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Abstract Modern information systems generate large volumes of data with anoma-
lies that occur at unknown points in time and have to be detected quickly and reliably
with low false alarm rates. The paper develops a general theory of quickest multi-
stream detection in non-i.i.d. stochastic models when a change may occur in a set of
multiple data streams. The first part of the paper focuses on the asymptotic quickest
detection theory. Nearly optimal pointwise detection strategies that minimize the
expected detection delay are proposed and analyzed when the false alarm rate is
low. The general theory is illustrated in several examples. In the second part, we
discuss challenging applications associated with the rapid detection of new COVID
waves and the appearance of near-Earth space objects. Finally, we discuss certain
open problems and future challenges.

1 Introduction

The problem of changepoint detection in multiple data streams (sensors, popula-
tions, or multichannel systems) arises in numerous applications that include but are
not limited to the medical sphere (detection of an epidemic present in only a fraction
of hospitals [5, 8, 22, 34]); environmental monitoring (detection of the presence of
hazardous materials or intruders [7, 20]); military defense (detection of an unknown
number of targets by multichannel sensor systems [1, 30]); near-Earth space infor-
matics (detection of debris and satellites with telescopes [3, 11, 24]); cyber security
(detection of attacks in computer networks [23, 26, 32, 33]); detection of malicious
activity in social networks [18, 19], to name a few.
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In many change detection applications, the pre-change (the baseline or in-
control) distribution of observed data is known, but the post-change (out-of-control)
distribution is not completely known. As discussed in [29, Ch 3, 6] there are three
conventional approaches in this case: (i) to select a representative value of the post-
change parameter and apply efficient detection rules tuned to this value such as the
Shiryaev rule, the Shiryaev–Roberts rule or CUSUM, (ii) to select a mixing measure
over the parameter space and apply mixture-type rules, (iii) to estimate the parame-
ter and apply adaptive schemes. In Chapters 4 and 6 of [29], a single stream case was
considered. In this paper, we consider a more general case where the change occurs
in multiple data streams and the number and location of affected data streams are
unknown.

To be more specific, suppose there are N data streams observed sequentially in
time subject to a change at an unknown point in time ν ≥ 0, so that the data up to
the time ν are generated by one stochastic model and after ν +1 by another model.
The change in distributions may occur at a subset of streams of a size 1 ≤ K ≤ N,
where K is an assumed maximal number of streams that can be affected, which can
be substantially smaller than N. A sequential detection procedure is a stopping time
T with respect to an observed sequence. A false alarm is raised when the detection
is declared before the change occurs. One wants to detect the change with as small
a delay as possible while controlling the false alarm rate.

We consider a fairly general stochastic model assuming that the observations may
be dependent and non-identically distributed (non-i.i.d.) before and after the change
and that streams may be mutually dependent.

In the case of i.i.d. observations (in pre-change and post-change modes with dif-
ferent distributions), this problem was considered in [6, 15, 25, 31, 32, 35]. Specif-
ically, in the case of a known post-change parameter and K = 1 (i.e., when only
one stream can be affected but it is unknown which one), Tartakovsky [25] pro-
posed to use a multi-chart CUSUM procedure that raises an alarm when one of
the partial CUSUM statistics exceeds a threshold. This procedure is very simple,
but it is not optimal and performs poorly when many data streams are affected. To
avoid this drawback, Mei [15] suggested a SUM-CUSUM rule based on the sum
of CUSUM statistics in streams and evaluated its first-order performance, which
shows that this detection scheme is first-order asymptotically minimax minimizing
the maximal expected delay to detection when the average run length to false alarm
approaches infinity. Fellouris and Sokolov [6] suggested more efficient generalized
and mixture-based CUSUM rules that are second-order minimax. Xie and Sieg-
mund [35] considered a particular Gaussian model with an unknown post-change
mean. They suggested a rule that combines mixture likelihood ratios that incorpo-
rate an assumption about the proportion of affected data streams with the general-
ized CUSUM statistics in streams and then add up the resulting local statistics. They
also performed a detailed asymptotic analysis of the proposed detection procedure
in terms of the average run length to a false alarm and the expected delay as well as
MC simulations. Chan [4] studied a version of the mixture likelihood ratio rule for
detecting a change in the mean of the normal population assuming independence of
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data streams and establishing its asymptotic optimality in a minimax setting as well
as dependence of operating characteristics on the fraction of affected streams.

In the present paper, we consider a Bayesian problem with a general prior distri-
bution of the change point and multiple data streams with an unknown pattern, i.e.,
when the size and location of the affected streams are unknown. It is assumed that
the observations can be dependent and non-identically distributed in data streams
and even across the streams. Furthermore, in contrast to most previous publications
where asymptotically stationary models were considered, we consider substantially
non-stationary models, even asymptotically. We address two scenarios when the pre-
and post-change distributions are completely known and also a parametric uncer-
tainty when the post-change distribution is known up to an unknown parameter. We
introduce mixture detection procedures that mix the Shiryaev–Robers-type statistic
over the distributions of the unknown pattern and unknown post-change parame-
ter (in the case of prior uncertainty). The resulting statistics are then compared to
appropriate thresholds.

The paper is organized as follows. In Section 2, we present a general theory for
very general stochastic models, providing sufficient conditions under which the sug-
gested detection procedures are first-order asymptotically optimal. In Section 3, we
provide illustrative examples. In Section 4, we evaluate the performance of proposed
mixture detection procedures using Monte Carlo simulations for the non-stationary
Gaussian model. In Section 5, theoretical results are applied to rapid detection of the
COVID-19 outbreak in Australia based on monitoring the percentage of infections
in the total population as well as to rapid detection and extraction of faint near-Earth
space objects with telescopes. Section 6 concludes the paper with several remarks,
including future research challenges.

2 Asymptotic Theory of Multistream Quickest Change Detection
for General Non-i.i.d. Models

In this section, we develop the quickest detection theory in the general multistream
non-i.i.d. scenario. We design mixture-based change detection procedures which are
nearly optimal in the class of change detection procedures with the prespecified av-
erage (weighted) probability of false alarm when this probability is small, assuming
that the change point is random with a given prior distribution.

2.1 A General Multistream Model and Basic Notations

We begin with a preliminary description of the scenario of interest and general no-
tation.

Consider the multistream scenario where the observations X = (X(1), . . . ,X(N))
are sequentially acquired in N streams, i.e., in the i-th stream one observes a se-
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quence X(i) = {Xn(i)}n∈N, where i ∈N := {1, . . . ,N}. The observations are sub-
ject to a change at an unknown time ν ∈ {0,1,2, . . .}, so that X1(i), . . . ,Xν(i) are
generated by one stochastic model and Xν+1(i),Xν+2(i), . . . by another model when
the change occurs in the i-th stream. The change in distributions happens at a subset
of streams B⊆ {1, . . . ,N} with cardinality 1≤ |B| ≤K ≤N, where K is an assumed
maximal number of streams that can be affected, which can be and often is substan-
tially smaller than N. A sequential detection rule is a stopping time T with respect
to an observed sequence {Xn}n∈N, Xn = (Xn(1), . . . ,Xn(N)), i.e., T is an integer-
valued random variable, such that the event {T = n} belongs to the sigma-algebra
Fn = σ(X1, . . . ,Xn) generated by observations X1, . . . ,Xn.

The observations may have a very general stochastic structure. Specifically, if
we let Xn(i) = (X1(i), . . . ,Xn(i)) denote the sample of size n in the i-th stream and
if { fθi,n(Xn(i)|Xn−1(i))}n≥1, θi ∈Θi is a parametric family of conditional densities
of Xn(i) given Xn−1(i), then when ν = ∞ (there is no change) the parameter θi is
equal to the known value θi,0, i.e., fθi,n(Xn(i)|Xn−1(i)) = fθi,0,n(Xn(i)|Xn−1(i)) for
all n ∈ N and when ν = k < ∞, then θi = θi,1 6= θi,0, i.e., fθi,n(Xn(i)|Xn−1(i)) =
fθi,0,n(Xn(i)|Xn−1(i)) for n≤ k and fθi,n(Xn(i)|Xn−1(i)) = fθi,1,n(Xn(i)|Xn−1(i)) for
n > k. Not only the point of change ν , but also the subset B, its size |B|, and the
post-change parameters θi,1 are unknown. For further details with a certain change
of notation see below.

Let P∞ denote the probability measure corresponding to the sequence of obser-
vations {Xn}n∈N from all N streams when there is never a change (ν = ∞) in any
of the components and, for k = 0,1, . . . and B ⊂N , let Pk,B denote the measure
corresponding to the sequence {Xn}n∈N when ν = k < ∞ and the change occurs in
a subset B of the set P (i.e., Xν+1(i), i ∈ B is the first post-change observation).
By H∞ : ν = ∞ we denote the hypothesis that the change never occurs and by Hk,B
– the hypothesis that the change occurs at time 0 ≤ k < ∞ is the subset of streams
B ⊂P . The set P is a class of subsets of N that incorporates available prior
information regarding the subset B where the change may occur. For example, in
applications frequently it is known that at most K streams can be affected, in which
case P =PK = {B⊂N : 1≤ |B| ≤ K}. Hereafter |B| denotes the size of a subset
B (the number of affected streams under Hk,B) and |P| denotes the size of class
P (the number of possible alternatives in P). Note that |P| takes maximum value
when there is no prior information regarding the subset of affected streams, i.e.,
when P = PN , in which case |P|= 2N−1.

The problem is to detect the change as soon as possible after it occurs regardless
of the subset B, i.e., we are interested in detecting the event ∪B∈PHk,B that the
change has occurred in some subset but not in identifying the subset of streams
where it occurs.

Write Xn(i) = (X1(i), . . . ,Xn(i)) for the concatenation of the first n observations
from the i-th data stream and Xn = (X1, . . . ,Xn) for the concatenation of the first n
observations from all N data streams. Let {g(Xn|Xn−1)}n∈N and { fB(Xn|Xn−1)}n∈N
be sequences of conditional densities of Xn given Xn−1, which may depend on n,
i.e., g = gn and fB = fB,n. We omit the subscript n for the sake of brevity. For the
general non-i.i.d. changepoint model the joint density p(Xn|Hk,B) under hypothesis



Quickest Changepoint Detection in General Stochastic Models 5

Hk,B can be written as follows

p(Xn|Hk,B) =

{
∏

n
t=1 g(Xt |Xt−1) for ν = k ≥ n,

∏
k
t=1 g(Xt |Xt−1)×∏

n
t=k+1 fB(Xt |Xt−1) for ν = k < n,

(1)

where B ⊂P . Therefore, g(Xn|Xn−1) is the pre-change conditional density and
fB(Xn|Xn−1) is the post-change conditional density given that the change occurs in
the subset B.

In most practical applications, the post-change distribution is not completely
known – it depends on an unknown (generally multidimensional) parameter θ ∈Θ ,
so that the model (1) may be treated only as a benchmark for a more practical case
where the post-change densities fB(Xt |Xt−1) are replaced by fB,θ (Xt |Xt−1), i.e.,

p(Xn|Hk,B,θ) =
k

∏
t=1

g(Xt |Xt−1)×
n

∏
t=k+1

fB,θ (Xt |Xt−1) for ν = k < n. (2)

Notice that the probabilistic models given by (1) and (2) are very general and do
not assume that the data streams are mutually independent.

