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Abstract This paper will demonstrate some new techniques for developing the the-
ory of Asian (arithmetic average) options pricing. We discuss the basic derivation
of the diffusion equations, and how various techniques from potential theory can be
applied to solve these complex expressions. The Whittaker-type confluent hyperge-
ometric functions are introduced, and we discuss how these functions are related to
other systems including Mehler-Fock and modified Bessel functions. We close with
a brief analysis of some index transforms and the kernels related to these integral
transforms.

1 Introduction

Asian (arithmetic average) options are a derivative instrument written on the differ-
ence between the time average of the stock price over the term, and some nominal
strike. Floating strike options have payoff given by the max/min of the difference
between the time average and the stock price on the execution date. These deriva-
tives have useful properties when offsetting risk for continuously produced goods
such as commodities and electricity. Other use cases could be in order to reward ex-
ecutive performance above some average benchmark, say the average stock price is
greater than some nominal value over the term of the option. It is harder to influence
in a negative way vs standard European contracts; indeed it is well known that stock
volatility increases towards the execution date of European options which leads to
inverse incentives, i.e. increases the probability of stock price pumps by executives
near the time of expiry.

If one were to think in terms of peak average performance, rather than the per-
formance on any particular one day, it is obvious that such contracts as we shall
describe in this paper have great utility in this area. For a commodities producer, the
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value in such contracts is that it enables producers to lock in prices for known de-
posits and stabilise pricing outcomes separate to the spot market, given known fixed
production costs at any given time. A minerals producer might for example know
that they can produce at an average rate 10,000 tons of ore at a fixed concentration
of gold per day. Pricing an option on the average amount of gold produced over a
month then becomes of utility when locking in a price for the total amount of gold
produced, which in turn can be used to stabilise the costs to market the commodity
by using this sort of technique. Indeed, this paper concerns the deep problem of the
nature of the average of an exponential Brownian motion.

There is a deep, known link between the diffusion problems we associate with
options pricing problems and diffusion theory. It is known that the Black-Scholes
equation may be transformed to the heat equation, other results include Feynman-
Kac for generalised potentials. Other exotic options, e.g. in CDS pricing equation,
one may obtain the diffusion equation related to the CIR process, which has proba-
bility function given by a non-central chi-squared distribution. As shall be demon-
strated in the following calculations, there is a fundamental relationship between
diffusion systems, special functions and spectral theory which is of great use in
understanding these types of problems in the theory of stochastic processes.

2 Review

The work contained within this paper pays homage to the pioneers in the field of
spectral analysis, principal amongst them Feller [6], who explored the methods of
semi-groups and partial differential equations in order to understand stochastic pro-
cesses and other random variables. These initial researches, carried out in the 1950s,
can be seen as the ancestor of the theories of stochastic analysis, especially PDE
methods. However, it is a lesser-known topic, with the applications of these types of
kernel analysis often obscured by the bright lights of martingales and stochastic cal-
culus. The construction of kernels to solve differential equations is an older question
again, and although it is well-known in the fields of physics that an understanding
of kernel solutions can be gained through spectral decomposition, this observation
has escaped much detailed investigation in the field of quantitative finance.

Spectral decomposition is an elegant way of describing the transition probability
density of any system with a spectrum, and the linkage between resolvent or Green’s
function methods and the probability density of a diffusion is given through Laplace
transformation. We note the papers of Albanese et. al [2, 1] examine this problem in
general, and have found a number of systems with spectral decompositions that are
of finite type. On a deeper level, underlying this whole infrastructure is the effort
of Mehler [16], as expressed and popularised through the Feynman kernel, path
integral method c. 1948 [7]. This formula is a compact description of a kernel using
a set of base states, which in this case is given by the Hermite polynomials. The
search for other such formulae is an active area of investigation and we shall touch
on some simple topics related to this historical example. As an example of a system
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related to our investigation, use of the various types of special functions as a result
of path integration in the hyperbolic plane may be found in [10]. The authors in this
case have succeeded in deriving many formulae that appear in a different context to
our research. In many ways, the idea of hyperbolic diffusion is closely allied to the
types of hyperbolic random variables that underpin the diffusion problems in this
work. Further tabulations of path integrals may be found in [11], in particular the
results concerning the resolvent of Whittaker functions and the Morse potential.

The link between special function theory and arithmetic average or Asian option
pricing has been explored by a number of authors. The foundational paper in the
field is taken to be Geman and Yor [8], who established the connection between
the theory of square Bessel processes, stochastic calculus, and exponential Brown-
ian motion. The topic was explored from a different perspective by Linetsky [15],
who has demonstrated that spectral theory may be used to calculate Asian options
prices. Both of these papers present formidable work, and our research has shown
that many of the results which are gained through sheer force of will and brute
mathematical force in these works can be found through simpler means, via the
techniques of spectral decomposition of the kernel. The stochastic calculus in [8]
shows that prima facie the concept of exponential Brownian motion is the important
branch of mathematics on which to grasp; one is presented with the idiom of time-
averaged exponential Brownian motion. The functional analysis of these types of
systems is carried out in detail by Pintoux and Privault [20, 21], where the authors
were able to obtain some exact solutions to the Asian option pricing problem by de-
riving some spectral decompositions of polynomial initial conditions. In particular,
the papers in [20, 21] rely on many combinatorical identities and are complicated to
verify and replicate. Our methods represent a parallel line of thought which arrives
at similar results by a completely different path. A simpler approach has been illus-
trated through the works of Sousa and Yakubovich [24], who have shown that by
understanding the nature of kernel solutions, eigenfunctions and integral transforms
one may gain many of the advantages of the PDE method while avoiding necessary
complication in the matter. Further, Craddock [5] has shown that analysis of the
fundamental solution for Asian options pricing can be understood through the use
of special functions and the sine transform.

