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Abstract The theory of stable and Lorentzian polynomials has recently found a
number of successes in a variety of research areas including combinatorics, engi-
neering, and computer science; in particular, they have played a key role in solv-
ing long-standing open problems such as the Kadison–Singer problem and Ma-
son’s log-concavity conjecture. More recently, the classes of stable polynomials and
Lorentzian polynomials have appeared in representation theory, algebraic combi-
natorics, and even knot theory. We further highlight their ubiquity by introducing a
large class of chromatic symmetric functions related to Hessenberg varieties and the
Stanley–Stembridge conjecture that are conjecturally Lorentzian and stable.

Graph coloring is a well-studied topic in combinatorics, computer science, and
scheduling problems. On the other hand, there has been a recent explosion in the
study of stable polynomials: these are a multivariate analogue of real-rooted poly-
nomials that have led the way to the resolution of a number of open problems in
fields as diverse as matroid theory [2, 5], knot theory [9], and quantum mechanics,
functional analysis, and engineering [11]. This note offers a large class of polyno-
mials constructed via graph coloring that are conjecturally stable.

We write G = (V,E) for an arbitrary graph with finite vertex set V and finite edge
set E. The chromatic symmetric function (CSF) XG(x1, . . . ,xm) of G in m variables
is
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XG(x1, . . . ,xm) := ∑
f : V→[m]

proper coloring

∏
v∈V

x f (v),

where the sum is over all proper (vertex) colorings of G. A proper coloring f : V →
[m] is a coloring of the vertices of G such that if {v,w} ∈ E, then f (v) 6= f (w); that
is, the two vertices of each edge are required to get different colors. This refinement
of the chromatic polynomial χG of G was introduced by Stanley in [15]; indeed,
they are related by the identity XG(1, . . . ,1︸ ︷︷ ︸

q times

,0, . . . ,0) = χG(q). Note that we may

define XG using any number of variables; see Figure 1 for an example of the CSF
of the path graph P3 in both two and three variables. Much utility can be gained by
considering CSFs XG(x1,x2, . . .) in infinitely-many variables, where they lie in the
ring of symmetric functions (see, for example, [7] and [13]); for simplicity, we will
not go this route.

1 2 1
x2
1x2

2 1 2
x1x

2
2

1 2 1
x2
1x2

2 1 2
x1x

2
2

1 3 1
x2
1x3

3 1 3
x1x

2
3

2 3 2
x2
2x3

3 2 3
x2x

2
3

1 2 3
6x1x2x3

Fig. 1 On the left, the summands in XP3 (x1,x2), and on the right, the summands in XP3 (x1,x2,x3).

A polynomial f ∈R[x1, . . . ,xm] is called stable if it is either identically zero, or is
nonvanishing on H m, where H is the open upper half-plane in C. See [17, 3, 4] for
more about the theory of stable polynomials. The CSF of an arbitrary graph need
not be stable: for example, one may check that the CSF XC4(x1,x2,x3,x4) in four
variables of the four-cycle graph C4 is not stable. However, the purpose of this note
is to point out a large and interesting class where stability conjecturally does hold.

For the remainder of this note, we assume that our graphs G have vertex set
V = [n] = {1,2, . . . ,n}. Define a set of graphs D by

D = {graphs G = ([n],E) | if {i, j} ∈ E and i≤ i′ < j′ ≤ j, then {i′, j′} ∈ E}.

See Figure 2 for both an example of a graph in D and a non-example of a graph in
D (for the case n = 4).

Fig. 2 The graph K4 on the left is in D , and the graph C4 on the right is not in D .
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Graphs in the class D are enumerated by the n-th Catalan number. The graphs
in D are also known as indifference graphs of Dyck paths, as unit interval orders,
or as incomparability graphs of (2+2)- and (3+1)-free posets. The elusive Stanley–
Stembridge conjecture [16] that has guided many developments in algebraic combi-
natorics involves exactly this class of graphs (due to a reduction in [8]); and on the
other hand, the class D also naturally occurs in the study of Hessenberg varieties
[14].

Conjecture 1 ([12, Conjecture 6.5]). If G ∈D , then XG(x1, . . . ,xm) is stable for ev-
ery m.

Checking that a polynomial is stable generally involves verifying that an in-
finite number of univariate specializations are real-rooted [17, Lemma 2.3]. The
Lorentzian property introduced in [6], and independently in [1], is a weaker notion
than stability (e.g. Conjecture 1 implies Conjecture 2 below [6, Proposition 2.2]),
but only involves a finite number of checks and has had much success uniting dis-
crete and continuous log-concavity phenomena.

Conjecture 2 ([12, Conjecture 6.3]). If G∈D , then XG(x1, . . . ,xm) is Lorentzian for
every m.

Conjecture 2 has been checked for n ≤ 7 and m ≤ 8; and in the special case when
G ∈D has a bipartite complement graph, Conjecture 2 has been settled in [12, The-
orem 6.8]. (Normalized) Schur polynomials were recently shown to be Lorentzian
[10], and it is expected that many related polynomials in algebraic combinatorics
should also have this property [10, Section 3]. On the other hand, (normalized)
Schur polynomials are not stable [10, Example 9]. It is interesting to ponder where
the line is: is there a satisfying reason why (normalized) Schur polynomials are not
stable, but CSFs of graphs in D conjecturally are?
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