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Abstract In this paper we provide a detailed mathematical (graph-theoretical) foun-
dation for our newly developed metric for measurement of efficiency of communica-
tion in human brain. The metric is based on the assumption that the structural con-
nectome paths facilitate the functional connectome. Our metric demonstrates that
majority of the functional connections in the human brain can be explained by indi-
rect functional paths. This further indicates that information transport in the human
brain is a complex process, where multiple regions can participate as intermediary
communication nodes.

1 Introduction

The human brain is a complex and dynamic network comprised of structurally con-
nected and functionally interactive elements. These elements are critical for the
brain to seamlessly manifest cognition and behaviour and can be measured with
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magnetic resonance imaging (MRI). Functional connectivity (FC) can be viewed as
which brain regions utilise oxygenated blood at the same time while performing a
specific function. Structural connectivity (SC) can be viewed as how physically con-
nected brain regions are. Current methodologies are yet to mathematically elucidate
how and where SC relates to FC within a suitable framework.

A recently introduced model [11] explains how the information is communicated
in the brain to facilitate the synchronous activity in distant brain regions. That model
relies on mathematical concepts and ideas introduced in [9]. The purpose of this
paper is to elaborate on these ideas to provide a full explanation of the mathematical
tools that we developed to underpin this model.

Classically, both the physical structure and the functional activity of the brain are
represented in the form of graphs in a multilayer network. Each layer is a graph with
the same set of nodes, one layer has structural edges and the other functional edges.

Most of the existing research approaches in the application of graph theory to
neuroscience adapt existing techniques from other application fields, particularly
social networks analysis. These early investigations have yielded interesting insights
on how the brain is organised [3, 4]. It was suggested the human brain has small
world properties [12], is modularised into distinct areas that perform specific roles
[10] and maintains cost-efficient transmission of information [5, 8, 2].

Recent developments consider the structural layer as a transportation or commu-
nication network [1]. This makes sense as the general agreement is that communica-
tion occurs through neurons (and neuronal populations) from which complex brain
functions arise [1]. To extend this idea, we ask: “how does structural connectivity
permit the synchronicity of brain regions?” In [11] we proposed that functional syn-
chronicity of brain regions must be facilitated by communication across structural
paths.

In this paper, we provide a detailed description of the graph-theoretical ma-
chinery we utilised for analysis of SC-FC interaction. The paper is organised as
follows. In Section 2 we present the mathematical method and equations for SC-
FC interaction analysis. In Section 3 we apply the developed method to the hu-
man structural and functional connectome data provided by Human Connectome
Project (HCP, http://www.humanconnectome.org/). Section 4 provides a
brief summary and interpretation for our findings.

2 Mathematical method and equations

The structural and functional brain connectomes, after processing, are represented
by two real-valued matrices. The elements of these matrices correspond to either the
number of streamlines (in the case of structural connectome) or the synchronicity (in
the case of functional connectome) between any two regions of the human brain. The
matrices are both symmetric, have the same order, but not the same elements. Each
node in the connectome is represented by the same row (or column) index in both
matrices. These matrices represent undirected weighted graphs. After applying an

http://www.humanconnectome.org/
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appropriate (arbitrary) threshold θ to the matrix values, the matrices are converted
into binary adjacency matrices with the element values of 0 and 1 if the original
elements were less or equal, or greater than θ , respectively. The adjacency matrices
represent undirected unweighted graphs.

We will denote by A[s] and A[ f ], and w[s] and w[ f ] the (binary) adjacency matrices
for the structural and the functional connectome, and the edge weight matrices for
the structural and the functional connectome, respectively. The set of nodes in the
connectome is denoted by V , and for a given node in the connectome (that is, a ver-
tex in the graphs), we denote by d[s] or d[ f ] its degree in the structural or functional
layer respectively.

The matrix E represents a matrix whose elements are all 1, of appropriate order,
and ◦ is the Hadamard (or element-wise) product of matrices.

In the following we present the mathematical formulations for the measures de-
veloped in [11].

2.1 Node-clustering (nodewise measure)

First, we define the matrix of direct SC-FC connections as

N =
A[ f ] ◦A[s]

2
(1)

We start by recalling coefficients proposed in [6]. The number of triangles is
given by

T (k) =

(
A[s](A[ f ] ◦ (E−A[s]))A[s]

)
kk

2
, (2)

where the numerator is the number of structural tuples centred on node k closed by
an FC edge (A[ f ]), divided by 2 in order to control for the undirected layer. The term
E−A[s] limits the FC edges to only those that are not present in the SC layer (A[s]).
In order to count a three cycle (i.e. triangle), we take only the element kk from the
resulting matrix.

Again, we restrict induced paths to where a FC edge A[ f ] exists without a possible
SC edge (i, j) reflected by (E−A[s]).

2.2 Weighted edgewise equation

The weight of a path ik j is calculated as the minimum weight across its structural
edges: min(w[s]

ik ,w
[s]
k j). Given two vertices i and j, we propose to consider the path

with the largest of the minimum of these path weights (i.e., maxk∈V min(w[s]
ik ,w

[s]
k j))
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as the one most likely to facilitate communication between the brain regions i and
j.

