

Lk(K \ L̊,v) = Lk(K,v)\ ˚Lk(L,v).

Here, Lk(K,v) is a combinatorial (n−1)-sphere as v is a vertex of the combinatorial
n-sphere K, and Lk(L,v) is a combinatorial (n− 1)-ball since v is a vertex in the
boundary of the combinatorial n-ball L. By our induction hypothesis for the case
n− 1, the link Lk(K \ L̊,v) is a combinatorial (n− 1)-ball. Therefore, K \ L̊ is a
combinatorial n-manifold.
Now we shall start proving the actual claim. Since L is starrable by Theorem 4,
we will, without loss of generality, assume for the remainder of the proof that L =
St(K,v) for some vertex v ∈ V. This also has the convenient side effect that the
definition of K \ L̊ coincides with the definition of K \ S̊t(K,v) from page 8.23

We start another induction, on the number r of stellar moves in K ≈st Sn.
In the case r = 0, we have K ∼=si Sn, so L ∼=si St(Sn,v) is the star of a vertex of Sn,
so K \ L̊ is the “n-simplex opposite to that vertex”. But this is clearly simplicially

21 This is something we actually have to prove because we defined K \ L̊ in by “removing ver-
tices and simplices” from a combinatorial sphere, which does not always result in a combinatorial
manifold.
22 Note that the little circle on the right-hand side applies to all of Lk(L,v).
23 The proof that these two definitions coincide is a simple exercise in set theory that shall be left
to the reader. Intuitively however, there is no doubt about it as they are both defined in terms of
removing simplices that are in St(K,v).
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isomorphic to Dn, so K \ L̊ is a combinatorial n-ball.
Now let K ≈st Sn in r moves, and assume that the claim is true for n-spheres that are
stellar equivalent to Sn in less than r stellar moves. As so often, there are two cases
for us to distinguish:

Case 1: If the first of the r moves is a stellar subdivision, denote its result by K1 =
σsK, for some k-simplex s ∈ S. We are interested in the relationship between
K \ S̊t(K,v) and K1 \ S̊t(K1,v). Depending on v and s, we have to distinguish
another two cases:

Case 1a: If v /∈ s, then it follows from the definition of stellar moves that

K1 \ S̊t(K1,v) = σs
(
K \ S̊t(K,v)

)
.

The expression on the left-hand side is a combinatorial n-ball by induction
on r, thus K \ S̊t(K,v) is as well, because it is related to the left-hand side
via a stellar move.

Case 1b: If v ∈ s, we set t := s\{v} and obtain

K1 \ S̊t(K1,v) = K \ S̊t(K,v)∪ s∗ t ∗Lk(K,s).

Note that on the right-hand side, K \ S̊t(K,v) is a combinatorial n-manifold,
and t ∗Lk(K,s) is a combinatorial ball of dimension (k−1)+(n−k−1)+
1 = n− 1 that also is a subcomplex of K \ S̊t(K,v). Furthermore, the cone
point s does not lie in K, so we can apply Lemma 14 to obtain

K1 \ S̊t(K1,v)∼=si K \ S̊t(K,v)∪Cone
(
t ∗Lk(K,s)

) 14≈st K \ S̊t(K,v)

Just as in Case 1a, we can therefore conclude that K \ S̊t(K,v) is a combin-
atorial n-ball.

Case 2: If the first of the r moves is a stellar weld, denote its result by K1 = σ−1
s K, i.e.,

K = σsK1 for some k-simplex s of K1. We are still interested in showing that
K \ S̊t(K,v) is a combinatorial n-ball.
If v 6= s, then the same arguments as in Case 1 apply, and K \ S̊t(K,v) is a
combinatorial n-ball.
Now let us consider the case that v = s. By construction, we have

K \ S̊t(K,v) = K1 \ S̊t(K1,s).

We pick a vertex w∈ s, and again set t := s\{w}. Since K1≈st Sn in r−1 moves,
we know from our induction hypothesis that K1 \ S̊t(K1,w) is a combinatorial
n-ball. Thus, its boundary

∂
(
K1 \ S̊t(K1,w)

)
= Lk(K1,w)

is a combinatorial (n− 1)-sphere by Corollary 1. Since by construction w /∈
t ∗Lk(K1,s), and {w}∗t ∗Lk(K1,s) = St(K1,s) is a subcomplex of K1, it follows



Pachner’s Theorem 35

that t ∗Lk(K1,s) is a subcomplex of ∂
(
K1 \ S̊t(K1,w)

)
. However, we also have

t ∗Lk(K1,s)≈st Dk−1 ∗Sn−k−1
7 (3)
≈ st Dn−1,

and therefore we can again apply the induction hypothesis for the case n−1 to
conclude that

M := ∂
(
K1 \ S̊t(K1,w)

)
\ ˚(

t ∗Lk(K1,s)
)

is a combinatorial (n−1)-ball. Connecting all these deliberations, we can now
finally calculate

K \ S̊t(K,v) = K1 \ S̊t(K1,s) =

=
(
K1 \ S̊t(K1,w)

)
∪
(
St(K1,w)\ S̊t(K1,s)

)
=

=
(
K1 \ S̊t(K1,w)

)
∪{w}∗

(
Lk(K1,w)\ ˚(

t ∗Lk(K1,s)
))

=

=
(
K1 \ S̊t(K1,w)

)
∪{w}∗M ∼=si

∼=si
(
K1 \ S̊t(K1,w)

)
∪Cone(M)

14≈st

≈st
(
K1 \ S̊t(K1,w)

)
.

As mentioned before, the very right-hand side is a combinatorial n-ball, and
thus, so is K \ S̊t(K,v).

In all cases, we showed that K \ S̊t(K,v) is a combinatorial n-ball. This concludes
both the induction on r and the one on n, and thus the proof.

The final theorem of this chapter, which is due to Alexander (cf. [Ale30]), is
another gluing statement. It is, however, more of a corollary to the main statements
of this chapter.

Theorem 6. Let K = (V,S) be a combinatorial n-manifold, and let L = (W,T ) be a
combinatorial n-ball. We assume that the intersection K ∩L satisfies the following
two properties:

(1) We have K∩L = ∂K∩∂L.
(2) The intersection K∩L is a combinatorial (n−1)-ball.

Then K∪L≈st K.

Proof. By Theorem 4, the combinatorial n-ball L is starrable. Therefore, without
loss of generality, we can assume that L= v∗∂L. Furthermore, ∂L is a combinatorial
(n− 1)-sphere by Corollary 1, and K ∩L is a combinatorial (n− 1)-ball that is an
abstract subcomplex of ∂L by property (1). It now follows from Theorem 5 that

M := ∂L\ ˚(K∩L)

is a combinatorial (n−1)-ball, which is starrable by Theorem 4, i.e., M ≈st w∗∂M.
By Lemma 10, we have ∂M = ∂ (K∩L), hence
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M ≈st w∗∂ (K∩L).