We shall expand upon this method in this paper and bring this program to fruition
by a process of synthesis of the results from these disparate groups. Our aim is to
find direct ways of calculating Asian options prices that will be of use to any trader
in the same way that European options prices may be found via the Black-Scholes
equation in the simplest of cases. Such formulae have proved elusive in the past,
and the notational complexity of the field makes our job much more difficult. By
stripping away this additional complication, we shall show that the answers to many
of the problems involved in pricing these types of exotic options reduce to a small
number of simply addressed questions in integration theory.

We must note here the use of special functions known as the Bessel polynomials
in this paper. These polynomials have many properties peculiar to the problems in
diffusion we shall consider, and it can be hard to find established or tabulated results
that one can expect to find for more well-known groups of orthogonal polynomials.



4 P. G. Morrison

The interested reader is directed to the works of Krall and Frink [14], who along
with Grosswald [12] wrote the pioneering works on the topic, see also [13] for fur-
ther information and references on integration theory of Bessel polynomials. These
polynomials, familiar to filter design and signal processing, are less known in mod-
ern mathematics. Their many useful properties in describing systems with discrete
and continuous spectral components shall be one principal focus explored in this
calculation.

Examples of index transforms and related integrals for Whittaker, modified
Bessel and Mehler-Fock functions may be found in the tabulated works in [9, 23,
22, 3, 18, 17]. The monumental works of Oberhettinger [18, 17] are of great use
in the following sections. Unfortunately, like all sets of integral tables, deficiencies
abound, and part of this research is devoted to unpicking the methods by which the
known and established results in index transform theory may be derived.

3 Notation and Mathematical Details

This paper shall be primarily concerned with various sets of special functions which
we shall now define. There are other notational necessities that must also be set up
for the calculation proper. We shall not be focused in this work on the exact nature
of how these functions arise, for our purpose it is sufficient to know that they exist
and are useful to our aim of analysing diffusion processes of a type that is central to
our work.

3.1 Special functions

The important special functions used in this paper are defined as follows:

3.1.1 Whittaker Functions

The Whittaker function, denoted Wα,β (z), is a type of confluent hypergeometric
function. It is the solution of the differential equation:

d2 f
dz2 +

(
−1

4
+

α

z
+

1/4−β 2

z2

)
f = 0 (1)

The indices of the function may take any value in the complex plane, however it
is important to realise that this function is multi-branched and care must be taken to
choose appropriate sets of parameters. For our purposes, as we shall demonstrate,
the positive plane defines a continuous solution which may be used to build a set
of eigenfunctions. The second solution for the Whittaker differential equation is
not used in this proof. Applications of the Whittaker function include the use in the
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index Whittaker transform [24] where, in a similar way to how functions are mapped
to other functions via a Laplace or Fourier transform, in this case we integrate over
the index of the function via:

F(x) =
1

π2x2

∫
∞

0
|Γ (−µ +1/2+ ip)|2Wµ,ip(x) f (p)psinh(2π p)d p (2)

This is the most generalised form of the index transformation. Note that this is of
half-index in the gamma function. An inversion integral of the form:

f (p) =
∫

∞

0
Wµ,ip(x)F(x)dx (3)

is known to exist. We shall rely on the relationships between the confluent hyper-
geometric function and other special functions to compute a number of different
integrals related to the solution of various PDEs. Note the useful hyperbolic iden-
tity:

sinh(2π p)
cosh(π p)

= 2sinh(π p) (4)

3.1.2 Modified Bessel Functions

The modified Bessel function Kν(z) is another type of hypergeometric function. One
may relate it to the restriction of the Whittaker function via:

W0,ν(2z) =

√
2z
π

Kν(z) (5)

The modified Bessel function therefore satisfies the differential equation defined
through:

d2 f
dz2 +

(
−1

4
+

1/4−ν2

z2

)
f = 0 (6)

Using the scaling x = z/2, we may transform the differential equation, so in the new
variables we have:

1
4

fxx +

(
−1

4
+

1/4−ν2

4x2

)
f = 0 (7)

or

fxx +

(
−1+

1/4−ν2

x2

)
f = 0 (8)

Substituting f (x) =
√

xU(x), we find the modified Bessel differential equation:

x2Uxx + xUx− (ν2 + x2)U(x) = 0 (9)
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This is an important type of hypergeometric function as shown in the calcula-
tion. In an analogous way to the index Whittaker transform, one may define an in-
dex transform for the modified Bessel function known as the Kontorovich-Lebedev
transform pair. Substituting using the functional relationship, we have:

f (p) =
∫

∞

0
W0,ip(2x)F(x)dx (10)

F(x) =
1

π2x2

∫
∞

0
|Γ (1/2+ ip)|2W0,ip(2x) f (p)psinh(2π p)d p (11)

and, using the gamma function identity

|Γ (ip+1/2)|2 = π

cosh(π p)
(12)

we find:

W0,ν(2z) =

√
2z
π

Kν(z) (13)

f (p) =
∫

∞

0

√
2x
π

Kip(x)F(x)dx =

√
2
π

∫
∞

0

√
xKip(x)F(x)dx (14)

F(x) =
1

π2x2

∫
∞

0

π psinh(π p)
cosh(π p)

