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Abstract A circle graph is an intersection graph of a set of chords of a circle. We
describe the unavoidable induced subgraphs of circle graphs with large treewidth.
This includes examples that are far from the ‘usual suspects’. Our results imply that
treewidth and Hadwiger number are linearly tied on the class of circle graphs, and
that the unavoidable induced subgraphs of a vertex-minor-closed class with large
treewidth are the usual suspects if and only if the class has bounded rank-width.
Using the same tools, we also study the treewidth of graphs G that have a circular
drawing whose crossing graph is well-behaved in some way. In this setting, we show
that if the crossing graph is Kt -minor-free, then G has treewidth at most 12t−23 and
has no K2,4t -topological minor. On the other hand, we show that there are graphs
with arbitrarily large Hadwiger number that have circular drawings whose crossing
graphs are 2-degenerate.

1 Introduction

This paper studies the treewidth of graphs that are defined by circular drawings.
Treewidth is the standard measure of how similar a graph is to a tree, and is of fun-
damental importance in structural and algorithmic graph theory. The motivation for
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this study is two-fold. See Section 2 for definitions omitted from this introduction.
In this extended abstract, most proofs are omitted; see [28] for all the details.

1.1 Theme #1: Circle Graphs

A circle graph is the intersection graph of a set of chords of a circle. Circle graphs
form a widely studied graph class [15, 17, 23, 25, 26, 31, 33] and there have been
several recent breakthroughs concerning them. In the study of graph colourings,
Davies and McCarty [17] showed that circle graphs are quadratically χ-bounded
improving upon a previous longstanding exponential upper bound. Davies [15] fur-
ther improved this bound to χ(G) ∈O(ω(G) logω(G)), which is best possible. Cir-
cle graphs are also fundamental to the study of vertex-minors and are conjectured to
lie at the heart of a global structure theorem for vertex-minor-closed graph classes
(see [36]). To this end, Geelen, Kwon, McCarty, and Wollan [26] recently proved
an analogous result to the excluded grid minor theorem for vertex-minors using cir-
cle graphs. In particular, they showed that a vertex-minor-closed graph class has
bounded rankwidth if and only if it excludes a circle graph as a vertex-minor. For
further motivation and background on circle graphs, see [16, 36].

Our first contribution determines when a circle graph has large treewidth.

Theorem 1. Let t ∈ N and let G be a circle graph with treewidth at least 12t + 2.
Then G contains an induced subgraph H that consists of t vertex-disjoint cycles
(C1, . . . ,Ct) such that for all i < j every vertex of Ci has at least two neighbours in
C j. Moreover, every vertex of G has at most four neighbours in any Ci (16 i6 t).

Observe that in Theorem 1 the subgraph H has a Kt -minor obtained by contract-
ing each of the cycles Ci to a single vertex, implying that H has treewidth at least
t− 1. Moreover, since circle graphs are closed under taking induced subgraphs, H
is also a circle graph. We now highlight several consequences of Theorem 1.

First, Theorem 1 describes the unavoidable induced subgraphs of circle graphs
with large treewidth. Recently, there has been significant interest in understanding
the induced subgraphs of graphs with large treewidth [2, 3, 4, 5, 6, 7, 8, 11, 34, 41,
46]. To date, most of the results in this area have focused on graph classes where
the unavoidable induced subgraphs are the following graphs, the usual suspects: a
complete graph Kt , a complete bipartite graph Kt,t , a subdivision of the (t× t)-wall,
or the line graph of a subdivision of the (t× t)-wall (see [46] for definitions). Circle
graphs do not contain subdivisions of large walls nor the line graphs of subdivisions
of large walls and there are circle graphs of large treewidth that do not contain
large complete graphs nor large complete bipartite graphs (see Theorem 17). To the
best of our knowledge this is the first result to describe the unavoidable induced
subgraphs of the large treewidth graphs in a natural hereditary class when they are
not the usual suspects. Later we show that the unavoidable induced subgraphs of
graphs with large treewidth in a vertex-minor-closed class G are the usual suspects
if and only if G has bounded rankwidth (see Theorem 18).
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Second, the subgraph H in Theorem 1 is an explicit witness to the large treewidth
of G (with only a multiplicative loss). Circle graphs being χ-bounded says that
circle graphs with large chromatic number must contain a large clique witnessing
this. Theorem 1 can therefore be considered to be a treewidth analogue to the χ-
boundedness of circle graphs.