This starring can be extended onto Cone(M)∼=si v∗M, yielding

v∗M ≈st v∗w∗∂M = w∗ v∗∂ (K∩L).

Therefore, one obtains

K∪L = K∪ v∗∂L =

= K∪ v∗
(
(K∩L)∪M

) 4
=

= K∪ v∗ (K∩L)∪ v∗M.

Since both K ∩L and M are combinatorial (n− 1)-balls that are abstract subcom-
plexes of ∂K, we can apply Lemma 14 twice in order to find a stellar equivalence
from that final abstract simplicial complex to K, finishing the proof.

We end this chapter with the following lemma, which we will actually use in the
proof of Pachner’s Theorem 7. It can be found in [Lic99, Lemma 4.6].

Lemma 15. Let k ∈ N, and let K = (V,S) be an abstract simplicial complex.
If K ∗Sk−1 is a combinatorial n-sphere or a combinatorial n-ball, then K is a com-
binatorial (n− k)-sphere or a combinatorial (n− k)-ball.

Proof. Let k ∈ N, and let K be an abstract simplicial complex such that K ∗Sk−1 is
a combinatorial n-sphere or a combinatorial n-ball. Consider the abstract simplicial
complex

Cone(K ∗Sk−1).

It follows from Lemma 7 (1) or (3) that this cone is a combinatorial (n+ 1)-ball.
It follows from the associativity and commutativity of the join operation that K ∗
Dk ∼=si K ∗Cone(Sk−1) is also a combinatorial (n+1)-ball. Using Proposition 1 (1),
we conclude that

K = Lk(K ∗Dk,Dk)

is a combinatorial sphere or a combinatorial ball of dimension

dim(K ∗Dk)−dimDk−1 = (n+1)− k−1 = n− k.ut

6 Bistellar Moves and Elementary Shellings

Having now spent a lot of time on stellar moves, we want to turn to a second type
of move on combinatorial manifolds. Despite initially sounding more complicated,
there will be an extremely nice finiteness property to them, which is one of the reas-
ons why Pachner’s theorem is so important in the first place. This chapter follows
the approach taken in [Lic99, Chapter 5].
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Definition 13. Let K = (V,S) be an abstract simplicial complex, let s ∈ S be a sim-
plex, and let m∈N0∪{−1}. We denote the link of s in K by (U,R) := Lk(K,s). We
call (U,R) a non-trivial m-sphere in K if (U,R)∼=si Sm and U itself is not a simplex
of K.
Note that this definition makes sense for m = −1 since we had defined S−1 :=
(∅,∅), and the empty set is not a simplex by definition of abstract simplicial com-
plexes.
In this case, we also define

B(K,s) :=

{
(U,P(U)\{∅}), if m ∈ N0,

({s},{{s}}), if m =−1.

This abstract simplicial complex B(K,s) is simplicially isomorphic to Dm+1 by con-
struction, and we call it the dual simplex of s.24

Figure 16 hopefully does a decent job at illustrating the situation. Essentially, we
want the link of s to be the boundary of a simplex that is not in K.

K
s1

Lk(K,s1)∼=si S1

s2

Lk(K,s2)∼=si S0

B(K,s1)
B(K,s2)

��
��
��
��

�
�
�
�

K

Lk(K,s4) is not a standard sphere

s4

simplex s3 with Lk(K,s3)∼=si S−1

s3

B(K,s3)

Fig. 16: From left to right, examples for a non-trivial 1-sphere, a non-trivial 0-sphere, a non-trivial
(−1)-sphere, and a link that is not a non-trivial sphere

Definition 14. Let K = (V,S) be a closed combinatorial n-manifold, s ∈ S be a k-
simplex such that Lk(K,s) is a non-trivial (n− k−1)-sphere in K. We call

τsK := (K \ S̊t(K,s))∪∂ s∗B(K,s)

24 We will shortly see a justification for the name “dual simplex”, more specifically in Lemma 16.
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(the result of) a bistellar move along s.

Essentially, a bistellar move replaces the star St(K,s) = s ∗ Lk(K,s) by ∂ s ∗
B(K,s). We refer to Figure 3 in the introduction for an illustration of the defini-
tion.

The following lemma summarises some of the main properties of bistellar moves.
Another reason to include it is that proving it allows the reader to grow used to this
new concept.

Lemma 16. Let K = (V,S) be a combinatorial n-manifold, s∈ S be a k-simplex such
that Lk(K,s) is a non-trivial (n− k−1)-sphere in K. If we denote the dual simplex
B(K,s) by t, then we have the following useful properties:

(1) The dual simplex t is an (n− k)-simplex of τsK, and its boundary is given by
∂ t = Lk(K,s).

(2) The link of t in τsK is given by Lk(τsK, t) = ∂ s.
(3) We have

B(τsK, t) =

{
s, if k > 0,
({t},{{t}}), if k = 0.

(4) Removing the open star of t from τsK yields

τsK \ S̊t(τsK, t) = K \ S̊t(K,s).

(5) The abstract simplicial complexes σsK and σt(τsK) are simplicially isomorphic.
In particular we have, up to a simplicial isomorphism, τs = σ

−1
t σs.

(6) There is a simplicial isomorphism between τt(τsK) and K.

Proof. Let K = (V,S) be a combinatorial n-manifold, s ∈ S be a k-simplex such that
Lk(K,s) is a non-trivial (n−k−1)-sphere in K. Denote the dual simplex B(K,s) by
t.

(1) Since Lk(K,s) is a non-trivial (n− k−1)-sphere, the dual simplex t = B(K,s)
is an (n−k)-simplex by construction, and its boundary is Lk(K,s) also by con-
struction.

(2) This also follows directly from the definition.
(3) By (2) we have that Lk(τsK, t) = ∂ s. For k = 0, this is a non-trivial (−1)-sphere,

thus B(τsK, t) = ({t},{{t}}). If k > 0, then the link is the non-trivial (k− 1)-
sphere ∂ s, so in this case, the dual simplex of t in τsK is given by B(τsK, t) = s.

(4) Using (2), we calculate

St(τsK, t) = Lk(τsK, t)∗ t = ∂ s∗B(K,s),

therefore

τsK \ S̊t(τsK, t) =
(
(K \ S̊t(K,s))∪∂ s∗B(K,s)

)
\ S̊t(τsK, t) =

= K \ S̊t(K,s).
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(5) Using (1), (2), and (4), one calculates

σt(τsK) = τsK \ S̊t(τsK, t)∪ t ∗∂ t ∗Lk(τsK, t) =

= K \ S̊t(K,s)∪ t ∗Lk(K,s)∗∂ s∼=si

∼=si K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s) =

= σsK

(6) This follows directly from (3) and (5) if we believe that a stellar subdivision,
followed by a stellar weld on “the same” simplex, amount to a simplicial iso-
morphism.