2.2 Optimality Criterion

In the sequel, we assume that the change point ν is a random variable independent
of the observations with a prior distribution πk = P(ν = k), k = 0,1,2, . . . with
πk > 0 for k ∈ {0,1,2, . . .}= Z+ and that a change point may take negative values,
i.e., k ∈ Z, but the detailed structure of the distribution P(ν = k) for k ∈ Z− =
{−1,−2, . . . ,−∞} is not important. Only the total probability π− = P(ν ≤ −1) of
the change being in effect before the observations become available matters.

Let Ek,B,θ and E∞ denote expectations under Pk,B,θ and P∞, respectively, where
Pk,B,θ corresponds to model (2) with an unknown parameter θ ∈ Θ . Define the
probability measure on the Borel σ -algebra B in R∞×Z as

Pπ
B,θ (A ×K ) = ∑

k∈K
πkPk,B,θ (A ) , A ∈B(R∞), K ∈ Z.

Under measure Pπ
B,θ the change point ν has distribution π = {πk} and the model for

the observations is of the form (2), i.e., X(t) has conditional density g(X(t)|Xt−1)
if ν ≤ k and conditional density fB,θ (X(t)|Xt−1) if ν > k and the change occurs in
the subset B with the parameter θ . Let Eπ

B,θ denote the expectation under Pπ
B,θ .

For the prior distribution of the change point π = {πk}k∈Z, introduce the average
(weighted) probability of false alarm associated with the change detection proce-
dure T

PFAπ(T ) = Pπ
B,θ (T ≤ ν) =

∞

∑
k=0

πkP∞(T ≤ k) (3)
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that corresponds to the risk due to a false alarm. Note that here we took into account
that Pk,B,θ (T ≤ k)=P∞(T ≤ k) since the event {T ≤ k} depends on the observations
X1, . . . ,Xk generated by the pre-change probability measure P∞ (recall that by our
convention Xk is the last pre-change observation if ν = k).

For ν = k ∈ Z+, B ∈P , and θ ∈Θ the risk associated with the detection delay
is measured by the conditional expected delay to detection

EDDk,B,θ (T ) = Ek,B,θ [T − k |T > k] . (4)

Note that if the change occurs before the observations become available, i.e., k ∈
Z− = {−1,−2, . . .}, then EDDk,B,θ (T ) = Ek,B,θ [T ] ≡ E0,B,θ [T ] since T ≥ 0 with
probability one.

Next, for the prior distribution π and α ∈ (0,1), define the Bayesian class
of changepoint detection procedures with the weighed probability of false alarm
PFAπ(T ) = Pπ

B,θ (T ≤ ν) not greater than a prescribed number α:

Cπ(α) = {T ∈M : PFAπ(T )≤ α}=

{
T ∈M :

∞

∑
k=0

πkP∞(T ≤ k)≤ α

}
, (5)

where M stands for the totality of Markov times.
In this section, we are interested in the uniform Bayesian constrained optimiza-

tion criterion

inf
{T :PFAπ (T )≤α}

EDDk,B,θ (T ) for all k ∈ Z+, B ∈P and θ ∈Θ .

However, this problem is intractable for arbitrary values of α ∈ (0,1). For this rea-
son, we will consider the following first-order asymptotic problem assuming that
the given PFA α approaches zero: Find a change detection procedure T ∗ such that
it minimizes the expected detection delay EDDk,B,θ (T ) asymptotically to first order
as α → 0 uniformly for all possible values of k ∈ Z+, subsets B ∈P , and θ ∈Θ .
That is, our goal it to design such detection procedure T ∗ that, as α → 0,

inf
T∈Cπ (α)

EDDk,B,θ (T ) = EDDk,B,θ (T ∗)(1+o(1)) ∀ B ∈P, θ ∈Θ , k ∈ Z+, (6)

where Cπ(α) is the class of detection procedures for which the PFA does not exceed
a prescribed number α ∈ (0,1) defined in (5) and o(1)→ 0 as α → 0.

2.3 Multistream Changepoint Detection Procedures

We begin by considering the most general scenario where the observations across
streams are dependent.
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2.3.1 Parametric Prior Uncertainty

Let LB,θ (n) = fB,θ (Xn|Xn−1)/g(Xn|Xn−1). Note that in the general non-i.i.d. case
the statistic LB,θ (n) = L

(k)
B,θ (n) depends on the change point ν = k since the

post-change density fB,θ (Xn|Xn−1) = f (k)B,θ (Xn|Xn−1) may depend on k. The like-
lihood ratio (LR) of the hypothesis Hk,B that the change occurs at ν = k in the
subset of streams B against the no-change hypothesis H∞ based on the sample
Xn = (X1, . . . ,Xn) is given by the product

LRB,θ (k,n) =
n

∏
t=k+1

LB,θ (t), n > k

and we set LRB,θ (k,n) = 1 for n≤ k.
For B ∈P and θ ∈Θ , define the generalized Shiryaev–Roberts (SR) statistic

RB,θ (n) = r LRB,θ (0,n)+
n−1

∑
k=0

LRB,θ (k,n), n≥ 1 (7)

with the initial condition (non-negative head-start) RB,θ (0) = r, r ≥ 0.
Now, introduce the probability mass function (mixing measure)

p = {pB,B ∈P} , pB > 0 ∀ B ∈P, ∑
B∈P

pB = 1, (8)

where pB is the prior probability of the change being in effect on the set of streams
B, and also the mixing probability measure

W = {W (θ),θ ∈Θ},
∫

Θ

dW(θ) = 1. (9)

For a fixed value of θ , introduce the mixture statistic

Rp,θ (n) = ∑
B∈P

pBRB,θ (n)

= rΛp,θ (0,n)+
n−1

∑
k=0

Λp,θ (k,n), n≥ 1, Rp,θ (0) = r,
(10)

where
Λp,θ (k,n) = ∑

B∈P

pBLRB,θ (k,n) (11)

is the mixture LR.
As discussed in [29, 31], when the parameter θ is unknown there are two main

conventional approaches – either to estimate θ (say maximize) or average (mix)
over θ . Using the mixing measure (prior distribution) W = {W (θ),θ ∈Θ} given in
(9), define the double LR-mixture
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Λp,W (k,n) =
∫

Θ
∑

B∈P

pBLRB,θ (k,n)dW (θ) =
∫

Θ

Λp,θ (k,n)dW (θ), k < n (12)

and the double-mixture statistic

Rp,W (n) =
∫

Θ
∑

B∈P

pBRB,θ (n)dW (θ)

= rΛp,W (0,n)+
n−1

∑
k=0

Λp,W (k,n), n≥ 1, Rp,W (0) = r
(13)

(with a non-negative head-start r).
The corresponding double-mixture LR-based detection procedure is given by the

stopping rule which is the first time n≥ 1 such that the statistic Rp,W (n) exceeds the
level A > 0:

T p,W
A = inf{n≥ 1 : Rp,W (n)≥ A} . (14)

The main result of our theory is that this changepoint detection procedure is
first-order asymptotically optimal under certain very general conditions if threshold
A = Aα is adequately selected, i.e., asymptotic equality (6) holds with T ∗ = T p,W

A .

2.3.2 Known Parameters of the Post-Change Distribution

If the value of the post-change parameter θ is known or its putative value is of spe-
cial interest, representing a nominal change, then it is reasonable to turn the double-
mixture procedure T p,W

A in single-mixture procedure T p,θ
A by taking the degenerate

weight function W (ϑ) concentrated at ϑ = θ , i.e.,

T p,θ
A = inf

{
n≥ 1 : Rp,θ (n)≥ A

}
, (15)

and ask whether or not it has first-order asymptotic optimality properties at the point
θ , i.e., that under certain conditions asymptotic formula (6) holds for T ∗ = T p,θ

A .

2.4 Asymptotic Optimality of Mixture-Based Detection Procedures

2.4.1 Basic Conditions

While we consider a general prior and a very general stochastic model for the obser-
vations in streams and between streams, to study asymptotic optimality properties
we still need to impose certain constraints on the prior distribution π = {πk} and on
the general stochastic model (1) that guarantee asymptotic stability of the detection
statistics as the sample size increases.

Regarding the prior distribution, we will assume that the following condition
holds:
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lim
n→∞

1
n
|logP(ν > n)|= β for some β ≥ 0.

However, this condition being quite general does not cover the case where β is pos-
itive but may go to zero. Indeed, the distributions with an exponential right tail that
satisfy this condition with β > 0 do not converge as β → 0 to heavy-tailed distribu-
tions with β = 0. For this reason, any assertions for heavy-tailed distributions with
β = 0 do not hold if β → 0 with an arbitrary rate; the rate must be matched with the
PFA probability α , α → 0. Hence, in what follows we consider the scenario with
the prior distribution πα = {πα

k } that depends on the PFA constraint α and modify
the above condition as
CP1. For some βα ≥ 0 such that βα → 0 as α → 0

lim
n→∞

1
n

∣∣∣∣∣log
∞

∑
k=n+1

π
α
k

∣∣∣∣∣= βα .

For B ∈P and θ ∈Θ , introduce the log-likelihood ratio (LLR) process between
the hypotheses Hk,B,θ (k = 0,1, . . . ) and H∞:

λB,θ (k,n) =
n

∑
t=k+1

log
fB,θ (Xt |Xt−1)

g(Xt |Xt−1)
, n > k

(λB,θ (k,n) = 0 for n≤ k).
Let ψ : R+ → R+ be an increasing and continuous function and by Ψ denote

the inverse of ψ , which is also increasing and continuous. We also assume that
limx→∞ ψ(x) = ∞, and thus, Ψ(x) is properly defined on the entire positive real line.

In the rest of the paper, we assume that the strong law of large numbers (SLLN)
holds for the LLR with the rate ψ(n), that is, λB,θ (k,k+n)/ψ(n) converges almost
surely (a.s.) under probability Pk,B,θ to a finite and positive number IB,θ :

1
ψ(n)

λB,θ (k,k+n)
Pk,B,θ−a.s.
−−−−−−→

n→∞
IB,θ for all k ∈ Z+, B ∈P, θ ∈Θ . (16)

Condition (16) is the first main assumption regarding the general stochastic model
for observed data.

Notice that if the data in streams and across the streams are independent (but
non-stationary), then

IB,θ = lim
n→∞

1
ψ(n) ∑

i∈B

k+n

∑
t=k+1

Ek,i,θi

[
fi,θi(Xt(i)
gi,t(Xt(i))

]
,

where gi,t(Xt(i)) and fi,θi(Xt(i)) are pre- and post-change densities of the t-th ob-
servation in the i-th stream, respectively. In other words, the number IB,θ can be
interpreted as the limiting local Kullback-Leibler divergence.

If the function ψ(n) is non-linear we will say that the model is non-stationary
(even asymptotically). However, in many applications the observations are non-
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identically distributed but ψ(n) = n, in which case we will say that the non-i.i.d.
model is asymptotically stationary.

In Subsection 2.4.3, we establish the asymptotic lower bound (as α → 0) for the
minimal value of the expected detection delay EDDk,B,θ (T ) in class Cπ(α) when-
ever the almost sure convergence condition (16) holds. To obtain the lower bound it
suffices to require the following right-tail condition

lim
L→∞

Pk,B,θ

{
1

ψ(L)
max

1≤n≤L
λB,θ (k,k+n)≥ (1+ ε)IB,θ

}
= 0 for all ε > 0.