Third, since the subgraph H has a Kt -minor, it follows that every circle graph
contains a complete minor whose order is at least one twelfth of its treewidth. This
is in stark contrast to the general setting where there are K5-minor-free graphs with
arbitrarily large treewidth (for example, grids). Theorem 1 also implies the following
relationship between the treewidth, Hadwiger number and Hajós number of circle
graphs (see Section 5)1.

Theorem 2. For the class of circle graphs, the treewidth and Hadwiger number are
linearly tied. Moreover, the Hajós number is quadratically tied to both of them. Both
‘linear’ and ‘quadratic’ are best possible.

1.2 Theme #2: Graph Drawing

The second thread of this paper aims to understand the relationship between circular
drawings of graphs and their crossing graphs. A circular drawing (also called convex
drawing) of a graph places the vertices on a circle with edges drawn as straight
line segments. Circular drawings are well-studied by the graph drawing community.
The crossing graph of a drawing D of a graph G has vertex-set E(G) where two
vertices are adjacent if the corresponding edges cross. Circle graphs are precisely the
crossing graphs of circular drawings. If a graph has a circular drawing with a well-
behaved crossing graph, must the graph itself also be well-behaved? Graphs that
have a circular drawing with no crossings are exactly the outerplanar graphs, which
have treewidth at most 2. Put another way, outerplanar graphs are those that have
a circular drawing whose crossing graph is K2-minor-free. Our next result extends
this fact, relaxing ‘K2-minor-free’ to ‘Kt -minor-free’.

Theorem 3. For every integer t > 3, if a graph G has a circular drawing where the
crossing graph has no Kt -minor, then G has treewidth at most 12t−23.

Theorem 3 says that G having large treewidth is sufficient to force a compli-
cated crossing graph in every circular drawing of G. A topological K2,4t -minor also
suffices.

Theorem 4. If a graph G has a circular drawing where the crossing graph has no
Kt -minor, then G contains no K2,4t as a topological minor.

Outerplanar graphs are exactly those graphs that have treewidth at most 2 and
exclude a topological K2,3-minor. As such, Theorems 3 and 4 extends these struc-

1 For a graph class G , two graph parameters α and β are tied on G if there exists a function f
such that α(G) 6 f (β (G)) and β (G) 6 f (α(G)) for every graph G ∈ G . Moreover, α and β are
quadratically/linearly tied on G if f may be taken to be quadratic/linear.
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tural properties of outerplanar graphs to graphs with circular drawings whose cross-
ing graphs are Kt -minor-free. We also prove a product structure theorem for such
graphs, showing that every graph that has a circular drawing whose crossing graph
has no Kt -minor is isomorphic to a subgraph of H�KO(t3) where tw(H) 6 2 (see
Corollary 11).

In the other direction, we consider sufficient conditions for a graph G to have a
circular drawing whose crossing graph has no Kt -minor. By Theorems 3 and 4, G
must have bounded treewidth and no K2,4t -topological minor. While these condi-
tions are necessary, we show that they are not sufficient, but that bounded treewidth
with bounded maximum degree is; see Lemma 14 and Proposition 15 in Section 4.2
for details.

In addition, we show that the assumption in Theorem 3 that the crossing graph
has bounded Hadwiger number cannot be weakened to bounded degeneracy. In par-
ticular, we construct graphs with arbitrarily large complete graph minors that have
a circular drawing whose crossing graph is 2-degenerate (Theorem 16). This re-
sult has applications to the study of general (non-circular) graph drawings, and in
particular, leads to the solution of an open problem asked by Hickingbotham and
Wood [29].