All six claims have thus been proved.

Lemma 16 (6) allows us to give the following definition. To be more precise, it
ensures that bistellar equivalence is, in fact, an equivalence relation.

Definition 15. Let K = (V,S) and L = (W,T ) be combinatorial manifolds. We call
K and L bistellar equivalent if they are connected by a finite sequence of bistellar
moves and simplicial isomorphisms. If K and L are bistellar equivalent, we write
K ≈bst L.

Now we have all the tools to formulate Pachner’s theorem, which we already
stated in the introduction, but without giving precise definitions.

Theorem 7. (Pachner’s Theorem) Let K = (V,S) and K′ = (V ′,S′) be closed com-
binatorial n-manifolds. Then

K ≈bst K′ ⇐⇒ K ≈st K′.

This theorem is deceptively easy to state. To put it briefly, it says that if two com-
binatorial manifolds are stellar equivalent, then one can find a sequence of bistellar
moves between them (and vice versa). At this point, there is one more tool we need
to add to our toolbox before we can move onto the path toward proving Pachner’s
theorem.

Definition 16. Let K = (V,S) be a combinatorial n-manifold, and let s, t ∈ S be sim-
plices such that the following three conditions are satisfied:

(1) the join s∗ t is an n-simplex of K,
(2) we have s∩∂K = ∂ s, and
(3) we have t ∗∂ s⊆ ∂K is a subcomplex.

Let k := dim t. The elementary k-shelling of K along t is the combinatorial mani-
fold25

K′ := shtK := K \ S̊t(K,s∗ t).

25 Note that the star of the n-simplex s ∗ t is just the abstract simplicial complex consisting of all
the faces of s∗ t. Therefore, a shelling can be imagined as “removing” the simplex s∗ t from K.
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Remark 6.

(1) Consider the situation from the above definition. As the notation “sht” suggests,
the elementary k-shelling is uniquely determined by the k-simplex t. This fol-
lows from properties (2) and (3).

(2) In the sketches below, the two different “types” of elementary shellings on a
combinatorial 2-manifold are illustrated. Note that for dimensional reasons26,
there cannot be an elementary n-shelling on an elementary n-manifold.

sht2(K)

K

sht1(K)
K

t1
t2

sht1
s1

sht2

s2

Fig. 17: An elementary 0-shelling (top) and an elementary 1-shelling (bottom) in a 2-manifold

We make the following observation about the boundary of a combinatorial man-
ifold. We refer to the sketch above for some examples.

Lemma 17. Let K = (V,S) be a combinatorial manifold, and let s, t ∈ S be as above.
Then Lk(∂K, t) = ∂ s, and

∂ (shtK) = τt(∂K).

Proof. From property (3) and Lemma 10, we can conclude that Lk(∂K, t) = ∂ s.
Now, property (2) ensures that s /∈ ∂K, and together with property (1), this implies
that the link of t in ∂K is a non-trivial (n−k−2)-sphere27. Therefore, the right-hand
side is well-defined, and we have B(∂K, t) = s.
Using Lemma 16, we calculate

∂ (shtK) = ∂K \ S̊t(∂K, t)∪∂ (s∗ t)\ ˚(t ∗∂ s)︸ ︷︷ ︸
=s∗∂ t

=

= ∂K \ S̊t(∂K, t)∪∂ t ∗B(∂K, t) =

= τt(∂K).

This proves the claim.

As the sketches above show, elementary shellings “make the abstract simplicial
complex smaller.” This intuitive concept shall be expanded upon in the following
definition.
26 More precisely, it follows from n≥ dim(s∗ t) = dims+dim t +1 > dim t.
27 In detail, this follows from n = dims+ k+1 and dim∂ s = dims−1.
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Definition 17. Let K = (V,S) be a combinatorial n-manifold.

(1) If L = (W,T ) is another combinatorial n-manifold, and L can be obtained from
K by means of a finite sequence of elementary shellings and simplicial iso-
morphisms, we write K sh−→ L.

(2) If K is a combinatorial n-ball, then we call K shellable if K sh−→ Dn.
(3) If K is a combinatorial n-sphere, then we call K shellable if there exists an

n-simplex s ∈ S such that K \ S̊t(K,s) is a shellable combinatorial n-ball28.

The sketch below illustrates the concept of shellability. In each step, the dark grey
simplex is the one that is “being removed” next. It is also evident that there exist
many different sequences of elementary shellings that transform K into something
simplicially isomorphic to D2.

sht2

K

sht5 ≈si D2
sht4

sht1

sht3

Fig. 18: A combinatorial 2-ball K that is shellable in 5 moves

Remark 7. While the picture makes it seem like every combinatorial n-ball is
shellable, there are, in fact, examples of combinatorial n-balls that are not shellable.
For instance, Rudin (cf. [Rud58]) found an unshellable combinatorial 3-ball with 41
simplices of dimension 3. Furthermore, for any n≥ 3, Lickorish (cf. [Lic91]) gives
a combinatorial n-sphere that is not shellable. However, the intuition we have that
all combinatorial 2-balls and -spheres are shellable is, in fact, correct. A proof for
this statement can be found in Bing (cf. [Bin64]).

For us, the more interesting question is how we can use the concept of shellab-
ility in order to prove Pachner’s theorem. We start by proving a lemma that deals
with cones of shellable combinatorial balls and spheres. It is essentially [Lic99,
Lemma 5.4], but as we have many times before, we fill in the details in order to
make it more rigorous.

Lemma 18. Let K = (V,S) be a shellable combinatorial n-ball or a shellable com-
binatorial n-sphere. Then Cone(K) is shellable29.

28 Note that it follows from Theorem 5 that K \ S̊t(K,s) is in fact a combinatorial n-ball.
29 Remember that by Lemma 7 (1) or (3), the cone of K is a combinatorial (n+1)-ball.
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Proof. The idea for the proof is to just “lift” the sequence of elementary shellings
(and simplicial isomorphisms) that we have for K to Cone(K). Of course, there are
some technical conditions we will have to check, but this is one of the cases where
the intuitive approach actually works.
Let us first consider the case that K = (V,S) is a shellable combinatorial n-ball. For

each elementary shelling sht in a sequence K sh−→Dn, we want to lift sht to Cone(K).
So let s, t ∈ S satisfy the three conditions we had required30:

(1) The join s∗ t is an n-simplex of K,
(2) we have s∩∂K = ∂ s, and
(3) we have t ∗∂ s⊆ ∂K.

Our goal is to show that these conditions still hold if we replace s by Cone(s), K by
Cone(K), and n by n+1. We do so in great detail.