The weight of the maximum throughput triangle and the total throughput of the
weighted triangles are then given by:

WT max
i j = A[ f ]

i j (1−A[s]
i j )max

k∈V

(
min(w[s]

ik ,w
[s]
k j)

)
, (3)

WT total
i j = A[ f ]

i j (1−A[s]
i j ) ∑

k∈V

(
min(w[s]

ik ,w
[s]
k j)

)
. (4)

Any triangle containing a functional edge (i, j) and structural edges (i,k) and (k, j)
has a structural edge of minimum weight. In line with our analogy of the structural
layer being akin to a transportation network, this minimum weight provides the
maximum possible throughput from i to j through k on the structural layer. We
consider each vertex k in our set of nodes V , i.e. k ∈ V , as a possible intermediary
node. Among all possible two-paths, the maximum throughput on paths from i to
j considering intermediary nodes k is given by maxk∈V

(
min(w[s]

ik ,w
[s]
k j)

)
, while the

total throughput is given by ∑k∈V

(
min(w[s]

ik ,w
[s]
k j)

)
. Finally, we are only interested

in tuples that form a functional edge (i, j) which we count using A[ f ]
i j , and excluding

cases where there is also a structural edge (i, j) which are removed using the (1−
A[s]

i j ) term.

Note 1. If no intermediary node between vertex i and vertex j exists, then min(w[s]
ik ,w

[s]
k j)=

0 for any k ∈V , therefore WT max
i j = 0 and WT total

i j = 0 (see Fig. 1).

Note 2. The values of WT max
i j and WT total

i j are small if every ik j path has low
throughput. The value WT total

i j is also small if there are few nodes structurally ad-
jacent to both i and j. The values of WT max

i j and WT total
i j are large if some ik j path

has large throughput (see Fig. 2). For the value WT total
i j to be large, there also can

be many nodes structurally adjacent to both i and j.

In order to count weighted subgraphs, we first define the summed minimum
weight of subgraphs. For a given functional edge (i, j), the summed minimum
weight of subgraphs that can be obtained using a structural neighbour k1 incident to
node i and a structural neighbour k2 incident to node j, is given as follows:

Si j = A[ f ]
i j (1−A[s]

i j ) ∑
k1,k2∈V

min(ws
ik1
,ws

k2 j). (5)

The quantity Si j can be thought of the total throughput that can be transmitted
through both i and j (not necessarily on the same path).

A triangle exists if k1 = k2. The weighted proportion of subgraphs that are trian-
gles is given by
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Sprop
i j =

A[ f ]
i j (1−A[s]

i j )∑k∈V min(w[s]
ik ,w

[s]
k j)

A[ f ]
i j (1−A[s]

i j )∑k1,k2∈V min(w[s]
ik1
,w[s]

k2 j)
=

WT total
i j

Si j
(6)

i j

i j

k

FC (Partial r)
SC-FC Triangle
SC (streamlines)

l

n

Figure 1: Unweighted triangles cannot consider structural connectivity edge
weights that close functionally connected nodes i and j.
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Figure 2: Our method weights structural tuples with the largest minimum edge
weight facilitating communication between nodes i and j (the edge ik with weight
50).
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Generally, if Si j = 0, there are no subgraphs of this type, so we set Sprop
i j = 0. In

our particular application, since the connectomes form connected graphs (there is
no region in the brain that is disconnected from the rest of the brain), Si j 6= 0.

Note 3. It is clear that 0≤ Sprop
i j ≤ 1. Sprop

i j = 0, if there are no weighted triangles (re-
gardless of whether there are any weighted subgraphs). Sprop

i j = 1, if every weighted
subgraph is a triangle.

We now look at the the proportion of weighted induced subgraphs that are trian-
gles.

In a similar way, we can define the ratio of the maximum throughput triangle to
the induced subgraph with the highest weight on the function edge (i, j). We set

Pi j = A[ f ]
i j (1−A[s]

i j ) max
k1,k2∈V

min(w[s]
ik1
,w[s]

k2 j).

The ratio is then defined to be

Iprop
i j =

WT max
i j

Pi j
. (7)

Pi j can be thought as the maximum throughput that can be “sent” or “received” by
both i and j. When Iprop

i j = 1, this means that this maximum throughput is achieved
through an existing 2-path between i and j.

As before, we set Iprop
i j = 0 if Pi j = 0. In our experiments this does not happen.

2.3 Functional edge clustering (edgewise measure)

The local clustering coefficient is defined in [6] as:

Ck =

(
A[s](A[ f ] ◦ (E−A[s]))A[s]

)
kk

d[s]
k (d[s]

k −1)(1− c[s](k))
. (8)

The local clustering coefficient Ck measures the proportion of structural tuples
that are closed by an FC edge, out of the total number of structural tuples.