This condition holds whenever the SLLN (16) takes place. However, the SLLN is
not sufficient to show that this lower bound is attained for the mixture detection pro-
cedures (14) and (15). To this end, the SLLN should be strengthened into a complete
convergence version.

Definition 1. We say that the process {Yk,n}n∈N, k ∈ Z+ converges to a random
variable Y uniformly completely under the measure Pk if

∞

∑
n=1

sup
k∈Z+

Pk
{∣∣Yk,n−Y

∣∣> ε
}
< ∞ for all ε > 0.

The proof of the upper bound presented in Subsection 2.4.5 shows that if along
with the SLLN (16) the following left-tail condition is satisfied

∞

∑
n=1

sup
k∈Z+

Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε

}
< ∞ for all ε > 0, (17)

where the “information number” IB,θ is positive and finite, then the detection proce-
dure (15) is asymptotically optimal for the fixed (prespecified) post-change param-
eter θ .

Obviously, both conditions (16) and (17) are satisfied whenever there exist
positive and finite numbers IB,θ (B ∈P , θ ∈ Θ ) such that the normalized LLR
λB,θ (k,k+ n)/ψ(n)→ IB,θ uniformly completely under Pk,B,θ -probability. There-
fore, this condition turns out to be sufficient for asymptotic optimality of the de-
tection procedure (15) when the post-change parameter θ is known. In the case of
the unknown post-change parameter, the left-tail condition is similar to but more
sophisticated than condition (17). The details will be given in Subsection 2.4.6.

2.4.2 Heuristic Argument

We begin with a heuristic argument that allows us to obtain approximations for
the expected detection delay when the threshold in the mixture detection procedure
T p,W

A is large. For the sake of simplicity, the head-start in the detection statistic
Rp,W (n) is set to zero, Rp,W (n) = r = 0. This argument also explains the reason why
the condition CP1 on the prior distribution is imposed.
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Assume first that the change occurs at ν = k ≤ 0. It is easy to see that the loga-
rithm of the statistic Rp,W (n) can be written as

logRp,W (n) = λp,W (0,n)+Yn,

where

Yn = log

[
n−1

∑
t=1

Λp,W (t,n)
Λp,W (0,n)

]
.

Due to the SLLN (16) λp,W (n)/ψ(n) converges almost surely as n→∞ under P0,B,θ
to IB,θ , so we can expect that for a large n

λp,W (0,n)≈ IB,θ ψ(n)+ξn, (18)

where ξn/ψ(n) converges to 0. Also, Yn, n≥ 1 are “slowly changing” and converge
to a random variable Y∞. Thus, ignoring the overshoot of logRp,W (T p,W

A ) over logA,
we obtain

logA≈ logRp,W (T p,W
A )≈ IB,θ ψ

(
T p,W

A

)
+ξT p,W

A
+Y∞. (19)

If ψ(n) increases sufficiently fast, at least not slower than n, then the last two terms
can be ignored, and hence,

ψ(T p,W
A )≈ logA

IB,θ
,

which implies

T p,W
A ≈Ψ

(
logA
IB,θ

)
.

Taking expectation yields

E0,B,θ [T
p,W

A ]≈Ψ

(
logA
IB,θ

)
.

A similar argument leads to the following approximate formula (for a large A) for
the expected delay Ek,B,θ [(T

p,W
A − k)+] when the change occurs at any ν = k ∈ Z+:

Ek,B,θ [(T
p,W

A − k)+]≈Ψ

(
logA
IB,θ

)
, k ∈ Z+. (20)

Next, in Lemma 1 (see Subsection 2.4.4) it is established that the probability of
a false alarm of the procedure T p,W

A satisfies the inequality

PFAπ(T
p,W

A )≤ ν̄A/A,

where ν̄A = ∑
∞
k=1 kπA

k is the mean of the prior distribution πA. If we assume that
ν̄A/A → 0 as A → ∞, then this inequality along with approximate equality (20)
yields the following approximation for the expected delay to detection:
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Ek,B,θ [T
p,W

A − k|T p,W
A > k] =

Ek,θ [(TW
A − k)+]

1−PFAπ(T
p,W

A )
≈Ψ

(
logA
IB,θ

)
. (21)

In subsequent sections, this approximation is justified rigorously.
There are two key points we would like to address. The first one is that if we

impose condition CP1 on the prior distribution of the change point with β > 0 that
does not depend on α and does not converge to 0, then the lower bound for the
expected delay to detection in class Cπ(α) has the form

inf
T∈Cπ (α)

EDDk,B,θ ≥Ψ

(
| logα|
IB,θ +β

)
(1+o(1)) as α → 0. (22)

In this case, this lower bound is not attained by the procedure T p,W
A since if we take

A = Aα ∼ | logα|, then it follows from (21) that

Ek,B,θ [T
p,W

A − k|T p,W
A > k]∼Ψ

(
| logα|

IB,θ

)
>Ψ

(
| logα|
IB,θ +β

)
.

Hereafter we use a conventional notation ya ∼ za as a→ a0 if lima→a0(ya/za) = 1.
This can be expected since the detection statistic Rp,W (n) is based on the uniform
prior on a positive half line. However, if β = βα → 0, as we assumed in condition
CP1, then the lower bound is

Ψ

(
| logα|

IB,θ

)
(1+o(1))

and it is attained by T p,W
A .

Yet another key point is that to obtain the lower bound (22) with β = βα → 0 but
βα > 0, as shown in the proof of Theorem 1, we need the function ψ(x) to be either
linear or super-linear. Indeed, if now we define the statistic

Sπ
p,W (n) =

1
P(ν ≥ n)

[
π−Λp,W (0,n)+

n−1

∑
k=0

πk Λp,W (k,n)

]

and the corresponding detection procedure

T̃ p,W
A = inf

{
n≥ 1 : Sπ

p,W (n)≥ A
}
,

then instead of (19) we have

logA≈ logSp,W (T̃ p,W
A )≈ β T̃ p,W

A + IB,θ ψ

(
T̃ p,W

A

)
+ξT̃ p,W

A
+Y∞.

So if ψ(x) < x is sub-linear, i.e., Ψ(n)� n for large n, we expect that the prior
distribution gives much more contribution than the observations and
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Ek,B,θ [T̃
p,W

A − k|T̃ p,W
A > k]≈Ψ

(
logA

β

)
as long as β > 0, i.e., the prior distribution has an exponential right tail.

Despite the simplicity of the basic ideas and the approximate calculations, the
rigorous argument in proving these results is rather tedious.

2.4.3 Asymptotic Lower Bound for Expected Detection Delay

For establishing asymptotic optimality of changepoint detection procedures, we first
obtain, under the a.s. convergence condition (16), the asymptotic lower bound for
expected detection delay EDDk,B,θ (T ) = Ek,B,θ [T − k|T > k] of any detection rule
T from class Cπ(α). In the following subsections, we show that under certain ad-
ditional conditions associated with complete convergence of LLR these bounds are
attained for the mixture procedures T p,W

A and T p,θ
A .

For ε ∈ (0,1) and δ > 0, define

Nα = Nα(ε,δ ,B,θ) =Ψ

(
(1− ε)| logα|
IB,θ +βα +δ

)
. (23)

The following theorem specifies the asymptotic lower bound for the expected
detection delay.

Theorem 1. Let the prior distribution of the change point satisfy condition CP1
and assume that for some positive and finite numbers IB,θ (B ∈P , θ ∈ Θ ) the
a.s. convergence condition (16) holds. Suppose in addition that the function ψ(x)
increases not slower than x, i.e.,

ψ(x)≥ x, x > 0. (24)

Then for all 0 < ε < 1 and δ > 0

lim
α→0

sup
T∈Cπ (α)

Pk,B,θ {k < T ≤ k+Nα(ε,δ ,B,θ)}= 0 for all B ∈P,θ ∈Θ , (25)

and, as a result, for all ν = k ∈ Z+, B ∈P , and θ ∈Θ

inf
T∈Cπ (α)

EDDk,B,θ (T )≥Ψ

(
| logα|

IB,θ

)
(1+o(1)) as α → 0. (26)

Proof. In the asymptotically stationary case where ψ(n) = n, the methodology of
the proof is analogous to that used by Tartakovsky [27, 28] in the proofs of the
lower bounds in a single stream change detection problem with slightly different as-
sumptions on the prior distribution. A generalization of the proof in the substantially
non-stationary case has several technical details. We present complete proof.
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To begin, consider an arbitrary stopping time T ∈ Cπ(α) and note that by
Markov’s inequality

EDDk,B,θ (T )≥ Ek,B,θ
[
(T − k)+

]
≥ Nα Pk,B,θ

{
(T − k)+ > Nα

}
= Nα Pk,B,θ (T > k+Nα) .

If assertion (25) holds, then

lim
α→0

inf
T∈Cπ (α)

Pk,B,θ (T > k+Nα) = 1. (27)

Indeed,

Pk,B,θ (T > k+Nα) = P∞ (T > k)−Pk,B,θ (k < T ≤ k+Nα) ,

where we used the identity Pk,B,θ (T > k) = P∞(T > k). Next, since for any change
detection procedure T ∈ Cπ(α),

α ≥
∞

∑
i=k

π
α
i P∞(T ≤ i)≥ P∞(T ≤ k)

∞

∑
i=k

π
α
i ,

it follows that
inf

T∈Cπ (α)
P∞(T > k)≥ 1−α/Π

α
k−1, k ∈ Z+, (28)

where Π α
` = P(ν > `) = ∑

∞
k=`+1 πα

k . Hence, we obtain

inf
T∈Cπ (α)

Pk,B,θ (T > k+Nα)≥ 1−α/Π
α
k−1− sup

T∈Cπ (α)

Pk,B,θ (k < T ≤ k+Nα).

This inequality yields (27), and we obtain the asymptotic inequality

EDDk,B,θ (T )≥ Nα(1+o(1)) as α → 0,

which holds for arbitrary values of ε ∈ (0,1) and δ > 0. By our assumption, the
function Nα = Nα(ε,δ ,B,θ) is continuous, so we may take a limit δ ,ε → 0, which
implies inequality (26). Consequently, to show the validity of asymptotic inequality
(26), it suffices to prove the equality (25).

Let

λ
∗
B,θ (t) = log

fB,θ (Xt |Xt−1)

g(Xt |Xt−1)

and notice that for n > k

dP(n)
∞

dP(n)
k,B,θ

=
1

LRB,θ (k,n)
= exp

{
−

n

∑
t=k+1

λ
∗
B,θ (t)

}
,

where hereafter P(n) denotes a restriction of the measure P to the sigma-algebra
Fn. Therefore, changing the measure P∞→Pk,B,θ and using Wald’s likelihood ratio
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identity, we obtain for any C > 0:

P∞ (k < T ≤ k+Nα) = Ek,B,θ

1{0<T−k≤Nα}
dP(T )

∞

dP(T )
k,B,θ


= Ek,B,θ

[
1{0<T−k≤Nα}e

−∑
T
t=k+1 λ ∗B,θ (t)

]
≥ Ek,B,θ

[
1{0<T−k≤Nα ,∑

T
t=k+1 λ ∗B,θ (t)<C}e

−∑
T
t=k+1 λ ∗B,θ (t)

]
≥ e−CPk,B,θ

{
0 < T − k ≤ Nα , max

0<n−k≤Nα

n

∑
t=k+1

λ
∗
B,θ (t)<C

}

≥ e−C

[
Pk,B,θ {0 < T − k ≤ Nα}−Pk,B,θ

{
max

0≤n<Nα

k+n+1

∑
t=k+1

λ
∗
B,θ (t)≥C

}]
,

where the last inequality follows from the fact that P(A ∩B) = P(A )−P(Bc) for
any events A and B, where Bc is the complement event of B. Setting

C = ψ(Nα)IB,θ (1+ ε) = (1+ ε)Kα , Kα =
(1− ε)| logα|IB,θ

IB,θ +βα +δ

yields
Pk,B,θ (k < T ≤ k+Nα)≤ κk,α(T )+ sup

k≥0
γk,α , (29)

where

κk,α(T ) = κk,α(ε,δ ,θ ,B,T ) = e(1+ε)KαP∞ {0 < T − k ≤ Nα}

and

γk,α = γk,α(ε,B,θ) = Pk,B,θ

{
max

0≤n<Nα

k+n+1

∑
t=k+1

λ
∗
B,θ (t)≥ (1+ ε)IB,θ ψ(Nα)

}
.