(1’) The join Cone(s)∗ t = D0 ∗ s∗ t is an (n+1)-simplex of Cone(K) = D0 ∗K by
the definition of joins and property (1).

(2’) Using Lemma 4 and Corollary 3, as well as property (2), we calculate

Cone(s)∩∂Cone(K) = Cone(s)∩ (K∪Cone(∂K)) =

= (Cone(s)∩K)︸ ︷︷ ︸
=s

∪(Cone(s)∩Cone(∂K))︸ ︷︷ ︸
=Cone(s∩∂K)

(2)
=

= s∪Cone(∂ s) = ∂Cone(s).

(3’) Using Lemma 4 and Corollary 3, as well as properties (1) and (3) and the com-
mutativity of the join, we calculate

t ∗∂Cone(s) = t ∗ (s∪Cone(∂ s)) =

= t ∗ s∪ t ∗Cone(∂ s)︸ ︷︷ ︸
=Cone(t∗∂ s)

(1),(3)
⊆

⊆ K∪Cone(∂K) = ∂Cone(K).

Furthermore, we have

shtCone(K) = Cone(K)\ S̊t(Cone(K),Cone(s)∗ t) =

= Cone(K \ S̊t(K,s∗ t)) = Cone(shtK).

Therefore, we can “lift” an entire sequence K sh−→ Dn to one of the form

Cone(K)
sh−→ Cone(Dn)∼=si Dn+1,

and Cone(K) is a shellable combinatorial (n+1)-ball.
Now consider the case that K = (V,S) is a shellable combinatorial n-sphere. Let

30 Here, we slightly abuse notation in order to write K instead of something like shtk−1 . . .sht1 K.
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s ∈ S be an n-simplex such that K \ S̊t(K,s) is a shellable combinatorial n-ball. Note
that Cone(s) is an (n+ 1)-simplex of Cone(K), so we can perform the following
elementary n-shelling:

shsCone(K) = Cone(K)\ S̊t(Cone(K),Cone(s)) = Cone
(
K \ S̊t(K,s)

)
.

Since K \ S̊t(K,s) is a shellable combinatorial n-ball, Cone
(
K \ S̊t(K,s)

)
is a

shellable combinatorial (n+1)-ball by the first case. But since there is an element-
ary shelling from Cone(K) onto this shellable combinatorial (n+1)-ball, Cone(K)
is a shellable combinatorial (n+1)-ball as well.

Next, we want to look into the join of shellable combinatorial balls or spheres
with the simplicial complex Sm. It can be found in [Lic99, Lemma 5.5].

Lemma 19. Let K = (V,S) be a shellable combinatorial n-ball or a shellable com-
binatorial n-sphere, and let m ∈ N0∪{−1}. Then K ∗Sm is shellable31.

Proof. We start with the case that K = (V,S) is a shellable combinatorial n-ball. We
perform induction on m ∈ N0∪{−1}.
The case m =−1 is trivial since S−1 = (∅,∅), and joining with the empty complex
preserves any abstract simplicial complex.
Now let m ∈ N0, and suppose the claim is true for balls of dimension less than m.
Let v be a vertex of Sm, denote by s := {0, . . . ,m+ 1} \ {v} the “opposite face”.
Since K is shellable, we can pick a sequence sht1 , . . . ,shtk of elementary shellings

for K sh−→ Dn. Then, the join simplices t1 ∗ s, . . . , tk ∗ s are part of the boundary of
the iterated elementary shellings of K ∗ Sm, and we can now perform the sequence
sht1∗s, . . . ,shtk∗s,shs on K ∗Sm as follows:

shsshtk∗s · · ·sht1∗s(K ∗Sm)∼=si shs( {v}︸︷︷︸
∼=si{0}

∗K ∗ ∂ s︸︷︷︸
∼=siSm−1

∪s∗Dn)∼=si Cone(K ∗Sm−1)

By our induction hypothesis, K ∗ Sm−1 is a shellable combinatorial (n+m)-ball.
Therefore, Cone(K ∗Sm−1) is a shellable combinatorial (n+m+1)-ball by Lemma
18. Since there is a sequence of elementary shellings from K∗Sm to Cone(K∗Sm−1),
we obtain that K ∗ Sm is a shellable combinatorial (n+m+1)-ball. The claim now
follows from our induction argument.
The sketch in Figure ?? illustrates what has happened, even if it is a little unsatisfy-
ing because it only covers the case m = 0. It shall be mentioned that one could draw
the case m = 1, but then K would have to be a 1-manifold, which is also not a very
enlightening sketch.

Now we shall turn to the case that K = (V,S) is a shellable combinatorial n-
sphere, and we let r ∈ S be an n-simplex such that K \ S̊t(K,r) is a shellable
combinatorial n-ball. As before, we let v be a vertex of Sm, and we denote by
s := {0, . . . ,m + 1} \ {v} its “opposite face”. Since ∂ s ∼=si Sm−1, we can remove

31 Remember that by Lemma 7 (2) or (3), the join K ∗Sm is a combinatorial (n+m+1)-ball or a
combinatorial (n+m+1)-sphere.
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s

t3 ∗ s∗u

K

K ∗S0

s⊂ S0

v ∈ S0

sht3∗s
sht4∗s

shs

sht1∗s
sht2∗s

Cone(K ∗∂ s)

Fig. 19: Proof of Lemma 19 in the case of K being a 2-ball and m = 0

an (m−1)-simplex from ∂ s, and then perform a total of m−2 elementary shellings
shs1 , . . . ,shsm−2 in order to obtain32

shsm−2 · · ·shs1

(
∂ s\ S̊t(∂ s,s0)

)∼=si Dm−1.

Similarly to how we did in the previous case, we now perform the following se-
quence of elementary shellings:

shrshr∗sm−2 · · ·shr∗s1

(
K ∗Sm \ S̊t(K ∗Sm,r ∗ s)

)∼=si
(
K \ S̊t(K,r)

)
∗Sm.

Since K \ S̊t(K,r) is a shellable combinatorial n-ball, it follows from the first case
that

(
K \ S̊t(K,r)

)
∗Sm is a shellable combinatorial n+m+1-ball. Due to the exist-

ence of the sequence of shellings(
K ∗Sm \ S̊t(K ∗Sm,r ∗ s)

) sh−→
(
K \ S̊t(K,r)

)
∗Sm,

this implies that
(
K ∗ Sm \ S̊t(K ∗ Sm,r ∗ s)

)
also is a shellable combinatorial n+

m+ 1-ball. But by definition, this means that K ∗ Sm is a shellable combinatorial
n+m+1-sphere, which finishes the proof.

This next Lemma, which is just [Lic99, Lemma 5.7], has a certain similarity to
our old friend Theorem 4, albeit with an additional condition and a stronger result.