Our proofs of Theorems 1, 2 and 3 are all based on the same core lemmas in
Section 3. The results about circle graphs are in Section 5, while the results about
graph drawings are in Section 4.

2 Preliminaries

2.1 Graph Basics

We use standard graph-theoretic definitions and notation; see [18].
For a tree T , a T -decomposition of a graph G is a collection W = (Wx : x∈V (T ))

of subsets of V (G) indexed by the nodes of T such that (i) for every edge vw∈E(G),
there exists a node x ∈V (T ) with v,w ∈Wx; and (ii) for every vertex v ∈V (G), the
set {x ∈ V (T ) : v ∈Wx} induces a (connected) subtree of T . Each set Wx in W is
called a bag. The width of W is max{|Wx| : x ∈V (T )}−1. A tree-decomposition is
a T -decomposition for any tree T . The treewidth tw(G) of a graph G is the minimum
width of a tree-decomposition of G. When T is a path, W is a path-decomposition.
The pathwidth, pw(G), of G is the minimum width of a path-decomposition of G.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a
subgraph of G by contracting edges. The Hadwiger number, h(G), of a graph G is
the maximum integer t such that Kt is a minor of G.

A graph G̃ is a subdivision of a graph G if G̃ can be obtained from G by replacing
each edge vw by a path Pvw with endpoints v and w (internally disjoint from the rest
of G̃). A graph H is a topological minor of G if a subgraph of G is isomorphic to
a subdivision of H. The Hajós number, h′(G), of G is the maximum integer t such
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that Kt is a topological minor of G. A graph G is H-topological minor-free if H is
not a topological minor of G.

It is well-known that for every graph G, h′(G)6 h(G)6 tw(G)+1.
A graph class is a collection of graphs closed under isomorphism. A graph pa-

rameter is a real-valued function α defined on all graphs such that α(G1) = α(G2)
whenever G1 and G2 are isomorphic.

2.2 Drawings of Graphs

A drawing of a graph G is a function φ that maps each vertex v ∈ V (G) to a point
φ(v) ∈R2 and maps each edge e = vw ∈ E(G) to a non-self-intersecting curve φ(e)
in R2 with endpoints φ(v) and φ(w), such that:

• φ(v) 6= φ(w) for all distinct vertices v and w;
• φ(x) 6∈ φ(e) for each edge e = vw and each vertex x ∈V (G)\{v,w};
• each pair of edges intersect at a finite number of points: φ(e)∩φ( f ) is finite for

all distinct edge e, f ; and
• no three edges internally intersect at a common point: for distinct edges e, f ,g the

only possible element of φ(e)∩φ( f )∩φ(g) is φ(v) where v is a vertex incident
to all of e, f ,g.

A crossing of distinct edges e = uv and f = xy is a point in (φ(e)∩ φ( f )) \
{φ(u),φ(v),φ(x),φ(y)}; that is, an internal intersection point. A plane graph is a
graph G equipped with a drawing of G with no crossings.

The crossing graph of a drawing D of a graph G is the graph XD with vertex set
E(G), where for each crossing between edges e and f in D, there is an edge of XD
between the vertices corresponding to e and f . Note that XD is actually a multigraph,
where the multiplicity of e f equals the number of times e and f cross in D. In most
drawings that we consider, each pair of edges cross at most once, in which case XD
has no parallel edges.

Numerous papers have studied graphs that have a drawing whose crossing graph
is well-behaved in some way; for example, see [9, 20, 21, 24, 40]. A drawing is
circular if the vertices are positioned on a circle and the edges are straight line
segments. A theme of this paper is to study circular drawings D in which XD is
well-behaved in some way. Many papers have considered properties of XD in this
setting; see for example [19, 22, 45].