By the a.s. convergence condition (16),

lim
α→0

sup
k≥0

γk,α = 0. (30)

To evaluate κk,α(T ) it suffices to note that, by condition CP1, for all sufficiently
small α , there exists a small δ such that

| logΠ α
k−1+Nα

|
k−1+Nα

≤ βα +δ ,

and to use inequality (28), which yields that for all sufficiently small α

κk,α(T )≤ e(1+ε)KαP∞(T ≤ k+Nα)≤ α e(1+ε)Kα/Π
α
k−1+Nα
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≤ exp
{
(1+ ε)Kα −| logα|+(k−1+Nα)

| logΠ α
k−1+Nα

|
k−1+Nα

}
≤ exp{(1+ ε)Kα −| logα|+(k−1+Nα)(βα +δ )} .

Since by condition (24),

Nα ≤ Kα/IB,θ =
(1− ε)| logα|
IB,θ +βα +δ

it follows that

κk,α(T )≤ exp
{
−

IB,θ ε2 +(βα +δ )ε

IB,θ +βα +δ
| logα|+(βα +δ )k

}
≤ exp

{
−ε

2| logα|+(βα +δ )k
}

:= κα,k(ε,δ ).

for all ε ∈ (0,1) and every small δ . Hence, for all ε ∈ (0,1) and sufficiently small
δ ,

κk,α(T )≤ κk,α(ε,δ ), (31)

where κk,α(ε,δ ) does not depend on the stopping time T and goes to 0 as α → 0
for any fixed k ∈ Z+, which implies that

sup
T∈Cπ (α)

κk,α(T )→ 0 as α → 0 for every fixed k ∈ Z+.

The proof of the lower bound (26) is complete. ut

Remark 1. Super-linear condition (24) for ψ(x) can be generalized to asymptotic
super-linearity, i.e., it suffices to require that the growth rate of ψ(x) is faster than a
linear function for sufficiently large x.

2.4.4 Probabilities of False Alarm of Mixture Change Detection Procedures

An important question is how to select threshold A in change detection procedures
T p,θ

A and T p,W
A defined in (15) and (14), respectively, to imbed them into class

Cπ(α).
The following lemma provides the upper bounds for the PFA of these procedures.

Lemma 1. For all A > 0 and any prior distribution π = {πk} of the change point
ν with finite mean ν̄ = ∑

∞
k=1 kπk, the weighted probabilities of false alarms of the

detection procedures T p,θ
A and T p,W

A satisfy the inequalities

PFAπ(T
p,θ

A )≤ rb+ ν̄

A
, (32)

PFAπ(T
p,W

A )≤ rb+ ν̄

A
, (33)
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where b = ∑
∞
k=1 πk. Hence, if A = Aα = (rb+ ν̄)/α , then PFAπ(T

p,θ
Aα

) ≤ α and

PFAπ(T
p,W

Aα
)≤ α , i.e., T p,θ

Aα
∈ Cπ(α) and T p,W

Aα
∈ Cπ(α).

Proof. We have

E∞[Rp,θ (n)|Fn−1] = ∑
B∈P

pB+ ∑
B∈P

pBRB,θ (n−1) = 1+Rp,θ (n−1),

and hence, the statistic {Rp,θ (n)}n∈N is a non-negative (P∞,Fn)-submartingale with
mean

E∞[Rp,θ (n)] = r+n, n ∈ N.

By Doob’s maximal submartingale inequality, for any k ≥ 1,

P∞(T
p,θ

A ≤ k) = P∞

{
max

0≤n≤k
Rp,θ (n)≥ A

}
≤

E∞[Rp,θ (k)]
A

=
r+ k

A
, (34)

which implies
∞

∑
k=1

πkP∞(T
p,θ

A ≤ k)≤ r ∑
∞
k=1 πk +∑

∞
k=1 kπk

A
,

and inequality (32) follows.
To prove inequality (33) it suffices to note that the double mixture statistic

{Rp,W (n)}n∈N is also a (P∞,Fn)-submartingale with mean E∞[Rp,W (n)= r+n since

E∞[Rp,W (n)|Fn−1] = E∞

[∫
Θ

Rp,θ (n)dW (θ)|Fn−1

]
=
∫

Θ

E∞

[
Rp,θ (n)|Fn−1

]
dW (θ)

= 1+
∫

Θ

Rp,θ (n−1)dW (θ) = 1+Rp,W (n−1).

Applying Doob’s submartingale inequality yields

P∞(T
p,W

A ≤ k)≤ (r+ k)/A, k = 1,2, . . . , (35)

which implies (33) and the proof is complete. ut

2.4.5 Asymptotic Optimality of Mixture Detection Procedure T p,θ
A for Known

Post-change Parameter

We now proceed with establishing asymptotic optimality properties of the mixture
detection procedures T p,θ

A in class Cπ(α) as α → 0 assuming that the post-change
parameter θ is prespecified (known or selected).

Throughout this subsection, we assume that there exist positive and finite num-
bers IB,θ (B ∈P , θ ∈Θ ) such that the normalized LLR λB,θ (k,k+ n)/ψ(n) con-
verges as n→ ∞ to IB,θ uniformly completely under probability measure Pk,B,θ ,
i.e.,
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∞

∑
n=1

sup
k∈Z+

Pk,B,θ

{∣∣∣∣λB,θ (k,k+n)
ψ(n)

− IB,θ

∣∣∣∣> ε

}
< ∞ for all ε > 0. (36)

2.4.5(a) Asymptotic Operating Characteristics of Detection Procedure T p,θ
A for

Large Threshold Values

The following theorem provides asymptotic operating characteristics of the mixture
detection procedure T p,θ

A for large values of threshold A. Since no constraints are
imposed on the false alarm rate (FAR) – neither on the PFA nor any other FAR mea-
sure – this result is universal and can be used in a variety of optimization problems.
We need to impose some constraints on the behavior of the head-start rA, which may
depend on A and approach infinity as A→ ∞ in such a way that

lim
A→∞

(rA A−ε) = 0 for any ε > 0. (37)

We also need to assume that the function ψ(x) increases not too slowly, at least
faster than the logarithmic function. Specifically, we assume the following condition
on the inverse function Ψ(x)

lim
x→∞

logΨ(x)
x

= 0. (38)

Theorem 2. Suppose that conditions (37) and (38) hold and there exist positive and
finite numbers IB,θ , B ∈P , θ ∈ Θ , such that the uniform complete convergence
condition (36) is satisfied. Then the following asymptotic as A→ ∞ approximation
holds

EDDk,B,θ (T
p,θ

A ) =Ψ

(
logA
IB,θ

)
(1+o(1)) for all k ∈ Z+, B ∈P. (39)

Proof. For ε ∈ (0,1), let NA = NA(ε,B,θ) = Ψ
(
(1− ε)(logA)/IB,θ

)
. Inequality

(34) implies that for all k ∈ Z+

Pk,B,θ (T
p,θ

A > k) = P∞(T
p,θ

A > k)≥ 1− k+ rA

A
.

Hence, using Markov’s inequality, we obtain

EDDk,B,θ (T
p,θ

A )≥ Ek,B,θ

[
(T p,θ

A − k)+
]

≥ NAPk,B,θ (T
p,θ

A − k > NA)

≥ NA

[
Pk,B,θ (T

p,θ
A > k)−Pk,B,θ (k < T p,θ

A < k+NA)
]

≥ NA

[
1− rA + k

A
−Pk,B,θ (k < T p,θ

A < k+NA)

]
. (40)
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Similarly to (29)

Pk,B,θ

(
k < T p,θ

A ≤ k+NA

)
≤ κk,A(T

p,θ
A )+ γk,A, (41)

where
κk,A(T

p,θ
A ) = e(1−ε2) logAP∞

(
0 < T p,θ

A − k ≤ NA

)
and

γk,A = Pk,B,θ

{
max

0≤n<NA
λB,θ (k,k+n)≥ (1+ ε)IB,θ ψ(NA)

}
.

Using inequality (34), we obtain

P∞

(
0 < T p,θ

A − k < NA

)
≤ P∞

(
T p,θ

A < k+NA

)
≤ (k+ rA +NA)/A,

and consequently,

κk,A(T
p,θ

A )≤
k+ rA +Ψ((1− ε)I−1

B,θ logA)

Aε2 . (42)

Since, by conditions (37) and (38), for any ε > 0

rA +Ψ((1− ε)I−1
B,θ logA)

Aε2 → 0 as A→ ∞.

it follows from (42) that κk,A(T
p,θ

A )→ 0 as A→ ∞ for any k ∈ Z+. Also, γk,A→ 0
as A→ ∞ by condition (36). Therefore,

Pk,B,θ

(
0 < T p,θ

A − k < NA

)
→ 0 as A→ ∞

for any fixed k ∈ Z+. It follows from (40) that as A→ ∞

EDDk,B,θ (T
p,θ

A )≥Ψ

(
(1− ε) logA

IB,θ

)
(1+o(1)),

where ε can be arbitrarily small. This yields the asymptotic lower bound (for any
fixed k ∈ Z+, B ∈P)

liminf
A→∞

EDDk,B,θ (T
p,θ

A )

logA
≥ 1

IB,θ
. (43)

To prove (39) it suffices to show that this bound is attained by T p,θ
A , i.e.,

limsup
A→∞

EDDk,B,θ (T
p,θ

A )

logA
≤ 1

IB,θ
. (44)
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For 0 < ε < IB,θ , define

MA = MA(ε,B,θ) = 1+
⌊

Ψ

(
logA

IB,θ − ε

)⌋
. (45)

Recall the definitions of the mixture SR statistic Rp,θ (n) and mixture LR Λp,θ (n)
given in (10) and (11), respectively. Obviously, for any n ∈ N and B ∈P ,

logRp,θ (k+n)≥ logΛp,θ (k,k+n)≥ λB,ϑ (k,k+n)+ log pB,

and we have

Pk,B,θ

(
T p,θ

A − k > n
)
≤ Pk,B,θ

{
1

ψ(n)
logRp,θ (k+n)<

1
ψ(n)

logA
}

≤ Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)<

1
ψ(n)

(logA+ | log pB|)
}
,

where for any n≥MA the last probability does not exceed the probability

Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε + | log pB|/ψ(MA)

}
.