√
2x
π

Kip(x) f (p)d p (15)

=

√
2x
π

2
πx2

∫
∞

0
psinh(π p)Kip(x) f (p)d p (16)

As the same numerical factor appears on both sides of the transform and inverse
it may be moved to either side, similarly with the square root factor, and we may
write:

f (p) =
∫

∞

0
Kip(x)F(x)dx (17)

F(x) =
2

π2x

∫
∞

0
Kip(x) f (p)psinh(π p)d p (18)

This transform pair is known as the Kontorovich-Lebedev transform. It is a cru-
cial part of our calculation method, and a number of our results depend entirely on
its computation using some clever tricks. Note that the integration in the second part
of the transform pair is over the index of the function, which requires a lot more deft
and tact than integrating over the functional variable. This is a delicate matter requir-
ing some involved mathematics which we shall encounter many times throughout
this work.
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3.1.3 Associated Legendre Functions

The final special function we shall require relates to both the Kontorovich-Lebedev
and Whittaker transforms in the following way. If we look at the differential equa-
tion for the modified Bessel function at half-integral values:

x2 fxx +2(1−α)x fx +(α2−α +1/4− 1
4
(1+2k)2− x2) f (x) = 0 (19)

which we write as Ĥ f (x) = 0. The solution of this differential equation is given
by:

f (x) =Cxα−1/2Kk+1/2(x) (20)

where we neglect the second part of the solution due to boundary conditions. The
Laplace transform, which we write as

F [ f (x)] = F(u) (21)

transforms the differential equation such that we have:

F
[
Ĥ f (x)

]
= 0 (22)

where the new differential equation is defined through

(u2−1)
∂ 2F
∂u2 +2u(α +1)

∂F
∂u

+(α2 +α− k(k+1))F(u) = 0 (23)

and we have neglected boundary terms due to the initial condition, which is permis-
sible for the purposes of this crude analysis. The solution to this differential equa-
tion, which is related to spherical harmonic functions, is given by the generalised
Legendre function defined by:

F(u) = (u2−1)−α/2CPα
k (u) (24)

Again, we neglect the second solution to the differential equation as it is not
useful in the calculation for our boundary conditions. The function Pα

ip−1/2(u), i.e.
where we have the special values k(k+1) =−p2 +1/4 is the Mehler-Fock or con-
ical functions and is well known in many applications in physics. It is important to
understand that we are taking the function to be defined for the range [1+,∞). In an
analogous way, the Mehler-Fock transform may be derived from the Kontorovich-
Lebedev transform pair by using the following integral relationship [9]:

∫
∞

1
e−xv(v2−1)−µ/2Pµ

ip−1/2(v)dv =

√
2
π

xµ−1/2Kip(x) (25)

This represents the result obtained prior through the Laplace transform of the differ-
ential equations. If we then take the Kontorovich-Lebedev transform, we will have:
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f (p) =
∫

∞

0
Kip(x)F(x)dx (26)

=
∫

∞

0
F(x)dx

√
π

2
x−µ+1/2

∫
∞

1
e−xv(v2−1)−µ/2Pµ

ip−1/2(v)dv (27)

=

√
π

2

∫
∞

1
dv.Pµ

ip−1/2(v)(v
2−1)−µ/2

∫
∞

0
dx.F(x)x−µ+1/2e−xv (28)

Denoting

S1(v) = (v2−1)−µ/2
∫

∞

0
dx.F(x)x−µ+1/2e−xv (29)

which is a Mellin-Laplace composition, we have therefore the forward transform:√
π

2

∫
∞

1
dv.Pµ

ip−1/2(v)S1(v) = f (p) (30)

On the other hand, the inverse transformation may be easily found using the same
method, and we obtain:

F(x) =
2

π2x

∫
∞

0
Kip(x) f (p)psinh(π p)d p (31)

Kip(x) =

√
π

2
x−µ+1/2

∫
∞

1
e−xv(v2−1)−µ/2Pµ

ip−1/2(v)dv (32)

F(x) =
2

π2x

∫
∞

0
Kip(x) f (p)psinh(π p)d p (33)

=
2

π2x

∫
∞

0
d p.

√
π

2
x−µ+1/2

∫
∞

1
dv.e−xv(v2−1)−µ/2Pµ

ip−1/2(v) f (p)psinh(π p)

(34)

=
2x−µ−1/2

π2

√
π

2

∫
∞

1
dv.e−xv(v2−1)−µ/2

∫
∞

0
d p.Pµ

ip−1/2(v)psinh(π p) f (p) (35)

F(x) =
∫

∞

1
dv.e−xv(v2−1)−µ/2S2(v) (36)

The functional equation appearing in the inner integral is the Mehler-Fock transfor-
mation. The standard choice of paired, normalised transforms is given by:

F(v) =
1
π

∫
∞

0
d p.|Γ (1/2−µ + ip)|Pµ

ip−1/2(v)psinh(π p) f (p) (37)

with inverse
f (p) =

∫
∞

1
dv.Pµ

ip−1/2(v)F(v) (38)

Although these formulae appear forbidding, as we shall show, there is a common-
ality of structure between these different groups of special functions which renders
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many problems solvable in similar ways. Tables of these transforms are available
in some instances, for example [9, 18, 17, 23, 22], however, there is little to no de-
scription of a general method for finding these formulae. This paper shall outline
in detail how one goes about deriving these necessary integrals for the solution of
various problems in diffusion.