3 Tools

In this section, we introduce two auxiliary graphs that are useful tools for proving
our main theorems. For a drawing D of a graph G, the planarisation, PD, of D is the
plane graph obtained by replacing each crossing with a dummy vertex of degree 4.
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Note that PD depends upon the drawing D (and not just upon G). Figure 1 shows a
drawing and its planarisation.

(a) Drawing D of a graph G. (b) Planarisation PD.

Fig. 1: A drawing and its planarisation.

For a drawing D of a graph G, the map graph, MD, of D is obtained as follows.
First let PD be the planarisation of D. The vertices of MD are the faces of PD, where
two vertices are adjacent in MD if the corresponding faces share a vertex. If G is
itself a plane graph, then it is already drawn in the plane and so we may talk about
the map graph, MG, of G. Note that all map graphs are connected graphs. Figure 2
shows the map graph MD for the drawing D in Figure 1.

v∞

Fig. 2: Map graph MD. v∞ is the vertex corresponding to the outer face: it is adjacent
to all vertices except the central vertex of degree 10.

The radius of a connected graph G, denoted rad(G), is the minimum non-negative
integer r such that for some vertex v∈V (G) and for every vertex w∈V (G) we have
distG(v,w)6 r.

The following results say that the radius of MD provides a useful bridge between
the treewidth of G, the treewidth of XD, and the subgraphs of XD. First, the radius of
MD acts as an upper bound for both the treewidth of G and the treewidth of XD.

Theorem 5. For every drawing D of a graph G,

tw(G)6 6rad(MD)+7 and tw(XD)6 6rad(MD)+7.

It is not surprising that treewidth and radius are related for drawings. A classical
result of Robertson and Seymour [44, (2.7)] says that tw(G)6 3rad(G)+1 for every
connected planar graph G. Several authors improved this bound as follows.

Lemma 6 ([10, 21]). For every connected planar graph G,
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tw(G)6 3 rad(G).

The next lemma says that if a planar graph G has large treewidth, then the map
graph of any plane drawing of G has large radius. A triangulation of a plane G is a
plane supergraph of G on the same vertex set and where each face is a triangle.

Lemma 7. Let G be a plane graph with map graph MG. Then there is a plane
triangulation H of G with rad(H)6 rad(MG)+1. In particular,

tw(G)6 3 rad(MG)+3.

We use the following lemma about planarisations to extend Lemma 7 from plane
drawings to arbitrary drawings.

Lemma 8. For every drawing D of a graph G, the planarisation PD of D satisfies

tw(G)6 2tw(PD)+1 and tw(XD)6 2tw(PD)+1.

To prove Theorem 5, let PD be the planarisation of D. By definition, MD ∼= MPD .
Lemma 7 implies

2 tw(PD)+16 2(3rad(MPD)+3)+1 = 6rad(MD)+7,

and Lemma 8 now gives the required result.
The next lemma is a cornerstone of this paper. It shows that if the map graph

of a circular drawing has large radius, then the crossing graph contains a useful
substructure.

Lemma 9. Let D be a circular drawing of a graph G. If the map graph MD has
radius at least 2t, then the crossing graph XD contains t vertex-disjoint induced
cycles C1, . . . ,Ct such that for all i < j every vertex of Ci has at least two neighbours
in C j. Moreover, every vertex of XD has at most four neighbours in any Ci (16 i6 t).

4 Structural Properties of Circular Drawings

Theorem 5 says that for any drawing D of a graph G, the radius of MD provides an
upper bound for tw(G) and tw(XD). For a general drawing it is impossible to re-
late tw(XD) to tw(G). Firstly, planar graphs can have arbitrarily large treewidth (for
example, the (n× n)-grid has treewidth n) and admit drawings with no crossings.
In the other direction, K3,n has treewidth 3 and crossing number Ω(n2), as shown
by Kleitman [30]. In particular, the crossing graph of any drawing of K3,n has av-
erage degree linear in n and thus has arbitrarily large complete minors [35] and so
arbitrarily large treewidth.