Therefore, for IB,θ > ε > 0, all n ≥ MA and all sufficiently large A such that
| log pB|/ψ(MA)< ε/2 , we have

Pk,B,θ

(
T p,θ

A − k > n
)
≤ Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε/2

}
. (46)

Now, by Lemma A1 in Tartakovsky [29, page 239], for any ` ≥ 1, k ∈ Z+, and
B ∈P ,

Ek,B,θ

[
(T p,θ

A − k)+
]`
≤M`

A + `2`−1
∞

∑
n=MA

n`−1Pk,B,θ

(
T p,θ

A > n
)
, (47)

which along with inequality (46) yields

Ek,B,θ

[(
T p,θ

A − k
)+]
≤ 1+

⌊
Ψ

(
logA

IB,θ − ε

)⌋
+

∞

∑
n=MA

Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε/2

}
. (48)

Write

ϒA(ε,B,θ) =
∞

∑
n=MA

sup
k∈Z+

Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε

}
.

Using (48) and the inequality P∞(T
p,θ

A > k)> 1− (rA + k)/A (see (34)), we obtain



Quickest Changepoint Detection in General Stochastic Models 21

EDDk,B,θ (T
p,θ

A ) =

Ek,B,θ

[(
T p,θ

A − k
)+]

P∞(T
p,θ

A > k)

≤
1+
⌊
Ψ

(
logA

IB,θ−ε

)⌋
+ϒA(ε/2,B,θ)

1− (rA + k)/A
. (49)

Since due to condition (37) rA/A → 0 and, by complete convergence condition
(36), limA→∞ϒA(ε/2,B,θ) = 0 for all ε > 0 and B ∈P , inequality (49) implies
the asymptotic inequality

EDDk,B,θ (T
p,θ

A )≤
(

logA
IB,θ − ε

)
(1+o(1)) as A→ ∞.

Since ε can be arbitrarily small the asymptotic upper bound (44) follows and the
proof of the asymptotic approximation (39) is complete. ut

2.4.5(b) Asymptotic Optimality

Since we assume that the prior distribution may depend on the prescribed PFA α

the mean ν̄α = ∑
∞
k=0 k πα

k depends on α . We also suppose that the head-start r = rα

may depend on α and may go to infinity as α → 0. We further assume that rα and
ν̄α approach infinity with such a rate that

lim
α→0

log(rα + ν̄α)

| logα|
= 0. (50)

The following theorem establishes the first-order asymptotic (as α→ 0) optimal-
ity of the mixture detection procedure T p,θ

A for the fixed value of θ in the general
non-i.i.d. case. In this theorem, we assume that ψ(x) satisfies condition (24) in con-
trast to Theorem 2 where this function can be practically arbitrary.

Theorem 3. Let the prior distribution of the change point satisfy condition CP1
and let the mean of the prior distribution να and the head-start rα of the statistic
Rp,θ (n) go to infinity with such a rate that condition (50) hold. Assume that for some
0 < IB,θ < ∞ (B ∈P) the uniform complete convergence condition (36) holds. If
threshold A=Aα is so selected that PFAπ(T

p,θ
Aα

)≤α and logAα ∼ | logα| as α→ 0,
in particular as Aα = (rα + ν̄α)/α , then for all k ∈ Z+ and B ∈P as α → 0

EDDk,B,θ (T
p,θ

Aα
) =Ψ

(
| logα|

IB,θ

)
(1+o(1)); (51)

inf
T∈Cπ (α)

EDDk,B,θ (T ) = EDDk,B,θ (T
p,θ

Aα
)(1+o(1)). (52)
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That is, the detection procedure T p,θ
Aα

is first-order asymptotically optimal as α→ 0
in class Cπ(α), minimizing average detection delay EDDk,B,θ (T ) uniformly for all
k ∈ Z+ and B ∈P .

Proof. If threshold Aα is so selected that logAα ∼ | logα| as α→ 0, then asymptotic
approximation (51) follows from Theorem 2. This asymptotic approximation coin-
cides with the asymptotic lower bound (26) in Theorem 1 if condition (24) on ψ(x)
holds. Hence, the lower bound is attained by T p,θ

Aα
, proving (52) and the assertion of

the theorem.
In particular, if threshold is selected as Aα = (rα + ν̄α)/α , then by Lemma 1

PFAπ(T
p,θ

Aα
)≤ α and logAα ∼− logα due to condition (50). ut

Remark 2. If the prior distribution π of the change point does not depend on α and
condition CP1 is satisfied with β ≥ 0, then the assertion of Theorem 3 holds if,
and only if, β = 0, i.e., for heavy-tailed prior distributions, but not for priors with
exponential right tail with β > 0. This follows from the fact that for β > 0 the lower
bound has the form

inf
T∈Cπ (α)

EDDk,B,θ (T )≥Ψ

(
| logα|
IB,θ +β

)
(1+o(1) as α → 0.

2.4.6 Asymptotic Optimality of the Double-Mixture Procedure T p,W
A for

Unknown Post-change Parameter

Consider now the case where the post-change parameter θ ∈Θ is unknown. The
goal is to show that the double-mixture detection procedure T p,W

A defined in (14) is
asymptotically optimal to first order.

Recall that in the case of the known parameter θ , the sufficient condition for
asymptotic optimality (imposed on the data model) is the uniform complete version
of the SLLN (36). The proofs of Theorem 1 and Theorem 2 show that to establish
asymptotic optimality of procedure T p,θ

A it suffices to require the following two
(right-tail and left-tail) conditions: for all ε > 0, k ∈ Z+ and B ∈P

lim
L→∞

Pk,B,θ

{
1

ψ(L)
max

0≤n<L
λB,θ (k,k+n)≥ (1+ ε)IB,θ

}
= 0 (53)

and
∞

∑
n=1

Pk,B,θ

{
1

ψ(n)
λB,θ (k,k+n)< IB,θ − ε

}
< ∞. (54)

Note that the SLLN (16) guarantees right-tail condition (53) and complete version
(36) guarantees both conditions (53) and (54).

If the post-change parameter θ is unknown to obtain the upper bound for the
expected detection delay the left-trail condition (54) has to be modified as follows.
For δ > 0, define Γδ ,θ = {ϑ ∈Θ : |ϑ−θ |< δ} and assume that there exist positive
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and finite numbers IB,θ (B ∈P , θ ∈Θ ) such that for any ε > 0 and for all B ∈P
and θ ∈Θ

lim
δ→0

∞

∑
n=1

sup
k∈Z+

Pk,B,θ

{
1

ψ(n)
inf

ϑ∈Γδ ,θ

λB,ϑ (k,k+n)< IB,θ − ε

}
< ∞. (55)

We ignore parameter values with W -measure null, i.e., without special emphasis
we will always assume that

W (Γδ ,θ )> 0 for all θ ∈Θ and δ > 0.

The following theorem generalizes Theorem 2 to the case of the unknown post-
change parameter.

Theorem 4. Suppose that conditions (37) and (38) hold and there exist positive and
finite numbers IB,θ , B ∈P , θ ∈Θ , such that right-tail and left-tail conditions (53)
and (55) are satisfied. Then the following asymptotic as A→∞ approximation holds

EDDk,B,θ (T
p,W

A ) =Ψ

(
logA
IB,θ

)
(1+o(1)) for all k ∈ Z+, B ∈P, θ ∈Θ . (56)

Proof. The proof of the asymptotic lower bound (for any fixed k ∈ Z+, B ∈P and
θ ∈Θ )

EDDk,B,θ (T
p,W

A )≥Ψ

(
logA
IB,θ

)
(1+o(1)) as A→ ∞ (57)

is essentially identical to that used to establish the lower bound (43) for the expected
delay to detection EDDk,B,θ (T

p,θ
A ) in the proof of Theorem 2. So it is omitted.

To prove asymptotic approximation (56) it suffices to show that the lower bound
(57) is attained by T p,W

A , i.e.,

limsup
A→∞

EDDk,B,θ (T
p,W

A )

logA
≤ 1

IB,θ
. (58)

Let MA be as in (45). Since for any n≥ 1,

logRp,W (k+n)≥ logΛp,W (k,k+n)≥ inf
ϑ∈Γδ ,θ

λB,ϑ (k,k+n)+ logW (Γδ ,θ )+ log pB,

using essentially the same argument as in the proof of Theorem 2 that have led to
inequality (46) we obtain that for all n≥MA

Pk,B,θ

(
T p,W

A > n
)
≤ Pk,B,θ

{
1

ψ(n)
inf

ϑ∈Γδ ,θ

λB,ϑ (k,k+n)< IB,θ − ε

− 1
ψ(MA)

(
log pB+ logW (Γδ ,θ )

)}
.
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Hence, for all n≥MA and all sufficiently large A such that | log[pBW (Γδ ,θ )]|/ψ(MA)<
ε/2 ,

Pk,B,θ

(
T p,W

A − k > n
)
≤ Pk,B,θ

(
1

ψ(n)
inf

ϑ∈Γδ ,θ

λB,ϑ (k,k+n)< IB,θ −
ε

2

)
. (59)

Lemma A1 in Tartakovsky [29, Page 239] yields the inequality (for any k ∈ Z+,
B ∈P , and θ ∈Θ )

Ek,B,θ

[
(T p,W

A − k)+
]
≤MA +

∞

∑
n=MA

Pk,B,θ

(
T p,W

A > n
)
. (60)

Using (60) and (59), we obtain

Ek,B,θ

[(
T p,W

A − k
)+]
≤ 1+Ψ

(⌊
logA

IB,θ − ε

⌋)
+ϒA(ε/2,B,θ), (61)

where

ϒA(ε,B,θ) =
∞

∑
n=MA

sup
k∈Z+

Pk,B,θ

{
1

ψ(n)
inf

ϑ∈Γδ ,θ

λB,ϑ (k,k+n)< IB,θ − ε

}
.

Next, inequality (61) along with the inequality P∞(T
p,W

A > k)> 1− (rA +k)/A (see
(35)) implies the inequality

EDDk,B,θ (T
p,W

A )≤
1+Ψ

(⌊
logA

IB,θ−ε

⌋)
+ϒA(ε/2,B,θ)

1− (rA + k)/A
. (62)

Since rA/A→ 0 (see condition (37)) and, by condition (55), ϒA(ε/2,B,θ)→ 0 as
A→ ∞ for all ε > 0, B ∈P , and θ ∈ Θ inequality (62) implies the asymptotic
inequality

EDDk,B,θ (T
p,W

A )≤
(

logA
IB,θ − ε

)
(1+o(1)) as A→ ∞,

where ε can be taken arbitrarily small so that the asymptotic upper bound (58) fol-
lows and the proof of the asymptotic approximation (56) is complete. ut

Using asymptotic approximation (56) in Theorem 4 and the lower bound (26) in
Theorem 1, it is easy to prove that the mixture procedure T p,W

A is asymptotically
optimal to first order as α → 0 in class Cπ(α). We silently assume that ψ(x) is
either a linear or super-linear function (see (24)).