3.1.4 Parabolic Cylinder and Hermite Functions

The final type of special functions necessary for understanding the details of the
calculations contained herein is the parabolic cylinder function. These are given by
the special case of the Whittaker function via the connection formula:

Wµ+1/4,1/4 (x) = D2µ

(√
2x
) x1/4

2µ
(39)

Parabolic cylinder functions satisfy the Weber differential equation:

fzz +

(
ν +

1
2
− z2

4

)
f (z) = 0 (40)

f (z) = cDν(z) (41)

The parabolic cylinder functions and the Hermite polynomials are linked by the
formula:

Dn(
√

2x) = 2−ν/2e−x2/2Hn(x) (42)

Indeed, the common factor in all these groups of special functions is that they all
may be described as a limiting case of the confluent hypergeometric function.

3.1.5 Other Sundries

We shall briefly define all the other necessary objects for the calculation in this pa-
per. Let us begin with the representation of scalars. A single valued object (number)
without functional dependence shall be denoted λ . A set of eigenvalues with indi-
cial parameter n shall be given the symbol λn, and Latin n represents a discrete set
as opposed to a continuous set defined through e.g. λu. Functional dependence will
be illustrated through the use of both discrete ψn(x) and continuous Φu(x).

The kernel solution of a diffusion equation shall be written as K (x,y; t) for the
case of two positions and one time. We indicate that there is a difference between
the time and space variables by use of the comma. Wherever possible an effort has
been made to ensure that the notation used is consistent for each application. The
central focus of the paper is on the calculation of these types of kernels in an effort
to understand the nature of the dynamical solutions to the diffusion equations.

We shall make a certain definition in terms of style of writing nested integrals.
This paper shall encounter many of these types of formulae and they quickly become
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entangled without a solid start. We make the operational statement that all integral
variables are to be written to the left and associated with their limit. For example,
the integral:

I =
∫

∞

0
dx. f (x)×

∫
∞

1
dy.g(x,y) (43)

is to be read as the integral of g(x,y) over y, then the result of this times f (x) in-
tegrated over x. Many of the calculations in this work stem from the use of the
Fubini-Tonelli theorem and the integrals can become lengthy. For this reason, this
convention is one we follow out of necessity so as to avoid confusion.

Finally, we must define the idea of a transform. This paper deals with the
Whittaker, Kontorovich-Lebedev and Mehler-Fock transforms in depth, and also
obliquely touches upon the Laplace, Fourier, cosine, Mellin and sine transforms.
In the interests of book-keeping, we have the following approach to offer. When a
function is transformed, if it is a single parameter function, we have automatically
no confusion if we write:

F(p) = F [ f (x)] (44)

and, under the axiom of invertability we have:

f (x) = F−1 [F(p)] (45)

We shall always use the cursive script in this fashion when referring to a trans-
formation of some type. If we have a function with multiple parameter, such as
K (x,y) =K (x,y;0), it is necessary to specify the co-ordinate over which the trans-
form is occurring. Often the context will make the integration variable in the trans-
form superfluous and we shall omit it for brevity and refer to the type of transform
by name, or explicitly define the integrals whenever possible.

4 Basic Diffusion Theory

We may write a generic diffusion equation in the form:

−∂u
∂τ

=
σ2

2
∂ 2u
∂x2 +µ

∂u
∂x

+V (x,τ)u (46)

The basic diffusion problem can be solved using a kernel solution:

K(x,y; t) =
∫

Ω

dm(λ ).e−Eλ t
Φ
∗
λ
(x)Φλ (y)+

nmax

∑
n=1
|Cn|2e−Ent

Ψ
∗

n (x)Ψn(y) (47)

Briefly, the moving parts of this expression are the continuous eigenfunction Φλ (y),
the discrete eigenfunctions Ψn(y), the cutoff for the discrete states nmax, which may
be some finite number or infinity for a purely discrete system, and the measures
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for the continuous spectrum m(λ ) and discrete states |Cn|2. Applying the method
of separation of variables, we can extract the eigenfunctions by solving the time
independent differential equations:

u(x,τ) = φ(x)ϒ (τ)

− 1
ϒ (τ)

dϒ (τ)

dτ
=

1
φ(x)

(
σ2

2
d2φ

dx2 +µ
dφ

dx
+V (x,τ)φ(x)

)
(48)

Assuming a time-independent potential/killing function V (x,τ)=V (x), it is straight-
forward to write down the eigenfunction solution for the PDE system, which enables
us to determine the kernel.

σ2

2
d2φ

dx2 +µ
dφ

dx
+V (x)φ(x) = Eφ(x) (49)

dϒ (τ)

dτ
=−Eϒ (τ) (50)

It is clear that to understand the nature of the solution space, we need to determine
the spectrum of the eigenvalues via the constant E.

5 Completeness of Eigenfunction Representations

The fundamental notion which we shall now exploit relates to the completeness of
basis sets, and the relationship with orthonormal eigenfunctions. The spectral theory
of the kernel states that we can find a set of eigenfunctions with the completeness
property expressed through the delta function expansion:

δ (x− y) =
∫

Ω

dm(λ ).Φ∗
λ
(x)Φλ (y)+

nmax

∑
n=1
|Cn|2Ψ ∗n (x)Ψn(y) (51)

The integral in this case is over the continuous eigenvalue; the sum over the discrete
set of states. If we are able to determine the delta function expansion, we can find
the kernel in a similar way. If we succeed in this, we will have solved the diffu-
sion problem, as we may then construct the kernel solution which encodes all the
measurable information in the system.