Happily, this is not so for circular drawings. Using the tools in Section 3 we
show that if a graph G has large treewidth, then the crossing graph of any circular
drawing of G has large treewidth. In fact, the crossing graph must contain a large
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(topological) complete graph minor (see Theorems 3 and 10). In particular, if XD is
Kt -minor-free, then G has small treewidth. We further show that if XD is Kt -minor-
free, then G does not contain a subdivision of K2,4t (Theorem 4). Using these results,
we deduce a product structure theorem for G (Corollary 11).

In the other direction, we ask what properties of a graph G guarantee that it
has a circular drawing D where XD has no Kt -minor. Certainly G must have small
treewidth. Adding the constraint that G does not contain a subdivision of K2, f (t) is
not sufficient (see Lemma 14) but a bounded maximum degree constraint is: we
show that if G has bounded maximum degree and bounded treewidth, then G has a
circular drawing where the crossing graph has bounded treewidth (Proposition 15).

4.1 Necessary Conditions for Kt-Minor-Free Crossing Graphs

This subsection studies the structure of graphs that have circular drawings whose
crossing graph is (topological) Kt -minor-free. Much of our understanding of the
structure of these graphs is summarised by Theorems 3 and 4 and the next two
results.

Theorem 10. If a graph G has a circular drawing where the crossing graph has no
topological Kt -minor, then G has treewidth at most 6t2 +6t +1.

We may deduce a product structure theorem for graphs that have a circular draw-
ing whose crossing graph is Kt -minor-free. For two graphs G and H, the strong
product G�H is the graph with vertex-set V (G)×V (H), and with an edge between
two vertices (v,w) and (v′,w′) if and only if v = v′ and ww′ ∈ E(H), or w = w′ and
vv′ ∈ E(G), or vv′ ∈ E(G) and ww′ ∈ E(H). Campbell et al. [13, Prop. 55] showed
that if a graph G is K2,t -topological minor-free and has treewidth at most k, then G is
isomorphic to a subgraph of H�KO(t2k) where tw(H)6 2. Thus Theorems 3 and 4
imply the following product structure result.

Corollary 11. If a graph G has a circular drawing where the crossing graph has
no Kt -minor, then G is isomorphic to a subgraph of H�KO(t3) where tw(H)6 2.

En route to proving these results, we use the cycle structure built by Lemma 9 to
find (topological) complete minors in the crossing graph of circular drawings. We
first show that the treewidth and Hadwiger number of XD as well as the radius of
MD are all linearly tied.

Lemma 12. For every circular drawing D,

tw(XD)6 6rad(MD)+76 12h(XD)−116 12tw(XD)+1.

Proof. The first inequality is exactly Theorem 5, while the final one is the well-
known fact that h(G)6 tw(G)+1 for every graph G. To prove the middle inequality
we need to show that for any circular drawing D,

rad(MD)6 2h(XD)−3. (1)
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Let t := h(XD) and suppose, for a contradiction, that rad(MD)> 2t−2. By Lemma 9,
XD contains t − 1 vertex disjoint cycles C1, . . . ,Ct−1 such that for all i < j every
vertex of Ci has a neighbour in C j. Contracting C1 to a triangle and each Ci (i > 2)
to a vertex gives a Kt+1-minor in XD. This is the required contradiction. ut

Clearly the Hajós number of a graph is at most the Hadwiger number. Our next
lemma implies that the Hajós number of XD is quadratically tied to the radius of MD
and to the treewidth and Hadwiger number of XD.

Lemma 13. For every circular drawing D,

rad(MD)6 h′(XD)
2 +3h′(XD)+1.