Lemma 20. If K = (V,S) is a shellable combinatorial n-ball, then Cone(∂K) ≈bst
K.

Proof. Let K = (V,S) be a shellable combinatorial n-ball. We perform induction on
the number r ∈ N of n-simplices in K.

32 This might seem like came completely out of the blue, but remember that an abstract simplicial
complex simplicially isomorphic to Sm−1 is just “Sm−1 with its vertices renamed”.
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The case r = 1 is rather straightforward: If we denote this single n-simplex by s,
then we make the following claim:

Claim. In this case, we have (V,S) = (s,P(s)\{∅}).
Proof. The inclusion “⊇” follows from s ∈ S and property (2) of abstract simplicial
complexes. For the other inclusion, assume there was a vertex v ∈V \ s. Then it fol-
lows from the definition of a combinatorial manifold33 that St(K,v) = {v}∗Lk(K,v)
is a combinatorial n-ball, and thus contains an n-simplex. But the only n-simplex of
K is s, so since by assumption v /∈ s, we have that s must be an n-simplex in the
combinatorial (n−1)-ball Lk(K,v), which is clearly a contradiction.

Since K is just given by s and its faces, we have that Lk(K,s) = (∅,∅) is a non-
trivial (−1)-sphere in K, so we can perform

τsK = K \ S̊t(K,s)︸ ︷︷ ︸
=(∅,∅)

∪∂ s∗B(K,s)︸ ︷︷ ︸
=s

= s∗∂ s∼=si Cone(∂K).

Now assume that r ≥ 2, and that the claim is true for shellable combinatorial n-
balls of dimension less than r. If we denote by K1 := shtK the result of the first
elementary shelling in a sequence K sh−→ Dn, where s ∗ t is an n-simplex of K that
fulfills s∩ ∂K = ∂ s and t ∗ ∂ s ⊆ ∂K. We also denote by k the dimension of t. By
construction, K1 has r−1 simplices of dimension n, so it follows from the induction
hypothesis that K1 ≈bst Cone(∂K1). We use this to rewrite

K = K1∪ s∗ t ≈bst Cone(∂K1)∪ s∗ t.

Now, we have the following claim:

Claim. The link of s in this new combinatorial manifold is given by

Lk
(
Cone(∂K1)∪ s∗ t,s

)
= ∂Cone(t),

and it is a non-trivial k-sphere in Cone(∂K1)∪ s∗ t.

Proof. The second claim follows immediately from the first one since Cone(t) ∼=si
Dk+1. For the first claim, we perform the following calculation:

∂Cone(t) = t ∪Cone(∂ t) = t ∪Cone
(

Lk(∂K1,s)
)
= Lk

(
Cone(∂K1)∪ s∗ t,s

)
The reader is invited to draw some pictures in order to verify that chain of equations.

Thanks to the claim, we can now perform34

τs
(
Cone(∂K1)∪ s∗ t

)
=
(
Cone(∂K1)∪ s∗ t

)
\ S̊t
(
Cone(∂K1)∪ s∗ t,s

)
∪∂ s∗Cone(t) =

=
(
Cone(∂K1)

)
\ S̊t
(
Cone(∂K1),Cone(s)

)
∪Cone(t ∗∂ s) =

= Cone
(
∂K1 \ S̊t(∂K1,s)∪ t ∗∂ s

)
.

33 Recall that combinatorial balls are combinatorial manifolds by Lemma 6.
34 The dual simplex of s in Cone(∂K1)∪ s∗ t is given by Cone(t).
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In the last step, we used commutativity of the join and the fact that s ∗ t is entirely
part of St

(
Cone(∂K1)∪ s∗ t,s

)
. Now, we use Lemma 17 to calculate the boundary

of K1 as follows:

∂K1 = τt∂K = ∂K \ S̊t(∂K, t ∗∂ s)∪ s∗∂ t.

This allows us to simplify the above expression.

K ≈bst Cone(∂K1)∪ s∗ t ≈bst

≈bst Cone
(
∂K1 \ S̊t(∂K1,s)

)
∪Cone(t ∗∂ s) =

= Cone
((

∂K \ S̊t(∂K, t ∗∂ s)∪ s∗∂ t
)
\ S̊t(∂K,s∗∂ t)

)
∪Cone(t ∗∂ s) =

= Cone
(
∂K \ S̊t(∂K, t ∗∂ s)

)
∪Cone(t ∗∂ s) =

= Cone
(
∂K \ S̊t(∂K, t ∗∂ s)∪ (t ∗∂ s)

)
=

= Cone(∂K).

This concludes the induction step and the proof.

The induction step actually has a somewhat nice picture to back it up, see below.
We remove a simplex, turn the remaining complex into a cone on its boundary,
and are just one bistellar move away from a cone on the boundary of the original
complex.

��
��
��

��
��
��

∪s∗ t

K1 = shtK

Cone(∂K1)∪ s∗ t

Cone(∂K1)

s

Cone(∂K)

t

K

≈bst
sht

≈bst

Fig. 20: The induction step in the proof of Lemma 20

The next corollary is beautiful not only because it is the first time we are able to
connect stellar moves, bistellar moves, and shellability in a meaningful yet concise
statement, but also because it will play a crucial role in proving Pachner’s theorem.

Corollary 4. Let K = (V,S) be a combinatorial n-manifold, and let s ∈ S be a k-
simplex with s /∈ ∂K. If Lk(K,s) is shellable, then K ≈bst σsK.

Both the statement and the proof of Corollary 4 can be found in [Lic99, Corol-
lary 5.8], but as per usual, we have attempted to fill in the details.
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Proof. Since s /∈ ∂K, its link Lk(K,s) is a shellable combinatorial (n− k− 1)-
sphere. We can apply Lemma 18 (k+1)-times to conclude that

St(K,s) = s∗Lk(K,s)∼=si D0 ∗ · · · ∗D0︸ ︷︷ ︸
(k+1)-times

∗Lk(K,s)

is a shellable combinatorial n-ball. Thus, it follows from Lemma 20 that

St(K,s)≈bst Cone
(
∂St(K,s)

)
.

Since s is a combinatorial k-ball and Lk(K,s) is a combinatorial (n− k−1)-sphere,
it follows from Proposition 2 (2) that we have ∂St(K,s) = ∂ s∗Lk(K,s). Using this,
we calculate

σsK = K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s)∼=si

∼=si K \ S̊t(K,s)∪Cone
(
∂ s∗Lk(K,s)

)
=

= K \ S̊t(K,s)∪Cone
(
∂St(K,s)

)
≈bst

≈bst K \ S̊t(K,s)∪St(K,s) =

= K.

Since any simplicial isomorphism is also a bistellar equivalence, this finishes the
proof.