The two parts which compose the delta function are the continuous and discrete
parts of the state. The continuous state, defined through the eigenfunction Φλ (y),
has measure m(λ ). In particular, many of the situations considered in this paper
have a single continuous eigenfunction defined in a way which is analogous to a
scattered state in quantum physics. In the same way that the Born equation gives the
solution to the quantum equations for a particle scattered to infinity, the continuous
state in our situation will often have an integral measure which is integrated over
the positive part of the plane or section thereof. The second part of the complete-
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ness relationship is the discrete states; the upper bound nmax in this case takes into
account the generalised example whereby there may be a finite rather than infinite
set of orthogonal polynomials that span the discrete set of eigenfunctions.

6 Potential Theory

If we consider contracts which have positive prices, it is clear that if the process
is positive valued, then the average is by necessity a positive valued function. By
a similar logic, the potential or killing function V (x,τ) must necessarily have val-
ues defined in the positive plane. Two examples are given in the potential function
sketched below:

Fig. 1: Potential functions for the positive plane

The upper (blue) line in this case represents a potential which generates a contin-
uous eigenstate. A particle released at any point on this curve will travel to infinity.
The lower (red) line gives a different situation. Particles released above the x-axis
will travel to infinity, but a particle released below the axis will oscillate. The spec-
trum in the first case will be a single continuous eigenvalue, and in the latter we
will have a spectrum with both a continuous and a discrete part. In many ways we
may understand these two different scenarios as analogous to scattered and bound
eigenstates in quantum theory.

We shall now show a simple technique that we can use to find simplified, trans-
formed versions of the basic diffusion equations. The fundamental diffusion may be
written:

a(x)
d2φ

dx2 +b(x)
dφ

dx
+ c(x)φ(x) = 0 (52)

In terms of the drift and diffusion, we have:
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a(x) =
σ2(x)

2
, b(x) = µ(x), c(x) =V (x)−E (53)

and the Bose invariant, defined through:

d2φ̂

dx2 +I (x)φ̂(x) = 0 (54)

I (x) =
4ac−b2 +2(ba′−ab′)

4a2 (55)

The basic transformations of the eigenfunction are given by the speed and scale
factors, defined through the fundamental symmetry relation:

[a(x)]−1 h(x)H (x,∂x) [h(x)]
−1 = ∂

2
x +I (x) (56)

where the generator H (x,∂x) is given by:

H (x,∂x) = a(x)
∂ 2

∂x2 +b(x)
∂

∂x
+ c(x) (57)

and the transformed eigenfunction is defined through the scale factor:

φ(x) =
φ̂(x)
h(x)

(58)

h(x) = exp
(∫ x b(s)

2a(s)
ds
)

(59)

Indeed, it is simple to see that the application of the Bose invariant to any diffusion
problem results in a plain Gaussian diffusion, plus a transformed potential or killing
function. This is a very powerful method as we shall show; the speed and scale
measures of Feller [6] are obtained through:

dm(x) = m(x)dx =
eB(x)

a(x)
dx (60)

s(x) = e−B(x) (61)

B(x) =
∫ x b(s)

a(s)
dτ (62)

and, as we shall show, many of the integration measures for the diffusion processes
which are important in this paper are related to these distributions. Finally, the killed
measure is given by the formula:

k(y) =
c(y)eB(y)

4a(y)
(63)
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Note that the killing measure is essentially just the killing potential multiplied by
the scale factor. For an excellent discussion of these topics, the interested reader is
directed to the works of Kuznetzov and Albanese [1], also Sousa and Yakubovich
[24] which contains an excellent discussion of the construction of kernels using the
Titchmarsh-Kodaira theorem. Our argument shall differ from theirs in that we shall
be examining the case where the continuous and discrete parts of the spectrum must
both be taken into account.

7 Asian Options Pricing Formulae

We shall report on some results that are available in the literature. Geman and Yor
[8] gave the canonical result for the fixed strike call option by exploiting the scaling
property of Brownian motion via:

ET

[(
1

T − t0

∫ T

t0
Sudu−K

)+
]

(64)

=
4Ste−r(T−t)

(T − t0)σ2 E
Q
σ2s/4

[(∫
σ2s/4

0
exp
(

2Ws′ +
4

σ2 νs′
)

ds′−K σ2

4

)+]
(65)

We may price call options for a fixed strike by using the transition probability
density:

C(T,0;S0,K) =
4S0e−rT

T σ2

∫
∞

0
(u−K σ2

4
)+ f (u,0;τ)du (66)

where the fundamental diffusion equation is defined through:

2u2 ∂ 2 f
∂u2 +[(2ζ +1)u+1]

∂ f
∂u

=−∂ f
∂ t

(67)

and the variable u is the exponential Brownian motion:

u =
∫

σ2s/4

0
exp
(
2
[
Ws′ +ζ s′

])
ds′ (68)

Other known results include the floating strike call option formula, developed in
[5], which can be easily derived via the following means. The price of the option is
defined through the payoff function:

C f (ST ,AT ,T ) = max
(

ST −
AT

T
,0
)

(69)

from which it is possible to show that diffusion equation that relates to this system
is given through the degenerate parabolic equation:
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∂C f

∂ t
+

σ2S2

2
∂ 2C f

∂S2 +S
∂C f

∂ξ
+ rS

∂C f

∂S
− rC f = 0 (70)

To solve this expression, as in [5], one may employ the ansatz C f (S,A, t) = S f (z, t)
Again, we find the differential equation which defines the probability density:

−∂ f
∂ t

+
1
2

σ
2z2 ∂ 2 f

∂ z2 −
(

1
T
+ rz

)
∂ f
∂ z

= 0 (71)

The redundant variable in this case is defined through the time average in a similar
way to the Yor system, via:

ξt =
∫ t

0
Sudu (72)

The change of variables in this case is given by the relationship:

zt =
1
S
(k−ξt) =

1
S

(
k− At

T

)
(73)

8 Application of the Bose Invariant

If we can solve either the system of Craddock [5] or Yor [8], it is possible to find the
solution of the other problem. We shall now show how to directly address the Yor
problem using the Bose invariant. In an analogous way to the fixed strike, the scale
factor for the Yor equation is readily shown to be inverse gamma distributed, via:

h(u) = exp
(∫ u [(2ζ +1)s+1]

4s2 ds
)
= e−1/(4u)u1/4+ζ/2 (74)

Evaluating the isomorphism of the generator of the diffusion, we find:

1
2u2 e−1/(4u)u1/4+ζ/2L̂

(
e1/(4u)u−1/4−ζ/2 f (u)

)
= ∂

2
u +I (u) (75)

2u2 ∂ 2 f
∂u2 +[(2ζ +1)u+1]

∂ f
∂u

= E f ⇔ L̂ f = E f (76)

We recover the Bose invariant potential, either by using the scale factor, or the for-
mula using the PDE coefficients:

I (u) =
1

16u4 +

(
−ζ

4
+

3
8

)
u3 +

(
−ζ 2

4
+

ζ

4
− E

2
+

3
16

)
u2

=
C1

u2 +
C2

u3 +
C3

u4 (77)
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The solution to the PDE system is then given by the Whittaker-type confluent hy-
pergeometric function:

φ(u) =
φ̂(u)
h(u)

∼Ce1/(4u)u3/4−ζ/2Wα,ip

(
1
2u

)
(78)

The scalar parameters in this expression are defined through:

α =
3
4
− ζ

2
, ip =

1
4

√
4(ζ 2−ζ )+8E +1 (79)

If we use the inverse variable x= (2u)−1 we recover the Whittaker equation directly.
Further transformations give the Morse potential, viz.:

∂ 2F(x)
∂x2 +

(
C1

x2 +
C2

x
+C3

)
F(x) = 0 (80)

where the Whittaker-type solution may be understood through the spherical relation

F(x) = uF(u−1) (81)

. The Morse potential is given by the substitution u = e−r where the PDE system in
the new variables is given by: (

∂
2
r +J (r)

)
Φ(r) = 0 (82)

J (r) =
γ2

4
e−2r− ν

2
e−r +

α

4
− 1

2
(83)

This is, indeed, the potential function described in the previous sections. For various
different regimes of the parameters, we are able to tune between a purely scattering
potential and a bound potential state. The spectrum is then given by a direct sum
over the two contributions from the discrete and continuous parts of the state.

9 Spectral Theory of Whittaker/Morse Potential

The potential derived in the previous section can be related to the spectral theory of
the kernel. The standard form of the Whittaker equation can be written as:(

−∂
2
z +

γ2

4
− ν

2z
+

(
α

4
− 1

4

)
1
z2

)
φ(z) = 0 (84)

The potential function in this case is given by:

V (z) =
γ2

4
− ν

2z
+

(
α

4
− 1

4

)
1
z2 (85)
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Note the generalised problem defined through the killed process:

∂ f
∂ t

=
∂ 2 f
∂x2 −V (x) f (x, t) (86)

As before, we have the expression for the kernel:

K(x,y; t) =
∫

Ω

dm(λ ).e−Eλ t
Φ
∗
λ
(x)Φλ (y)+

nmax

∑
n=1
|Cn|2e−Ent

Ψ
∗

n (x)Ψn(y) (87)

Now, it is known that the Green’s function is given by the Laplace transform of the
kernel via:

G(x,y;E) =
∫

∞

0
e−EtK(x,y; t)dt (88)

where, for the Whittaker potential, a known result from [11] gives the Green’s func-
tion as:

π
2 Γ (1/2−κ + s)

Γ (1+2s)
Wκ,s(x>)Mκ,s(x<)

=
∫

∞

0
usinh(2πu)Γ (1/2−κ− iu)Γ (1/2−κ + iu)

s2 +u2 Wκ,iu(x)Wκ,iu(y)du (89)

+π2e−(x+y)/2
∑
[Re(κ)−1/2]
n=0

αn!
Γ (α +n+1)

(xy)(α+1)/2

s2−α2/4
L(α)

n (x)L(α)
n (y) (90)

The first part of this expression gives the continuous eigenstate, and the second part
is therefore the discrete component. The eigenvalues are related by:

α = 2κ−2n−1 (91)

Concisely, the Green’s function may be written as the compact product:

G(x,y;E) =Ce−(x+y)/2Wκ,s(x<)Mκ,s(x>) (92)

10 Discrete Green’s Function and Bessel Polynomials

We shall now discuss the discrete part of the Green’s function as given by the Bessel
polynomials [19]. These polynomials differ from the classical orthogonal polynomi-
als, as for a fixed total energy, we have only a finite set of orthogonal polynomials in
the positive plane. This is to be compared with e.g. the Hermite polynomials, which
possess an infinite dimensional set of orthogonal eigenfunctions. The basic expres-
sion for the Bessel polynomials is given in [12, 14] as the Laguerre-type formula:

yn(x;α,β ) = (−1)nn!
(

x
β

)n

L(1−2n−α)
n

(
β

x

)
(93)
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One confluent form of the Bessel polynomials is given by:

yn(x;α +1,1/2) = (−1)n2nxnn!L(−2n−α)
n

(
1
2x

)
(94)

which satisfies the differential equation:

2x2 d2 f
dx2 +(2(α +1)x+1)

d f
dx
−2 [n(n+α)] f = 0 (95)

Note that the eigenstates for this differential system are given through:

Ψn(x) =Cα
n yn(x;α +1/2,1/2) (96)

and we see that the differential equation of interest can be easily related to the Asian
option diffusion equation:

2x2 d2 f
dx2 +((2α +1)x+1)

d f
dx

= 2 [n(n+α)] f (97)

11 Continuous Part of the Whittaker Kernel

If we examine the pricing diffusion for the Asian option, following the results in the
previous sections, we have:

2x2 d2 f
dx2 +((2α +1)x+1)

d f
dx

= E f (98)

In this case, the energy eigenvalue is given through the relation:

E =
1
2

α(1−α)− p2

2
− 1

8
(99)

with continuous eigenfunction solution:

Φp(x) =C(p)e1/(4x)xκWκ,ip/2

(
1
2x

)
(100)

κ =−α/2+3/4 (101)

We shall now show how one may evaluate the measure of the space. The scale
measure is given through the relationship [4]:

dm(x) = m(x)dx =
eB(x)

a(x)
dx (102)
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B(x) =
∫ x b(s)

a(s)
ds (103)

Evaluating for the diffusion equation, we find the inverse gamma distribution:

m(x) =
1
2

e−1/(2x)x−3/2+α (104)

Writing out the continuous part of the kernel, we find the expression:

Kc(x,y;τ) =
∫

∞

0
e−E(p)τ

Φ
∗
p(x)Φp(y)dm(p) (105)

Now, using the symmetries of the Whittaker function, it is not too hard to see that
we have the relationship:

Φ
∗
p(x) = Φ−p(x) = Φp(x) (106)

which may be rewritten for our eigenfunction as:

W ∗κ,ip(z) =Wκ,−ip(z) =Wκ,ip(z) (107)

The principal aim is then to recover a completeness relationship of the type:

Kc(x,y;0) = λδ (x− y) (108)

Following results found in [25], a known formula for orthonormality of Whittaker
functions is given by the delta function relation:∫

∞

0
C2

κ,µ

Wκ,iµ(x)Wκ,iµ ′(x)
x2 dx = δ (µ−µ

′) (109)

and the measure distribution is then given by:

dm=C2
κ,µ

dx
x2 =

µ sinh(2πµ)Γ (1/2−κ + iµ)Γ (1/2−κ− iµ)
π2x2 (110)

Simplification using the properties of the gamma function then gives us the compact
relation:

dm(p) =
1

π2x2 psinh(2π p)|Γ (1/2−κ + ip) |2d p (111)

from which we can evaluate the continuous part of the kernel as:

Kc(x,y;τ) =Cκ

∫
∞

0

e−p2τ/2Wκ,ip

(
1
2x

)
Wκ,ip

(
1
2y

)
dm(p) (112)

Finally, by using inverse coordinate transforms, we find the simplified form of the
kernel:

K̃c(x,y;τ) = Kc((2x)−1,(2y)−1;τ) (113)
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=
∫

∞

0

e−2p2τWκ,ip (x)Wκ,ip (y)dm(p) (114)

These are the basic properties of the continuous spectral solution. We note that this
is the important contribution in the parameter space defined by financial contracts.
However, in contrast to say e.g. the results in [24], we take the position that for full
understanding of the kernel solution, both the discrete and continuous parts must be
taken into account. We shall discuss in the following sections an extension of the
Titchmarsh-Kodaira theorem according to this scenario and some ways in which the
results of Sousa and Yakubovich may be modified to derive a similar result.

12 Pricing Asian Options via Laguerre Interpolation

We shall now calculate Asian options prices using the kernel formulae developed
through this type of analysis. The papers of Linetsky [15], Geman and Yor [8], and
Sousa and Yakubovich [24] are of use in developing the necessary stochastic cal-
culus to specify the pricing formula. For completeness, we shall briefly review the
basic equations, and then show how one can use techniques from classical numer-
ical analysis to construct various approximations for pricing this option. The basic
analysis begins with the exponential Brownian motion:

A(ν)
τ =

∫
τ

0
e2(Bu+νu)du (115)

Put and call prices are computed using the time-invariant solution to the differential
equation [8, 15]:

P(ν)(k,τ) = E
[
(k−A(ν)

τ )+
]

(116)

Vp = e−rTE
[
(K−AT )

+
]
= e−rT

(
4S0

σ2T

)
P(ν)(k,τ) (117)

Vc = e−rTE
[
(AT −K)+

]
=Vp +

1− e−rT

rT
S0− e−rT K (118)

Using the results from the previous sections, it is possible to evaluate the price of
the Asian option via:

P(ν)(k,τ) = e−ν2τ/2 (2k)−κ e−1/(4k)

8π2

∫
∞

0 e−p2τ/2Wκ,ip/2

(
1
2k

)
dm+ .. (119)

where the measure is defined by:

dm=

∣∣∣∣Γ (ν + ip
2

)∣∣∣∣2 sinhπ p.pd p (120)
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which we derived previously. Various integrals give interesting relationships be-
tween the relevant groups of special functions, viz.:

1
2πi

∫ +i∞
−i∞ eξ qq−ν/2K2ip

(√
8qx
)

dq =
1√
8ex

ξ (ν−1)/2e−x/ξW(1−ν)/2,ip/2

(
2x
ξ

)
where the scalar parameters are defined through:

ν =
2r
σ2 −1,k =

τK
S0

,τ =
T σ2

4
,κ =− (ν +3)

2

We shall now show how these formulae may be computed using Laguerre quadrature
of the integrals implied through the expectation value.