Proof. Let t = h′(XD)+ 1 and suppose, for a contradiction, that rad(MD) > t2 + t.
By Lemma 9, XD contains (t2+t)/2 vertex disjoint cycles C1, . . . ,C(t2+t)/2 such that
for all i < j every vertex of Ci has a neighbour in C j. For each i ∈ {1, . . . , t}, let vi ∈
V (Ci). We assume that V (Kt) = {1, . . . , t} and let φ : E(Kt)→{t+1, . . . ,(t2+t)/2}
be a bijection. Then for each i j ∈ E(Kt), there is a (vi,v j)-path Pi j in XD whose
internal vertices are contained in V (Cφ(i j)). Since φ is a bijection, it follows that
(Pi j : i j ∈ E(Kt)) defines a topological Kt -minor in XD, a contradiction. ut

We are now ready to prove Theorems 3 and 10.

Proof of Theorem 3. Let D be a circular drawing of G with h(XD) 6 t− 1. By (1),
rad(MD)6 2t−5. Finally, by Theorem 5, tw(G)6 12t−23. ut

Proof of Theorem 10. Let D be a circular drawing of G with h′(XD) 6 t − 1. By
Lemma 13, rad(MD)6 t2 + t−1. Finally, by Theorem 5, tw(G)6 6t2 +6t +1. ut

By considering grid graphs, we show that the bound on tw(G) in Theorem 3 is
within a constant factor of being optimal.

The proof of Theorem 4 is more involved—see [28] for details.

4.2 Sufficient Conditions for Kt-Minor-Free Crossing Graphs

It is natural to consider whether the converse of Theorems 3 and 4 holds. That is,
does there exist a function f such that if a K2,t -topological minor-free graph G has
treewidth at most k, then there is a circular drawing of G whose crossing graph is
K f (t,k)-minor-free. Our next result shows that this is false in general. A t-rainbow
in a circular drawing of a graph is a non-crossing matching consisting of t edges
between two disjoint arcs in the circle.

Lemma 14. For every t ∈ N, there exists a K2,4-topological minor-free graph G
with tw(G) = 2 such that, for every circular drawing D of G, the crossing graph XD
contains a Kt -minor.
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Proof. Let T be any tree with maximum degree 3 and sufficiently large pathwidth
(as a function of t). Such a tree exists as the complete binary tree of height 2h
has pathwidth h. Let G be obtained from T by adding a dominant vertex v, so G has
treewidth 2. Since G−v has maximum degree 3, it follows that G is K2,4-topological
minor-free.

Let D be a circular drawing of G and let DT be the induced circular drawing of
T . Since T has sufficiently large pathwidth, a result of Pupyrev [43, Thm. 2] implies
that XD has large chromatic number or a 4t-rainbow2. Since the class of circle graphs
is χ-bounded [27], it follows that if XD has large chromatic number, then it contains
a large clique and we are done. So we may assume that DT contains a 4t-rainbow. By
the pigeonhole principle, there is a subset {a1b1, . . . ,a2tb2t} of the rainbow edges
such that aibi topologically separates v from a j and b j whenever i < j. As such,
aibi crosses the edges va j and vb j in D whenever i < j. Therefore XD contains a
Kt,2t subgraph with bipartition ({a1b1, . . . ,atbt},{vat+1,vbt+1, . . . ,va2t ,vb2t}) and
this contains a Kt -minor. ut

While K2,4-topological minor-free and bounded treewidth is not sufficient to
imply that a graph has a circular drawing whose crossing graph is Kt -minor-free,
bounded degree and bounded treewidth is sufficient.

Proposition 15. For k,∆ ∈ N, every graph G with treewidth less than k and maxi-
mum degree at most ∆ has a circular drawing in which the crossing graph XD has
treewidth at most (6∆ +1)(18k∆)2−1.

4.3 Circular Drawings and Degeneracy

Theorems 3 and 10 say that if a graph G has a circular drawing D where the cross-
ing graph XD excludes a fixed (topological) minor, then G has bounded treewidth.
Graphs excluding a fixed (topological) minor have bounded average degree and de-
generacy [35]. Despite this, we now show that XD having bounded degeneracy is not
sufficient to bound the treewidth of G. In fact, it is not even sufficient to bound the
Hadwidger number of G.