Apart from the fact that they will prove to be extremely useful in proving Pach-
ner’s theorem, reading and proving the statements in this chapter might have had the
added benefit of making the reader grow used to bistellar moves.

7 Proof of Pachner’s theorem

This penultimate chapter usues a lot of the results from the previous chapters in
order to prove Pachner’s theorem. For the reader’s convenience, we shall quickly
restate it in all its glory.

Theorem 7. (Pachner’s Theorem) Let K = (V,S) and K′ = (V ′,S′) be closed com-
binatorial n-manifolds. Then

K ≈bst K′ ⇐⇒ K ≈st K′.

The proof of Pachner’s theorem closely follows the one given in [Lic99, The-
orem 5.9], which itself follows the original proof by Pachner (cf. [Pac91, The-
orem 5.5]). However, Lickorish and Pachner make use of a concept called “stellar
exchanges” that is essentially a generalisation of both stellar and bistellar moves.
We stick to the (bi)stellar moves that we are familiar with in order to minimise con-
fusion, but the interested reader can find the proof using stellar exchanges in the
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aforementioned papers.
Another thing to note is that the proof uses a lot of notation and looks rather in-
volved, but in the end boils down to the effects of stellar moves, Corollary 4, Lemma
15, and a glorified exercise in mathematical induction. For the reader just trying to
skim over the proof, there are diagrams scattered throughout that attempt to capture
a lot of what happens.

Proof. Let K = (V,S) and K′ = (V ′,S′) be closed combinatorial n-manifolds.
We start with the significantly easier direction. Assume that K ≈bst K′. Recall that
by Lemma 16 (5), any bistellar move in a sequence K ≈bst K′ is (potentially up to a
simplicial isomorphism) the composition of two stellar moves. Therefore, we have
K ≈st K′, and applying the Alexander-Newman Theorem concludes the proof of this
implication.
For the converse, assume that |K| ∼=PL |K′|, or equivalently that K ≈st K′. Due to the
transitivity of bistellar equivalence, it suffices to prove the claim in the case that

K′ = σsK = K \ S̊t(K,s)∪ s∗∂ s∗Lk(K,s)

for some k-simplex s ∈ S. For the remainder of the proof, we also use the notation
L := Lk(K,s). As a first step, we split up L into

L = L′ ∗Σ , where Σ ∼=si Sm1 ∗ · · · ∗Smp , for suitable values of p,m1, . . . ,mp ∈ N0.

Essentially, we are splitting off a part that is simplicially isomorphic to a join of
spheres, but we do allow for Σ to be empty (in that case, p = 0). Note that since K
is closed, the link L is a combinatorial (n− k−1)-sphere by Proposition 1 (1).
By applying Lemma 15 p-times, we obtain that L′ is also a combinatorial sphere,
the dimension of which we denote by35

m := dimL′ ∈ N0∪{−1}.

Furthermore, since L′ is a combinatorial sphere, we can denote the minimum num-
ber of stellar moves in a sequence L′ ≈st Sm by r ∈ N0.
We perform induction on m. The case m =−1 is non-trivial already: If dimL′ =−1,
then L′ is the empty abstract simplicial complex, and

L = Σ ∼=si Sm1 ∗ · · · ∗Smp .

Since the sphere Sm1 is a shellable combinatorial sphere, it follows from (p− 1)-
fold application of Lemma 19 that L is a shellable combinatorial (n− k − 1)-
sphere. Therefore, since ∂ s ∼=si Sk−1, we obtain from applying Lemma 19 again
that Lk(K′,s) = ∂ s ∗Lk(K,s) is a shellable combinatorial (n− 1)-sphere. Since K
is closed, we can apply Corollary 4 in order to conclude that

K ≈bst σsK = K′.

35 Recall that we had defined the dimension of the empty abstract simplicial complex as −1.
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The case m = 0 is also of importance: If L′ is a combinatorial 0-sphere, then it is
simplicially isomorphic to S0 since stellar moves along 0-simplices are just simpli-
cial isomorphisms. But then L′ can be absorbed into Σ , allowing us to reduce this
case to the case that m =−1.
Now let m∈N, and assume the claim is true for stellar moves along simplices whose
links have a part “outside of Σ” of dimension less than m.
We shall now also perform induction on r. The case r = 0 is rather straightforward:
If we have L′ ∼=si Sm, then L′ can again be absorbed into Σ , which also puts us back
to the case that m =−1.
Now let r ∈N, and assume the claim is true for stellar moves along simplices whose
links have a part “outside of Σ” that are stellar equivalent to Sm in less than r stellar
moves.
Idea for the proof: Cleverly subdivide both K and K′ and use the induction hypo-
theses in order to find bistellar equivalent combinatorial manifolds.
As we have done before, we distinguish two cases:

Case 1: The first of the r moves in L′ ≈st Sm is a stellar subdivision σt for some simplex
t of L′. We denote its link in L′ by L′′ := Lk(L′, t). We consider the following
combinatorial n-manifolds: Since t is a simplex in Lk(K,s), the simplex s ∗ t
lies in K, and we can define

K1 := σs∗tK.

Furthermore, we use the fact that s is a simplex of

K1 = K \ S̊t(K,s∗ t)∪ s∗ t ∗ ∂ (s∗ t)︸ ︷︷ ︸
=∂ s∗t∪s∗∂ t

∗Lk(K,s∗ t)

in order to be able to define

K2 := σsK1 = σs(σs∗tK).

We are now interested in certain links that allow us to actually use the induction
hypotheses. First, we calculate

St(K,s) = s∗L = s∗L′ ∗Σ = s∗ t ∗L′′ ∗Σ ,

and therefore have Lk(K,s∗ t) = L′′ ∗Σ . But since

m = dimL′ ≥ dim(L′′ ∗ t) = dimL′′+dim t +1 > dimL′′,

we can conclude from the induction hypothesis on m that K ≈bst K1.
Now we use the above description of K1 in order to calculate

St(K1,s) = s∗ t ∗ s∗∂ t ∗Lk(K,s∗ t)︸ ︷︷ ︸
=L′′∗Σ

= s∗Σ ∗ s∗ t ∗∂ t ∗L′′︸ ︷︷ ︸
=σt L′

= s∗Σ ∗σtL′,

which yields us Lk(K1,s) = Σ ∗ σtL′. However, by construction, σtL′ ≈st Sm
in r− 1 stellar moves, thus it follows from the induction hypothesis on r that
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K1 ≈bst K2.
Note that s ∗ t is a simplex of K′ because t is a simplex in the link Lk(K,s).
Therefore, it makes sense to consider the following claim:

Claim. We have σs∗tK′ = K2.