Theorem 5. Let the prior distribution of the change point satisfy condition CP1.
Assume also that the mean value ν̄ = ν̄α of the prior distribution and the head-
start r = rα of the statistic Rp,W (n) approach infinity as α → 0 with such a rate
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that condition (50) holds. Suppose further that there exist numbers 0 < IB,θ < ∞

(B ∈P,θ ∈Θ ) such that conditions (53) and (55) are satisfied. If threshold Aα is
so selected that PFAπ(T

p,W
Aα

) ≤ α and logAα ∼ | logα| as α → 0, in particular as
Aα = (rα + ν̄α)/α , then for all k ∈ Z+, B ∈P and θ ∈Θ as α → 0

EDDk,B,θ (T
p,W

Aα
) =Ψ

(
| logα|

IB,θ

)
(1+o(1)); (63)

inf
T∈Cπ (α)

EDDk,B,θ (T ) = EDDk,B,θ (T
p,W

Aα
)(1+o(1)), (64)

that is, the procedure T p,W
Aα

is first-order asymptotically optimal as α → 0 in class
Cπ(α).

Proof. If Aα is so selected that logAα ∼ | logα| as α→ 0, then asymptotic approx-
imation (63) follows from asymptotic approximation (56) in Theorem 4. Since this
approximation is the same as the asymptotic lower bound (26) in Theorem 1, this
shows that the lower bound is attained by the detection rule T p,W

Aα
, so (64) follows

and the proof is complete.
If, in particular, Aα = (rα + ν̄α)/α , then logAα ∼ | logα| and by Lemma 1

T p,W
Aα
∈ Cπ(α). ut

Remark 3. The assertion of Theorem 5 holds when ν̄ and r do not depend on α and
the condition CP1 is satisfied with β ≡ 0, i.e., for priors π with heavy tails. This
could be expected since the detection statistic Rp,W (n) uses an improper uniform
prior distribution of the change point on the whole positive line.

2.4.7 The Case of Independent Streams

Notice that so far we considered a very general stochastic model where not only the
observations in streams may be dependent and non-identically distributed, but also
the streams may be mutually dependent. In this very general case, computing statis-
tic Rp,W (n) is problematic even when the statistics in data streams can be computed.
Consider now still a very general scenario where the data streams are mutually in-
dependent (but have a general statistical structure), which is of special interest for
many applications. The computational problem becomes more manageable when
the data between data streams are independent.

2.4.7(a) Computational Issues

In the case where the data across streams are independent, the model has the form
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p(Xn|Hk,B,θθθB) =
n

∏
t=1

N

∏
i=1

gi(Xt(i)|Xt−1(i)) for ν = k ≥ n,

p(Xn|Hk,B,θθθB) =
k

∏
t=1

N

∏
i=1

gi(Xt(i)|Xt−1(i))×

n

∏
t=k+1

∏
i∈B

fi,θi(Xt(i)|Xt−1(i))∏
i/∈B

gi(Xt(i)|Xt−1(i)) for ν = k < n,

(65)

where gi(Xt(i)|Xt−1(i)) and fi,θi(Xt(i)|Xt−1(i)) are conditional pre- and post-change
densities in the i-th data stream, respectively, θi ∈Θi is the unknown post-change
parameter (generally multidimensional) in the i-th stream (i∈ {1, . . . ,N}=N ), and
θθθB = (θi, i ∈ B) is the vector of parameters in the set B. So the LR processes are

LRB,θθθB
(k,n) = ∏

i∈B
LRi,θi(k,n), LRi,θi(k,n) =

n

∏
t=k+1

Li,θi(t), n > k, (66)

where Li,θi(t) = fi,θi(Xt(i)|Xt−1(i))/gi(Xt(i)|Xt−1(i)).
Recall that PK = {B : 1≤ |B| ≤K} is the subclass of P for which the cardinality

|B| of the sets where the change may occur does not exceed K ≤ N streams, and by
P?

K = {B : |B| = K} denote the subclass of P for which the change occurs in
exactly K streams.

Assume, in addition, that the mixing measure is such that

pB =C(PK)∏
i∈B

pi, C(PK) =

(
∑

B∈PK

∏
i∈B

pi

)−1

.

Then the mixture LR is

Λp,θθθ (k,n) =C(PK)
K

∑
i=1

∑
B∈P?

i

∏
j∈B

p jLR j,θi(k,n),

and its computational complexity is polynomial in the number of data streams.
Moreover, in the special, most difficult case of K = N and p j = p, we obtain

Λp,θθθ (k,n) =C(PN)

[
N

∏
i=1

(
1+ pLRi,θi(k,n)

)
−1

]
, (67)

so its computational complexity is only O(N). The representation (67) corresponds
to the case when each stream is affected independently with probability p/(1+ p),
the assumption that was made in [35].
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2.4.7(b) Asymptotic Optimality of Detection Procedures

Since the data are independent across streams, for an assumed value of the change
point ν = k, stream i ∈N , and the post-change parameter value in the i-th stream
θi, the LLR of observations accumulated by time k+n is given by

λi,θi(k,k+n) =
k+n

∑
t=k+1

log
fi,θi(Xt(i)|Xt−1(i))
gi(Xt(i))|Xt−1(i))

, k ∈ Z+, n ∈ N.

Define Γδ ,θi = {ϑ ∈Θi : |ϑ −θi|< δ},

γ
(i)
k,L(ε,θi) = Pk,i,θi

{
1

ψ(L)
max

1≤n≤L
λi,θi(k,k+n)≥ (1+ ε)Ii,θi

}
,

ϒ
(i)(ε,θi) = lim

δ→0

∞

∑
n=1

sup
k∈Z+

Pk,i,θi

{
1

ψ(n)
inf

ϑ∈Γδ ,θi

λi,ϑ (k,k+n)< Ii,θi − ε

}
,

and assume that the following right-tail and left-tail conditions are satisfied for local
LLR statistics in data streams: There exist positive and finite numbers Ii,θi , θi ∈Θi,
i ∈N , such that for any ε > 0

lim
L→∞

γ
(i)
k,L(ε,θi) = 0 for all k ∈ Z+, θi ∈Θi, i ∈N ; (68)

and
ϒ

(i)(ε,θi)< ∞ for all θi ∈Θi, i ∈N . (69)

We also assume that W (Γδ ,θi)> 0 for all δ > 0 and i ∈N .
Let IB,θθθB

= ∑i∈B Ii,θi . Recall that

γk,L(ε,B,θ) = Pk,B,θ

{
1

ψ(L)
max

1≤n≤L
λB,θ (k,k+n)≥ (1+ ε)IB,θ

}
.

Since the LLR process λB,θθθB
(k,k + n) is the sum of independent local LLRs,

λB,θθθB
(k,k+n) = ∑i∈B λi,θi(k,k+n) (see (66)), it is easy to see that

γk,L(ε,B,θθθB)≤∑
i∈B

γ
(i)
k,L(ε,θi),

so that local conditions (68) imply global right-tail condition (53). This is true, in
particular, if λi,θi(k,k+ n)/ψ(n) converge Pk,i,θi -a.s. to Ii,θi , i = 1, . . . ,N, in which
case the SLLN for the global LLR (16) holds with IB,θθθB

= ∑i∈B Ii,θi . Also,

ϒ (ε,B,θθθB)≤∑
i∈B

ϒ
(i)(ε,B,θi),

which shows that local left-tail conditions (69) imply global left-tail condition (55).
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Theorem 5 implies the following results on asymptotic properties of the mixture
procedure T p,W

A .

Corollary 1. Assume that for some positive and finite numbers Ii,θi , θi ∈ Θi, i =
1 . . . ,N, right-tail and left-tail conditions (68) and (69) for local data streams are
satisfied. If threshold Aα is so selected that PFAπ(T

p,W
Aα

) ≤ α and logAα ∼ | logα|
as α → 0, in particular as Aα = (rα + ν̄α)/α , and if conditions (24) and (50) are
satisfied, then asymptotic formulas (63) and (64) hold with IB,θ = IB,θθθB

= ∑i∈B Ii,θi .
Therefore, detection procedure T p,W

Aα
is first-order asymptotically optimal as α → 0

in class Cπ(α).

Remark 4. The assertions of Corollary 1 also hold for different distribution functions
Wi, i ∈N in streams if we assume that Wi(Γδ ,θi) > 0 for all δ > 0 and i ∈N . A
modification in the proof is trivial.

Remark 5. In the case where the post-change parameters θ1, . . . ,θN are known, es-
sentially similar corollary follows from Theorem 3 if we require the uniform com-
plete version of the SLLN for all streams i ∈N :

∞

∑
n=1

sup
k∈Z+

Pk,i,θi

{∣∣∣∣λi,θi(k,k+n)
ψ(n)

− Ii,θi

∣∣∣∣> ε

}
< ∞ for all ε > 0. (70)

3 Examples

3.1 Detection of Changes in the Mean Values of Multistream
Autoregressive Non-stationary Processes

This example related to detecting changes in unknown means of multistream non-
stationary AR(p) processes has a specific real application in addition to several other
applications in mathematical statistics. Specifically, it arises in multi-channel sensor
systems (such as radars and electro-optic imaging systems) where it is required to
detect an unknown number of randomly appearing signals from objects in clutter
and sensor noise (cf., e.g., [1, 30, 31]).

Observations in the i-th channel have the form

Xn(i) = θi Sn(i)1{n>ν}+ξn(i), n≥ 1, i = 1, . . . ,N, (71)

where θi Sn(i) are deterministic signals with unknown “amplitudes” θi > 0 that ap-
pear at an unknown time ν in additive noises ξn(i) in an N-channel system. Assume
that noise processes {ξn(i)}n∈N (i = 1, . . . ,N) are mutually independent p-th order
Gaussian autoregressive processes AR(p) that obey recursions

ξn(i) =
p

∑
j=1

ρi, jξn− j(i)+wn(i), n≥ 1, (72)
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where {wn(i)}n≥1, i= 1, . . . ,N, are mutually independent i.i.d. normal N (0,σ2
i ) se-

quences (σi > 0), so the observations in channels Xn(1), . . . ,XN(n) are independent
of each other. For simplicity, let us set zero initial conditions ξ1−p(i) = ξ2−p(i) =
· · · = ξ0(i) = 0. The coefficients ρi,1, . . . ,ρi,p and variances σ2

i are known and all
roots of the equation zp − ρi,1zp−1 − ·· · − ρi,p = 0 are in the interior of the unit
circle, so that the AR(p) processes are stable.

For n ∈ N, define the pn-th order residuals

S̃n(i) = Sn(i)−
pn

∑
j=1

ρi, jSn− j(i), X̃n(i) = Xn(i)−
pn

∑
j=1

ρi, jXn− j(i),

where pn = p if n > p and pn = n if n ≤ p. It is easily shown that the conditional
pre-change and post-change densities in the i-th channel are

gi(Xn(i)|Xn−1(i)) = f0,i(Xn(i)|Xn−1(i)) =
1√

2πσ2
i

exp

{
− X̃n(i)2

2σ2
i

}
,

fi,θi(Xn(i)|Xn−1(i)) =
1√

2πσ2
i

exp

{
− (X̃n(i)−θiS̃n(i))2

2σ2
i

}
, θi ∈ (0,∞),

and that for all k ∈ Z+ and n ∈ N the LLR in the i-th channel has the form

λi,θi(k,k+n) =
θi

σ2
i

k+n

∑
t=k+1

S̃t(i)X̃t(i)−
θ 2

i ∑
k+n
t=k+1 S̃t(i)2

2σ2
i

.

Since under measure Pk,i,ϑi the random variables {X̃n(i)}n≥k+1 are independent
Gaussian random variables N (ϑiS̃n(i),σ

2
i ), under Pk,i,ϑi the LLR {λi,θi(k,k+n)}n∈N

is a Gaussian process (with independent but non-identically distributed increments)
with mean and variance

Ek,i,ϑi [λi,θi(k,k+n)] =
2θiϑi−θ 2

i

2σ2
i

k+n

∑
t=k+1

S̃t(i)2,

Vark,i,ϑi [λi,θi(k,k+n)] =
θ 2

i

σ2
i

k+n

∑
t=k+1

S̃t(i)2.