Theorem 16. For every t ∈ N, there is a graph Gt and a circular drawing D of Gt
such that:

• Gt contains a Kt -minor,
• Gt has maximum degree 3, and
• XD is 2-degenerate.

Proof. We draw Gt with vertices placed on the x-axis (x-coordinate between 1 and
t) and edges drawn on or above the x-axis. This can then be wrapped to give a
circular drawing of Gt .

2 The result of Pupyrev [43] is in terms of stacks and queues but is equivalent to our statement.
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For real numbers a1 < a2 < · · ·< an, we say a path P is drawn as a monotone path
with vertices a1, . . . ,an if it is drawn as follows where each vertex has x-coordinate
equal to its label:

a1 a2 a3 a4 an−1 an

. . . . . .

In all our monotone paths, a1,a2, . . . ,an will be an arithmetic progression. We
construct our drawing of Gt as follows (see Figure 3 for the construction with t = 4).

1 2 3 4

Fig. 3: G4 where P0 is purple, P1 is blue, P2 is red, P3 is green, and the er,s are black.

First let P0 be the monotone path with vertices 1,2, . . . , t. For s∈ {1,2, . . . , t−1},
let Ps be the monotone path with vertices

s+2−s,s+3 ·2−s,s+5 ·2−s, . . . , t−2−s.

Observe that these paths are vertex-disjoint. For 0 6 r < s 6 t − 1, let Ir,s be the
interval

[s+2−r−2−s,s+2−r].

Note that the lower end-point of Ir,s is a vertex in Ps and the upper end-point is a
vertex in Pr. Also note that no vertex of any Pi lies in the interior of Ir,s. Hence for
all r < s we may draw a horizontal edge er,s between the end-points of Ir,s.

Graph Gt and the drawing D are obtained as a union of the Ps together with all
the er,s. The paths Ps are vertex-disjoint and edge er,s joins Pr to Ps, so Gt contains
a Kt -minor. It is simple to check that the Ir,s are pairwise disjoint. In particular, any
vertex v is the end-point of at most one er,s and so Gt has maximum degree three.

Each edge er,s is horizontal and crosses no other edges so has no neighbours in
XD. Next consider an edge aa′ of Ps. We have a′ = a+ 2 · 2−s. Exactly one vertex
in V (P0)∪V (P1)∪ ·· · ∪V (Ps) lies between a and a′: their midpoint, m = a+ 2−s.
Vertex m has at most two non-horizontal edges incident to it and so, in XD, every
aa′ ∈ E(Ps) has at most two neighbours in E(P0)∪E(P1)∪ ·· · ∪E(Ps). Thus XD is
2-degenerate, as required. ut
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5 Structural Properties of Circle Graphs

Recall that a circle graph is the intersection graph of a set of chords of a circle.
More formally, let C be a circle in R2. A chord of C is a closed line segment with
distinct endpoints on C. Two chords of C either cross, are disjoint, or have a common
endpoint. Let S be a set of chords of a circle C such that no three chords in S cross
at a single point. Let G be the crossing graph of S. Then G is called a circle graph.
Note that a graph G is a circle graph if and only if G∼= XD for some circular drawing
D of a graph H, and in fact one can take H to be a matching.

We are now ready to prove Theorems 1 and 2. While the treewidth of circle
graphs has previously been studied from an algorithmic perspective [31], to the best
of our knowledge, these theorems are the first structural results on the treewidth of
circle graphs.

Proof of Theorem 1. Let D be a circular drawing of a graph such that G ∼= XD. Let
MD be the map graph of D. Since tw(XD) = tw(G) > 12t + 2, it follows by Theo-
rem 5 that MD has radius at least 2t. The claim then follows from Lemma 9. ut

Proof of Theorem 2. Let G be a circle graph and let D be a circular drawing with
G ∼= XD. By Lemma 12, tw(G) 6 6rad(MD) + 7 6 12h(G)− 11 6 12tw(G) + 1.
Hence, the Hadwiger number and treewidth are linearly tied for circle graphs. This
inequality and Lemma 13 imply

h′(G)−16 h(G)−16 tw(G)6 6rad(MD)+76 6h′(G)2 +18h′(G)+13.