Proof. It suffices to calculate the effects of36 σs∗tσs and σsσs∗t on St(K,s ∗ t)
because on K \ S̊t(K,s ∗ t), they certainly produce identical results. Using the
results from above, we calculate37

σs∗t
(
σs
(
St(K,s∗ t)

))
= σs∗t

(
σs(s∗ t ∗Σ ∗L′′)

)
=

= σs∗t
(
s∗∂ s∗ t ∗Σ ∗L′′

)
=

= s∗ t ∗∂ (s∗ t)∗∂ s∗Σ ∗L′′ =

= s∗ t ∗ (t ∪ s∗∂ t)∗∂ s∗Σ ∗L′′,

and

σs
(
σs∗t
(
St(K,s∗ t)

))
= σs

(
σs∗t(s∗ t ∗Σ ∗L′′)

)
=

= σs
(
s∗ t ∗∂ (s∗ t)∗Σ ∗L′′

)
=

= σs
(
s∗ t ∗ (∂ s∗ t ∪ s∗∂ t)∗Σ ∗L′′

)
=

= s∗ t ∗∂ s∗ t ∗Σ ∗L′′∪ s∗ t ∗ s∗∂ s∗∂ t ∗Σ ∗L′′ =

= s∗ t ∗∂ s∗Σ ∗L′′ ∗ (t ∪ s∗∂ t),

which are identical by commutativity of the join operation.

There is an attempt at sketching the star of s∗ t below, for disappointingly low
dimensions of s, t, and Σ , the last of which is just a copy of S0.

K

K1

σs∗t

σs

K′

σs∗t

σs
K2

t s

Fig. 21: Two ways to get from K to K2 using stellar moves

36 We care about these pairs of stellar subdivisions since they were used to define K′ and K2.
37 These two calculations essentially utilise the description of stellar moves, and are probably
easier to understand by looking at Figure 21.



Pachner’s Theorem 51

The following diagram illustrates the situation. Note that the arrows are not
maps, but instead indicate stellar subdivisions.

K K1

K′ K2.

σs∗t

σs σs

σs∗t

We have already seen that the stellar subdivisions to the top and right induce
bistellar equivalences. Our plan is now to show that the bottom horizontal stellar
subdivision induces a bistellar equivalence, because then transitivity yields us a
bistellar equivalence between K and K′.
Using the definition of K′ = σsK, we calculate

St(K′,s∗ t) = s∗∂ s∗L = s∗∂ s∗Σ ∗L′ = s∗∂ s∗Σ ∗ t ∗L′′.

Therefore, we have Lk(K′,s∗ t) = ∂ s∗Σ ∗L′′, and after absorbing the sphere ∂ s
into Σ , we can use the claim as well as our hypothesis on m to obtain that

K′ ≈bst σs∗tK′ = K2.

But now we have shown the three bistellar equivalences

K ≈bst K1 ≈bst K2 ≈bst K′,

so we have K ≈bst K′ by transitivity.
Case 2: The first of the r moves in L′ ≈st Sm is a stellar weld σ

−1
t for some simplex t of

σ
−1
t L′, and we have38

Lk(L′, t) = ∂ t ∗Lk(σ−1
t L′, t).

In Case 2, we denote that last link by L′′ := Lk(σ−1
t L′, t). Because in this case

we are dealing with a stellar weld, we have to distinguish another two cases:

Case 2a: The simplex t does not lie in K. We set K1 := σ
−1
t σs∗tK and K2 := σsK1.

This is possible since t is a vertex in L′ and hence also in Lk(K,s). Since
for the star of s in K we have

St(K,s) = s∗L = s∗L′ ∗Σ = s∗ t ∗Lk(L′, t)∗Σ = s∗ t ∗∂ t ∗L′′ ∗Σ ,

we obtain Lk(K,s∗ t) = ∂ t ∗L′′ ∗Σ = L′′ ∗Σ ′, for Σ ′ = ∂ t ∗Σ still a link of
spheres. Furthermore, we again have

m = dimL′ ≥ dim(L′′ ∗ t) = dimL′′+0+1 > dimL′′,

so we can use the induction hypothesis on m in order to obtain that

38 This is an immediate consequence of the definition of stellar moves.
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K ≈bst σs∗tK = σtK1.

But St(K1, t) = ∂ (s∗ t)∗ t ∗Σ ∗L′′, so Lk(K1, t) = ∂ (s∗ t)∗Σ ∗L′′, and we
can absorb the sphere ∂ (s∗ t) into Σ in order to obtain from our induction
hypothesis on m that K1 ≈bst σtK1.
Similarly, we consider

St(K1,s) = σ
−1
t
(
s∗ t ∗∂ (s∗ t)∗Lk(K,s∗ t)

)
=

= s∗σ
−1
t L′ ∗Σ ∪σ

−1
t s∗σ

−1
t L′ ∗Σ ,

and therefore
Lk(K1,s) = σ

−1
t L′ ∗Σ .

Note that σ
−1
t L′ ≈st Sm in r− 1 stellar moves, hence our induction hypo-

thesis on r yields K1 ≈bst K2.
Recall that since t is a vertex in Lk(K,s) = Lk(K′,s ∗ ∂ s), the 1-simplex
s∗ t lies in K′. This allows us to make the following claim:

Claim. We have σ
−1
t
(
σs∗tK′

)
= K2.

Proof. It suffices to calculate the effects of both σ
−1
t σs∗tσs and σsσ

−1
t σs∗t

on St(K,s ∗ t) because on K \ S̊t(K,s ∗ t), they certainly produce identical
results. Using the results from above, we calculate

σ
−1
t σs∗tσs

(
St(K,s∗ t)

)
= σ

−1
t σs∗tσs

(
s∗ t ∗∂ t ∗Σ ∗L′′

)
=

= σ
−1
t σs∗t

(
s∗∂ s∗ t ∗∂ t ∗Σ ∗L′′

)
=

= σ
−1
t
(
s∗ t ∗∂ (s∗ t)∗∂ s∗∂ t ∗Σ ∗L′′

)
=

= (s∪ t)∗∂ s∗ t ∗Σ ∗L′′,

and

σsσ
−1
t σs∗t

(
St(K,s∗ t)

)
= σsσ

−1
t σs∗t

(
s∗ t ∗∂ t ∗Σ ∗L′′

)
=

= σsσ
−1
t
(
s∗ t ∗∂ (s∗ t)∗∂ t ∗Σ ∗L′′

)
=

= σsσ
−1
t
(
s∗ t ∗ (∂ s∗ t ∪ s)∗∂ t ∗Σ ∗L′′

)
=

= σs
(
(∂ s∗ t ∪ s)∗ t ∗Σ ∗L′′

)
=

= (∂ s∗ t ∪ s∗∂ s)∗ t ∗Σ ∗L′′ =

= (s∪ t)∗∂ s∗ t ∗Σ ∗L′′,

which are identical.