The functional connections between nodes that are not structurally connected are
calculated with A[ f ] ◦ (E−A[s]). Then the number of such connections where both
vertices are adjacent to a node k is given by the numerator.

The number of two-paths centered around node k is given by d[s]
k (d[s]

k −1). We ex-
clude those that are part of a triangle, using (1−c[s](k)) where c[s](k) is the directed
clustering coefficient (the number of triangles containing the vertex k) as defined in
[7].

While in [6] the main focus is given on a given structural node, here we propose
a new measure that focuses on understanding how the synchronicity between two
functional nodes is facilitated using structural information.
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We start by definition the following quantity:

Ti j = ((A[s])2 ◦A[ f ] ◦ (E−A[s]))i j. (9)

Here Ti j is the number of triangles (i, j,k) in the multiplex, satisfying the condi-
tions:

1. The nodes i and j are functionally (counted by A[ f ]) but not directly structurally
connected (counted by (E −A[s])). That is, we aim to “explain” the functional
link between these nodes by looking for possible communication channels in the
structural layer.

2. We then count the number of vertices k which are structurally connected to both
i and j, indicating that there is a functional route between i and j through k. In
other words, we count the number of 2-paths from i to j (counted by (A[s])2). See
Figure 1.

To calculate coefficients (proportions) we consider the possibility that a longer
structural path may facilitate communication between the functionally connected
vertices i and j. An upper bound for the count of such paths is given by

(d[s]
i −Ti j)(d

[s]
j −Ti j)A

[ f ]
i j (1−A[s]

i j ),

that is, the number of neighbours of i that are not adjacent to j multiplied by the
number of neighbours of j that are not adjacent to i.

The proportion of structural two-paths that facilitate a functional connection i j is
therefore given by:

Jprop
i j =

Ti j

Ti j +(d[s]
i −Ti j)(d

[s]
j −Ti j)A

[ f ]
i j (1−A[s]

i j )
. (10)

Alternatively, we can consider all potential structural paths between i and j, re-
gardless of whether the edges could be part of a shorter structural 2-path:

Rprop
i j =

Ti j

d[s]
i d[s]

j A[ f ]
i j (E−A[s]

i j )
. (11)

The proportion of subgraph triangles Rprop
i j can be calculated by dividing Ti j by

the total number of possible triplets (i.e. a subgraph that contains one neighbour
incident to each edge end of a functional edge) reflected by counting all the neigh-
bours of i and j. Again, we restrict this to where a FC edge A[ f ] exists without a
possible SC edge (i, j) reflected by (E−A[s]).
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3 Application to the brain connectomes

We applied the measures described above (see [11] for details) to the publicly
available brain connectome data obtained from Human Connectome Project (HCP,
http://www.humanconnectome.org/). 484 subjects were included in the
dataset. The data are available at three different resolutions, namely 68× 68,
114×114 and 219×219 parcels, corresponding to the graph nodes in our analysis.
We also generated 484 Watts-Strogatz random graphs of the densities equal to the
densities of the structural connectome graphs. Then, we applied the calculation we
proposed in the section above to true SC-FC pairs and the simulated connectomes
where the structural connectome was replaced by its corresponding Watts-Strogatz
random graph. The results of the calculations for 219× 219 resolution are shown
in Figures 3 and 4. Both figures show that there are nearly 4 times more functional
connections, which are facilitated by indirect 2-paths.

The true connectomes had a mean of 1240.61 functional connections (standard
deviation 84.66) explained by 1-paths and 4467.39 functional connections (stan-
dard deviation 353.68) explained by 2-paths. The Watts-Strogatz simulated connec-
tomes have a mean of 1091.9 functional connections (standard deviation 77.4) ex-
plained by 1-paths, and 3393.49 functional connections (standard deviation 402.7)
explained by 2-paths.

We also note that the distributions produced by synthetic Watts-Strogatz con-
nectomes are much more symmetric with the real FC-SC connectomes skewed to
the higher numbers of the FC edges explained by the given number of paths in the
structural connectome.
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Figure 3: A box plot showing the number of FC edges that are closed by 1- and
2-path lengths for all 484 subjects at 219×219 resolution.
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Figure 4: A box plot showing the number of FC edges that are closed by 1- and
2-path lengths in 484 219-node Watts-Strogatz graphs of the same density as the
human connectomes considered in this study.

4 Conclusions

In this short paper, we describe a new graph-theoretic method for analysis of the
relationship between structural and functional connectomes of the human brain.

The method is based on counting the paths of various lengths in the structural
connectome, which are able to provide a physical communication links, which are
described by the functional connectome.

We applied our method for the analysis of real human brain and synthetic (Watts-
Strogatz) structural connectomes and real functional connectomes. As is evident
from the comparison between the true connectomes and the randomly generated
structural paths with true functional paths, there are more functional connections in
the real brain, which may be facilitated by indirect multiple-node connections in the
structural connectome.

We also demonstrate that, according to our introduced measure, Watts-Strogatz
graphs exhibit somewhat different statistical properties in comparison to the real
brain connectomes.
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