Hence the Hajós number is quadratically tied to both the treewidth and Hadwiger
number for circle graphs. Finally, Kt,t is a circle graph which has treewidth t, Had-
wiger number t + 1, and Hajós number Θ(

√
t). Hence, ‘quadratic’ is best possi-

ble. ut

We now discuss several noteworthy consequences of Theorems 1 and 2. Say
an hereditary class of graphs G is induced-tw-bounded if there is a function f
such that for every graph G ∈ G with tw(G) > f (t), G contains at least one of the
usual suspects defined in Section 1. While the class of all graphs is not induced-tw-
bounded [3, 11, 14, 42, 46], many natural graph classes are. For example, Aboulker,
Adler, Kim, Sintiari, Trotignon [1] showed that every proper minor-closed class
is induced-tw-bounded and Korhonen [32] recently showed that the class of graphs
with bounded maximum degree is induced-tw-bounded. We now show that the class
of circle graphs is not induced-tw-bounded.

Theorem 17. The class of circle graphs is not induced-tw-bounded.

Proof. We first show that for all t > 50, no circle graph contains a subdivision of
the (t × t)-wall or a line graph of a subdivision of the (t × t)-wall as an induced
subgraph. As the class of circle graphs is hereditary, it suffices to show that for all
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t > 50, these two graphs are not circle graphs. These two graphs are planar (so K5-
minor-free) and have treewidth t > 50. However, Lemma 12 implies that every K5-
minor-free circle graph has treewidth at most 49, which is the required contradiction.

Now consider the family of couples of graphs ((Gt ,Xt) : t ∈ N) given by The-
orem 16 where Xt is the crossing graph of the drawing of Gt . Then (Xt : t ∈ N)
is a family of circle graphs. Since (Gt : t ∈ N) has unbounded treewidth, Theo-
rem 3 implies that (Xt : t ∈ N) also has unbounded treewidth. Moreover, since Xt
is 2-degenerate for all t ∈ N, it excludes K4 and K3,3 as (induced) subgraphs, as
required. ut

We now discuss applications of Theorem 1 to vertex-minor-closed classes. For
a vertex v of a graph G, to locally complement at v means to replace the induced
subgraph on the neighbourhood of v by its complement. A graph H is a vertex-
minor of a graph G if H can be obtained from G by a sequence of vertex deletions
and local complementations. Vertex-minors were first studied by Bouchet [12] under
the guise of isotropic systems. The name ‘vertex-minor’ is due to Oum [37]. Circle
graphs are a key example of a vertex-minor-closed class.

We now show that a vertex-minor-closed graph class is induced-tw-bounded if
and only if it has bounded rank-width. Rank-width is a graph parameter introduced
by Oum and Seymour [39] that describes whether a graph can be decomposed into
a tree-like structure by simple cuts. For a formal definition and a survey on this pa-
rameter, see [38]. Oum [37] showed that rank-width is closed under vertex-minors.

Theorem 18. A vertex-minor-closed class G is induced-tw-bounded if and only if
it has bounded rankwidth.

Proof. Suppose G has bounded rankwidth. By a result of Abrishami, Chudnovsky,
Hajebi, and Spirkl [7], there is a function f such that every graph in G with treewidth
at least f (t) contains Kt or Kt,t as an induced subgraph. Thus G is induced-tw-
bounded. Now suppose G has unbounded rank-width. By a result of Gellen, Kwon,
McCarty, and Wollan [26], G contains all circle graphs. It therefore follows by The-
orem 17 that G is not induced-tw-bounded. ut

We conclude with the following question:

Let G be a vertex-minor-closed class with unbounded rank-width. What are
the unavoidable induced subgraphs of graphs in G with large treewidth?

The cycle structure (or variants thereof) in Theorem 1 must be included in the list
of unavoidable induced subgraphs.
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