(73)

Assume that

lim
n→∞

1
ψ(n)

sup
k∈Z+

k+n

∑
t=k+1

S̃t(i)2 = Qi,

where 0 < Qi < ∞. In a variety of signal processing applications this condition holds
with ψ(n) = n, e.g., in radar applications where the signals θi Si,n are the sequences
of harmonic pulses. In some applications such as detection, recognition, and track-
ing of objects on ballistic trajectories that can be approximated by polynomials of
order m = 2−3, the function ψ(n) = nm, m > 1. Then for all k ∈ Z+ and θi ∈ (0,∞)
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1
ψ(n)

λi,θi(k,k+n)
Pk,i,θi−a.s.
−−−−−−→

n→∞

θ 2
i Qi

2σ2
i

= Ii,θi ,

so that the SLLN (16) takes place, and therefore, the right-tail condition (68) holds.
Furthermore, since the second moment of the LLR is finite it can be shown that
uniform complete convergence conditions (70) as well as the left-tail condition (69)
also hold. Thus, by Corollary 1, the mixture detection procedure T p,W

Aα
minimizes as

α → 0 the expected delay to detection and asymptotic formulas (63) and (64) hold
with

IB,θ = IB,θθθB
= ∑

i∈B

θ 2
i Qi

2σ2
i
.

3.2 Change Detection in the Spectrum of the AR(p) Multistream
Process

Consider the problem of detecting the change of the correlation coefficient in the
p-th order AR process which in the i-th stream satisfies the recursion

Xn(i) =
p

∑
j=1

ρ
(n)
i, j Xn− j(i)+wn(i) , n≥ 1, (74)

where
ρ
(n)
i,` = θ

∗
i,`1{n≤ν}+θi,`1{n>ν}

and {wn(i)}n≥1 are i.i.d. (mutually independent) Gaussian random variables with
E[w1(i)] = 0, E[w2

1(i)] = 1. Additional notation:

θ
∗
i = (θ ∗i,1, . . . ,θ

∗
i,p)
>, θi = (θi,1, . . . ,θi,p)

>, Xn−1,n−p
i = (Xn−1(i), . . . ,Xn−p(i)).

(> denotes transpose).
It is easy to see that the pre-change and post-change conditional densities

gi(Xi,n|Xn−1
i ) = gi(Xn(i)|Xn−1,n−p

i ) and fi,θi(Xn(i)|Xn−1
i (i)) = fi,θi(Xn(i)|Xn−1,n−p

i )
are given by

gi(Xn(i)|Xn−1,n−p
i ) =

1
(2π)p/2 exp

{
−
(η∗i (Xn(i),Xn−1,n−p

i )2

2

}
,

fi,θi(Xn(i)|Xn−1,n−p
i ) =

1
(2π)p/2 exp

{
−
(ηθi,i(Xn(i),Xn−1,n−p

i ))2

2

}
,

(75)

where η∗i (y,x) = y− (θ ∗i )
>x and ηθi,i(y,x) = y− (θi)

>x (x ∈R, y ∈Rp). Therefore,
for any θi ∈ Rp, the LLR is
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λi(k,k+n) =
k+n

∑
t=k+1

λ
∗
i (t)

where

λ
∗
i (t) = log

fi,θi(Xt(i)|Xt−1,t−p
i )

gi(Xt(i)|Xt−1,t−p
i )

= Xt(i)(θi−θ
∗
i )
>Xt−1,t−p

i +
((θ ∗i )

>Xt−1,t−p
i )2− (θ>i Xt−1,t−p

i )2

2
.

(76)

The process (74) is not Markov, but the p-dimensional processes

Φi,n = (Xi,n, . . . ,Xi,n−p+1)
> ∈ Rp, i = 1, . . . ,N

are Markov. Now, for any ϑ = (ϑ1, . . . ,ϑp) ∈ Rp, define the matrix

Λ(ϑ) =


ϑ1 ϑ2 . . . ϑp
1 0 . . . 0
...

...
. . .

...
0 0 . . .1 0

 .

Note that

Φi,n =

{
Λ(θ ∗i )Φi,n−1 + w̃i,n for n≤ ν ,

Λ(θi)Φi,n−1 + w̃i,n for n > ν ,
(77)

where w̃i,n = (wi,n,0, . . . ,0)> ∈ Rp. Obviously,

E[w̃n w̃>n ] = B =

1 . . . 0
...

. . .
...

0 . . . 0

 .

Assume that all eigenvalues of the matrices Λ(θ ∗i ) in modules are less than 1 and
that θi belongs to the set

Θ
st
i = {θi ∈ Rp : max

1≤ j≤p
|e j(Λ(θi))|< 1}\ {θ ∗i }, (78)

where e j(Λ) is the j-th eigenvalue of the matrix Λ . Using (77) it can be shown that
in this case the processes {Φi,n}n>ν (i= 1, . . . ,N) are ergodic with stationary normal
distributions N (0,Fi(θi)), where

Fi(θi) =
∞

∑
n=0

(Λ(θi))
nB(Λ>(θi))

n.

Taking into account that max1≤i≤N supt≥1 E∞|Xt(i)|m < ∞ for any m > 0 and
using techniques developed in [16] it can be shown that the uniform complete con-
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vergence conditions (70) as well as the left-tail conditions (69) hold. Therefore,
Corollary 1 implies that the mixture detection procedure T p,W

Aα
minimizes as α → 0

the expected delay to detection for any compact subset of Θ = Θ st
1 ×·· ·×Θ st

N and
asymptotic formulas (63) and (64) hold with

IB,θ = IB,θθθB
=

1
2 ∑

i∈B
(θi−θ

∗
i )
>Fi(θi)(θi−θ

∗
i ).

In particular, in the purely Markov scalar case where p = 1 in (74),

IB,θ = IB,θθθB
= ∑

i∈B

(θi−θ ∗i )
2

2(1−θ 2
i )

.

4 Monte Carlo

In this section, we perform MC simulations for the example considered in Subsec-
tion 3.1, assuming for simplicity (and with a very minor loss of generality) that the
noise processes ξn(i) = wn(i) in (71) are i.i.d. Gaussian with mean zero and vari-
ances σ2

i , which is equivalent setting p= 0 in (72). We also assume that Sn(i) = n1.1,
σ2

i = 4, θi = 0 pre-change and θi = θ = 0.1 in the post-change mode when the
change occurs in the i-th stream.

We suppose that the change in each channel occurs independently with probabil-
ity q, so the probability of the event {M = m} that m streams (out of N) are affected
is

P(M = m) =
N!

m!(N−m)!
qm (1−q)N−m.

The change occurs at time ν according to the geometric prior distribution

P(ν = k) = ρ(1−ρ)k, k = 0,1,2, . . .

with a parameter ρ ∈ (0,1).
In MC simulations, we set N = 10 for the total number of streams, ρ = 0.1,

q = 1/N = 0.1, and consider three cases: (a) the change occurs in a single stream
with θ = 0.1, (b) the change occurs in two streams with θ = 0.1 in each, and (c) the
change occurs in three streams with θ = 0.1 in each.

For each MC run, using equations (66) and (67), we compute the statistics (10)
and (13) and get the stopping times for the cases where the parameter of the post-
change distribution is known (15) and when the parameter of the post-change dis-
tribution is unknown (14). We take uniform prior W (θ) on [0.1,0.3] with the step
0.01. The number of Monte Carlo runs is 106, which ensures very high accuracy of
the estimated characteristics.

The results are shown in Table 1 and Fig. 1.
In Fig. 1, PFA (x-axis) is presented in a logarithmic scale. Marks on the figure

2,3, . . . ,9 mean how many times the PFA value is greater than the previous decimal
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Table 1 Operating characteristics of the mixture detection procedures for the number of streams
N = 10 with parameters Sn(i) = n1.1 and θ1 = θ2 = θ3 = θ = 0.1. The number of MC runs is 106.

PFAπ (T ) 10−1 5 ·10−2 10−2 5 ·10−3 10−3 5 ·10−4

EDDB1,θ (T
p,θ

A ) 10.77 11.28 12.76 13.34 14.68 15.22

EDDB1,θ (T
p,W

A ) 11.33 12.07 13.32 13.93 15.55 16.02

EDDB1,θ 15.99 16.92 18.84 19.50 21.05 21.63

EDDB2,θ (T
p,θ

A ) 8.77 9.33 10.50 10.88 12.00 12.46

EDDB2,θ (T
p,W

A ) 8.90 9.52 10.82 11.30 12.34 12.81

EDDB2,θ 11.78 12.66 14.43 15.02 16.38 16.88

EDDB3,θ (T
p,θ

A ) 8.01 8.34 9.33 9.79 10.77 11.12

EDDB3,θ (T
p,W

A ) 8.05 8.47 9.55 9.99 10.96 11.39

EDDB3,θ 7.90 9.20 11.35 12.00 13.45 13.96

Fig. 1 Operating characteristics of the detection procedures for the total number of streams
N = 10 and for the number of affected streams m = 1,2,3: EDDBm,θ (T

p,θ
A ) vs logPFAπ and

EDDBm,θ (T
p,W

A ) vs logPFAπ . Number of MC runs 106. x-axis in logarithmic scale

mark (0.0001, 0.001, or 0.01). It is seen that the detection algorithm has good per-
formance even with such a low signal-to-noise ratio. As expected, in the case when
the parameter of the post-change distribution is not known, the algorithm works
worse than when it is known, but only slightly – the difference is small. When the
change occurs in multiple streams, the expected detection delays EDDB2,θ (T

p,W
A )

and EDDB3,θ (T
p,W

A ) decrease compared to EDDB1,θ (T
p,W

A ) in the case (a), and also
EDDB3,θ (T

p,W
A ) becomes smaller than EDDB2,θ (T

p,W
A ), as expected from theoret-

ical results (see, e.g., (56)). Here EDDBm,θ (T
p,W

A ) denotes the expected detection
delay when the change occurs in m streams (m = 1,2,3).
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It is also interesting to compare the MC estimates of the expected detection delay
with theoretical asymptotic approximations given by (56). In our example, these
approximations reduce to

EDDBm,θ ≈
(

logAm

IBm,θ

)1/3.2

with IBm,θ = m(θ 2/6.4σ2), m = 1,2,3. Note that thresholds Am are different for
different m to guarantee the same PFA. The data in Table 1 show that the first-order
asymptotic approximation is not too bad but not especially accurate.

5 Applications

In this section, we consider two different applications – rapid detection of new
COVID-19 epidemic waves and extraction of tracks of low-observable near-Earth
space objects in optical images obtained by telescopes.

5.1 Application to COVID Detection

We consider the problem of detecting the emergence of new COVID-19 epidemic
waves in Australia based on real data. Note that in [17] the algorithm of joint disor-
der detection and identification has been used not only to detect the start of COVID-
19 in Italy but also to identify a region where the outbreak occurs. Here we do not
consider identification of the region in which the outbreak occurs. We need only to
decide on the occurrence of an epidemic in the whole country based on data from
various regions. Also, in contrast to [17] where a stationary Markov model has been
used, we now propose a substantially different non-stationary model taking into ac-
count that a new wave of COVID typically spreads faster than a linear law. This fact
has been recently noticed in [13].