The following diagram illustrates the situation. Note that again, the arrows
are not maps, but instead indicate stellar subdivisions.
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K σtK1 K1

K′ σtK2 K2.

σs∗t

σs

σt

σs

σs∗t σt

We have already seen that the two top horizontal stellar subdivisions, as
well as the one to right, all induce bistellar equivalences. Our plan is now
to show that the two bottom horizontal stellar subdivisions induce bistel-
lar equivalences, because then transitivity yields us a bistellar equivalence
between K and K′.
As we had already seen in the proof of the claim, we have

St(K′,s∗ t) = s∗∂ s∗ t ∗∂ t ∗Σ ∗L′′,

and therefore
Lk(K′,s∗ t) = ∂ s∗∂ t ∗Σ ∗L′′.

After absorbing the spheres ∂ s and ∂ t into Σ , we can use the claim as well
as our hypothesis on m to obtain that

K′ ≈bst
(
σs∗tK′

)
= σtK2.

So it remains to show that σtK2 ≈bst K2. But this follows from the above
result that

St(K2, t) = (s∪ t)∗∂ s∗ t ∗Σ ∗L′′,

hence
Lk(K2, t) = (s∪ t)∗∂ s∗Σ ∗L′′.

Again, we absorb the spheres ∂ s and s∪ t into Σ , and can use the induction
hypothesis on m to obtain K2 ≈bst σtK2.
Now we have shown the five stellar equivalences

K ≈bst σtK1 ≈bst K1 ≈bst K2 ≈bst σtK2 ≈bst K′,

so we have K ≈bst K′ by transitivity.
Case 2b: If the simplex t happens to lie in K, we reduce the situation to Case 2a as

follows: If t is a 0-simplex, then we can just use an alternative new vertex v0
instead, and obtain the result from Case 2a up to a simplicial isomorphism.
If dim t ≥ 1, we pick a vertex u ∈ t and write t ′ := t \ {u} for its opposite
face in t. Now choose a vertex v that is not in K. Let ϕ be a simplicial
isomorphism that sends the vertex s∗u to v. We now define a series of
combinatorial manifolds as follows:

K̂ := ϕσs∗uK, K̂′ := σsK̂, K′ := σsK.

Claim. We have ϕσs∗uK′ = K̂′.
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Proof. As in the previous cases, we calculate how ϕσs∗uσs and σsϕσs∗u
affect St(K,s∗ t), because both clearly do the same on K \ S̊t(K,s∗ t).

ϕσs∗uσs
(
St(K,s∗ t)

)
= ϕσs∗uσs

(
s∗u∗ t ′ ∗L′′ ∗Σ

)
=

= ϕσs∗u
(
s∗∂ s∗u∗ t ′ ∗L′′ ∗Σ

)
=

= v∗∂ (s∗u)∗∂ s∗ t ′ ∗L′′ ∗Σ =

= v∗ (u∪ s)∗∂ s∗ t ′ ∗L′′ ∗Σ ,

and

σsϕσs∗u
(
St(K,s∗ t)

)
= σsϕσs∗u

(
s∗u∗ t ′ ∗L′′ ∗Σ

)
=

= σs
(
v∗∂ (s∗u)∗ t ′ ∗L′′ ∗Σ

)
=

= σs
(
v∗ (∂ s∗u∪ s)∗ t ′ ∗L′′ ∗Σ

)
=

= v∗ (∂ s∗u∪ s∗∂ s)∗ t ′ ∗L′′ ∗Σ =

= v∗ (u∪ s)∗∂ s∗ t ′ ∗L′′ ∗Σ ,

which are clearly identical.

The situation is now as follows:

K K̂

K′ K̂′

ϕσs∗u

σs σs

ϕσs∗u

In order to show that there is a bistellar equivalence between the combin-
atorial manifolds on the left-hand side, we show that the three stellar sub-
divisions at the bottom, top, and to the right induce bistellar equivalences
between the respective combinatorial manifolds. First, we use that the link
of s in K̂ is given by39

Lk(K̂,s) = v∗ t ′ ∗L′′ ∗Σ = ϕ(t)∗L′′ ∗Σ = ϕ(L′)∗Σ ,

and that ϕ(L′) is just another copy of L′, but with one vertex renamed.
Therefore, we can use the calculation from Case 2a in order to obtain that
K̂ ≈bst K̂′.
For the top horizontal map, we use that

Lk(K,s∗u) = t ′ ∗L′′ ∗Σ = Lk(L′,u)∗Σ ,

and since L′ is a combinatorial m-sphere, we have

dimLk(L′,u) = m−1 < m,

39 As before, we can read it off in the third line of the calculation of σsϕσs∗u
(
St(K,s∗ t)

)
.
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so it follows from the induction hypothesis on m that K ≈bst K̂.
The argument that the bottom horizontal map induces a bistellar equival-
ence K′ ≈bst K̂′ is essentially the same. Therefore, we can again conclude
that

K ≈bst K̂ ≈bst K̂′ ≈bst K′.

In all cases, we have now shown the induction step, therefore Pachner’s theorem
follows by induction.

Remark 8. One of the downsides of the proof is that regrettably, drawing sketches
that are both meaningful and non-trivial is pretty much impossible. This can be seen
in the fact that at times in the proof, we had to consider joins of up to 5 simplicial
complexes, which, according to the dimension formula from Lemma 1, automatic-
ally puts us at a dimension of at least 4, and significantly more if we ask for some of
the links or simplices to be of higher dimensions. So unless the reader has an easy
time visualising those dimensions, the beauty has to be found in the way everything
ultimately ends up falling into place, as well as sketches of tiny parts of the com-
plexes involved, similar to the way we did in Figure 21.

For the sake of completeness, we also state another result that could be described
as “Pachner for manifolds with boundary”. For this, we need a notion of connected-
ness for abstract simplicial complexes. Luckily, connectedness for abstract simpli-
cial complexes is a rather straightforward concept to define.

Definition 18. Let K = (V,S) be an abstract simplicial complex. We call K con-
nected if for any two vertices u,v ∈ V, there exists a sequence w1, . . . ,wk ∈ V with
w1 = u, wk = v, and the simplex {wi,wi+1} ∈ S for all i ∈ {1, . . . ,k−1}.

Theorem 8. (Pachner for Bounded Manifolds) Let K and K′ be connected com-
binatorial n-manifolds with non-empty boundary. Then |K| ∼=PL |K′| if and only if
they are related by a sequence of elementary shellings, inverse shellings40, and sim-
plicial isomorphisms.

Proof. Proofs for this Theorem can be found in [Lic99, Theorem 5.10], or alternat-
ively in [Pac91, Theorem 6.3].
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Cer68. Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0), Lecture Notes
in Mathematics 53, Springer Verlag (1968)

Cer70. Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le
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