We selected data on COVID in Australia, which has 8 regions: Australian Capital
Territory, New South Wales, Northern Territory, Queensland, South Australia, Tas-
mania, Victoria, Western Australia. We propose to use the non-stationary model (71)
considered in Subsection 3.1 with super-linear functions Sn(i) =Ci nγ , γ > 1. As an
observation, we use the percentage of infections in the total population. We study
the COVID outbreak in Australia, which was recorded in the winter of 2021-2022.
The data are taken from the World Health Organization and presented in Fig. 2.

A performed statistical analysis shows that the model with parameters θ1 = 0.1
and θ2 = 0.08 for New South Wales and Victoria, respectively, describes the be-
ginning of the pandemic outbreak well. We also selected Sn(i) = n1.127 and ξn(i) =
wn(i) ∼ N (0,σ2

i ) with σi = 2.4 in (71). We apply the 8-stream double mixture
detection algorithm discussed above when the parameter of the post-change distri-
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Fig. 2 Distribution of COVID-19 in Australia by region.

bution is not known. We used the discrete uniform prior W (θ) on [0.08, . . . ,0.11]
with step 0.01. The proposed change detection algorithm with a threshold selected
so that the probability of false detection does not exceed 0.01 (average detection
delay is about 10) decides on the outbreak of the epidemic on January 9, 2022 (see
Fig. 3).

The plots in Fig. 3 illustrate the behavior of the change detection statistic Rp,W (n)
defined in (13). The COVID wave is detected at the moment when the statistic
Rp,W (n) crosses the threshold.

Fig. 3 Behavior of the change detection statistic Rp,W (n) over time.
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The obtained results complement the existing work on the application of change-
point detection algorithms to epidemic detection problems (see, e.g., [2, 13, 17, 36]).
The results show that the proposed mixture-based change detection algorithm can
be useful for governments when deciding whether to impose a total lockdown across
the country without regard to a region in the early stages of a pandemic.

5.2 Application to Detection and Extraction of Faint Space Objects

The problem of rapid detection and extraction of streaks of low-observable space
objects with unknown orbits in optical images captured with ground-based tele-
scopes is a challenge for Space Informatics. A typical image (digital frame) with
a low-contrast streak with the signal-to-noise ratio (SNR) in pixel approximately 1
is shown in Fig. 4. The object’s streak is barely visible, so we drew the rectangle
around the streak that marks its position.

Fig. 4 Digital image with a low-SNR streak. The rectangle marks the streak position.

Since the distribution of observations changes abruptly when the streak starts
and ends the problem of object streak extraction can be regarded as the changepoint
detection problem in 2-D space (but not in time since we consider a single image).

In realistic situation, the problem is aggravated by the presence of stars and back-
ground that produce strong clutter, and special image preprocessing for clutter re-
moval has to be implemented (see, e.g., [30]). We assume that after appropriate pre-
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processing, the clutter-removed input frame contains Gaussian noise independent
from pixel to pixel. For the sake of simplicity, we also consider a scenario where
only one streak may be present in the image. We further assume that the satellite
has a linear and uniform motion in the frame. The satellite streak is given by the
vector Y = (x0,y0,x1,y1), where (x0,y0) corresponds to the start point and (x1,y1)
corresponds to the endpoint. We consider the following model of the observation
Xi, j in pixel (i, j) of the 2-D frame:

Xi, j = θSi, j(Y)+ξi, j, (79)

where θ is an unknown signal intensity from the object, {Si, j(Y)} are values of
the model profile of the streak that are calculated beforehand assuming the point
spread function (PSF) is Gaussian with a certain effective width, which is shown in
Fig. 5; and ξi, j ∼N (0,σ2) is Gaussian noise after preprocessing with zero mean
and known (estimated empirically) local variance σ2. Thus, the observation Xi, j has
normal pre-change distribution g(Xi, j)∼N (0,σ2) when the streak does not cover
pixel (i, j) and normal post-change distribution f (Xi, j) ∼ N (θSi, j(Y),σ2) when
the streak covers the pixel (i, j).

Fig. 5 Model profile of the streak.

The problem is to detect the streak with minimal delay or to make a decision that
there is no streak in the frame.

We consider only intra-frame detection of faint streaks of subequatorial satellites
with unknown orbits with telescopes mounted at the equator. In this case, a signal
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from a satellite (with unknown intensity, start, and end points) is located almost
vertically in a small area at the center of the frame, as shown in Fig. 6.

Fig. 6 Search area ΩS is rectangular. The dotted line shows one of the possible directions. White
rectangle – streak, red rectangle – sliding window.

Let ΩS denote the streak search area. We define N different directions inside
ΩS. Let d ∈ {1, . . . ,N} denote a certain direction. Since we assume that there may
appear only one satellite’s streak in the frame there is no need to mix SR statistics
over streak location but rather maximize. However, since the signal intensity θ is
not known we still need to mix over the distribution of θ , which is a drawback.

A reasonable way to avoid this averaging is to use the so-called Finite Moving
Average (FMA) statistics, as suggested in [24]. Specifically, let Md(n),n ≥ 1 stand
for a 2-D sliding rectangular window which contains certain pixel numbers (i, j) at
each step n in the direction d. Window Md(n) has a fixed length of Ld pixels and
a fixed width of Kd pixels (the choice of the parameters depends on the expected
SNR and PSF effective width). For the certain direction d (d = 1, . . . ,N), the FMA
statistic is defined as

VMd(n)(n) = ∑
(i, j)∈Md(n)

S(d)i, j X (d)
i, j ,

where {S(d)i, j } are values of the Gaussian model profile in the direction d and X (d)
i, j

are observed data in the direction d. Profile location is given by the vector Yd in the
direction d. Then the multistream1 FMA detection procedure is defined as

1 Here “streams” are not streams per se but rather data X (d)
i, j in different directions d ∈ {1, . . . ,N}

in the search area ΩS.



Quickest Changepoint Detection in General Stochastic Models 39

Th = inf
{

n≥ 1 : max
1≤d≤N

VMd(n)(n)≥ h
}
.

For the Gaussian model, the FMA procedure is invariant to the unknown signal
intensity θ , which is a big advantage over the SR-type versions.
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Fig. 7 The behavior of the FMA VMd (n)(n) statistic along the correct direction.

Fig. 7 shows a typical behavior of the VMd(n)(n) statistic along the direction con-
taining the streak in the case of a very low SNR = 0.9. In this case, the streak is
detected with coordinates of start and end at points 47 and 117, respectively, while
the true values are 40 and 110 so that the precision is 7 pixels. Experiments show
that when sliding the 2-D window in various directions inside ΩS and then com-
paring the largest value maxd VMd(n)(n) to a threshold we typically determine the
approximate position of the streak with an accuracy of 5-10 pixels. Therefore, the
proposed FMA version of the change detection algorithm turns out to be efficient –
it allows us to rapidly determine a localization area, which with a high probability
contains the streak.
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6 Concluding Remarks and Future Challenges

6.1 Remarks

1. As we already discussed, for general non-i.i.d. models SR-type statistics cannot
be computed recursively even in separate streams, so the computational complex-
ity and memory requirements of the mixture detection procedures T p,θ

A and T p,W
A ,

especially in the asymptotically non-stationary case, can be quite high. To avoid
this drawback it is reasonable to use either one-stage delayed adaptive procedures
or window-limited versions of mixture detection procedures where the summation
over potential change points ν = k is restricted to a sliding window of a fixed size
`. In the window-limited versions of T p,W

A , the statistic Rp,W (n) is replaced by the
window-limited statistic

R̂p,W (n) =
n−1

∑
k=n−(`+1)

Λp,W (k,n) for n > `; R̂p,W (n) = Rp,W (n) for n≤ `.

Following guidelines of Lai [12] and the techniques developed by Tartakovsky [29,
Sec 3.10, pages 116-122] for the single-stream scenario, it can be shown that the
window-limited version of the SR mixture also has first-order asymptotic optimality
properties as long as the size of the window `(A) approaches infinity as A→∞ with
the rate `(A)/ logA→ ∞. Since thresholds, A = Aα , in detection procedures should
be selected in such a way that logAα ∼ | logα| as α → 0, the value of the window
size `(α) should satisfy limα→0[`(α)/| logα|] = ∞.

2. Similar asymptotic optimality results can be obtained for the mixture CUSUM
procedure based on thresholding of the sum of generalized LR statistic

W (n) =
N

∑
i=1

max
0≤k<n

sup
θi∈Θi

λi,θi(k,n)

and for the corresponding window-limited version.
3. We also conjecture that asymptotic optimality properties hold for the multi-

stream Finite Moving Average (FMA) detection procedure given by the stopping
time

Th = inf

{
n≥ 1 :

N

∑
i=1

sup
θi∈Θi

n

∑
k=max(1,n−`+1)

λ
∗
i,θi

(k)≥ h

}
,

where λ ∗i,θi
(k)= log[ fi,θi(Xk(i)|Xk−1(i))/gi(Xk(i)|Xk−1(i))]. In cases where the LLR

λ ∗i,θi
(k) is a monotone function of some statistic, the FMA procedure can be appro-

priately modified in such a way that it is invariant to the unknown parameters θi.
This is a great advantage over corresponding SR-based and CUSUM-based proce-
dures. See also discussion in Subsection 5.2.

4. The results can be easily generalized to the case where the change points νi
are different for different streams i = 1, . . . ,N.
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5. The Bayesian-type results of this paper can be used to establish asymptotic
optimality properties of the detection procedures T p,θ

A and T p,W
A in a non-Bayesian

setting. In particular, the optimization problem can be solved in the class of proce-
dures with the upper-bounded maximal local probability of false alarms

sup
m≥0

P∞ (T ≤ m+ k|T > m)≤ α,

both in pointwise and minimax settings, by embedding into the Bayesian class, sim-
ilar to what was done by Pergamenchtchikov and Tartakovsky [16] for the case of a
single stream.

6.2 Future Challenges

1. The results of MC simulations in Section 4 show that first-order approximations to
EDD and PFA are typically not especially accurate, so higher-order approximations
are in order. However, it is not feasible to obtain such approximations in the general
non-i.i.d. case considered in this paper. Higher order approximations to the expected
detection delay and the probability of false alarm for the i.i.d. models, assuming that
the observations in streams are independent and also independent across streams,
can be derived based on the renewal and nonlinear renewal theories. This important
problem will be considered in the future.

2. The results of this paper cover the scenario where the number of streams N
is fixed so that log(N/α) ∼ log(1/α) for small α . In Big Data problems, N may
be very large and go to infinity. These problems require different approaches and
different detection procedures. This challenging problem will be considered in the
future.

3. For detecting transient (or intermittent) changes of unknown duration (like
object streaks in Subsection 5.2) it is often more reasonable to consider not quick-
est detection criteria but reliable detection criteria that require minimization of the
detection probability in a fixed time (or space) window (see, e.g., [3, 24, 29] and ref-
erences therein). While certain interesting asymptotic results for single-stream sce-
narios and i.i.d. data models exist [9, 10, 14, 21, 24, 29], to the best of our knowledge
this problem has never been considered in the multistream setting and for non-i.i.d.
models.

Acknowledgements We are grateful to an anonymous referee and Prof Kais Hamza for a com-
prehensive review and useful comments.
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