P(ν)(k,τ) =
∫

∞

0 f (p)d p≈ ∑
N−1
i=2 f (pi)∆ p− 1

2
[ f (p1)− f (pN)]∆ p

The integral implied through the option price can be approximated using the trape-
zoidal rule. However, for Laguerre interpolation we use the set of Lagrange points:∫ b

a
f (x)W (x)dx =

n

∑
i=1

wi(xi) f (xi) (121)

where the weights give the integral-sum relations via:∫
∞

0
f (x)e−xdx =

n

∑
i=1

wi f (xi) (122)

and are defined by the Laguerre points:

wi =
1

(n+1)2[Ln+1(xi)]2
(123)

In terms of the exponential geometric Brownian motion, by virtue of the positive na-
ture of the GBM, we know that the average can only be a positive non-zero process.
This makes Laguerre or generalised Laguerre quadrature the appropriate choice in
this situation, because this is also defined over the positive part of the plane. Other
systems [15] rely on a spectral decomposition over the zeroes of the eigenfunction.

P(ν)
b (k,τ) =

∞

∑
n=1

e−λn,bt

〈Ψ ,Ψ〉pn,b

∫ k

0
(k− y)Ψ(y;λn,b)m(y)dy (124)

There is the question of convergence of the spectral method especially in the low
volatility/low drift case. We expect to recover the heat equation for some limit. This
is particularly relevant to markets today in an economy experiencing low interest
rates for a prolonged time. A more efficient way of establishing a numerical pricing
scheme is by using quadrature of the integral:
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a
f (x)W (x)dx =

n

∑
i=1

wi(xi) f (xi) (125)

Gauss-Laguerre quadrature has the weighting function:∫
∞

0
f (x)e−xdx =

n

∑
i=1

wi f (xi) (126)

Weights are readily calculated using the orthogonality property of Laguerre polyno-
mials:

wi =
1

(n+1)2[Ln+1(xi)]2
(127)

To compute the integral, it is important to recognise that numerically stable forms
of the confluent hypergeometric function are required.

U(a,b,x) =
π

sinπb

(
M(a,b,x)

Γ (1+a−b)Γ (b)
+ x1−b M(1+a−b,2−b,x)

Γ (a)Γ (2−b)

)
M(a,b,x) = exM(b−a,b,−x) (128)

W̃κ,µ(z) = e−z/2zb+1/2Ũ (b−a+1/2,1+2b,z) (129)

The parameters used in the integral are:

z =
1
2k

,κ =− (ν +3)
2

,µ =
ip
2

(130)

With these formulae for the Whittaker function, we are able to recover prices for
Asian options in a variety of regimes. The final ingredients in this mathematical
algorithm are the precision requirements of the integral. Using the concept of expo-
nential addition and multiplication for extra precision, it was simple to control any
numerical errors in the procedure:

P(ν)(k,τ) =
∫

∞

0
g(p;ν ,τ,k)d p (131)

g(p;ν ,τ,k) =Re

(
V4

8π2 exp(lnV1 + lnV2 + lnV3)

)
(132)

We were able to demonstrate convergence for a series of well-known test cases
[15], however the low volatily case was shown to require extra care. The current R
package (fAsianOptions, now defunct) fails on several test cases due to limitations
in precision. The cases from [15] are outlined in the table below.
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12.0.1 Parameters for Test Cases from [15]

Case r σ T S0 ν τ k
1 0.02 0.10 1 2.0 3 0.0025 0.0025
2 0.18 0.30 1 2.0 3 0.0225 0.0225
3 0.0125 0.25 2 2.0 −0.6 0.03125 0.03125
4 0.05 0.50 1 1.9 −0.6 0.0625 0.065789
5 0.05 0.50 1 2.0 −0.6 0.0625 0.625
6 0.05 0.50 1 2.1 −0.6 0.0625 0.059524
7 0.05 0.50 2 2.0 −0.6 0.125 0.125

Note that these figures are by no means an exhaustive search over the parameter
space. The final three columns, given by the parameters ν ,τ,k are derived from the
first set of parameters, which define the stochastic system. It isn’t intuitively clear
what distinguishes the first case as being difficult and less likely to converge, other
than the combined situation of both low drift, as expressed through the parameter
r, as well as a smaller value for the volatility, as given by σ . The following tables
compare the results for various methods of calculating Asian option prices.

12.0.2 Table 1- Asian Option Call Prices

Case Spectral Method Trapezoidal Rule Vecer Method Monte Carlo
1 14.7694 14.7694 0.0559843109 0.055929(24)
2 0.2183875465 0.2183875465 0.2183869858 0.21704(83)
3 0.1722687410 0.1722687383 0.1722682714 0.173279(89)
4 0.193173790 0.193145214 0.1931716834 0.1922(11)
5 0.246415690 0.246397641 0.2464144912 0.2450(13)
6 0.306220364 0.306208936 0.3062195980 0.3055(14)
7 0.3500952189 0.348084942 0.3498467545 0.3496(20)

12.0.3 Asian Options Prices via Laguerre Quadrature

Laguerre
Case Put Call

1 9.55*10ˆ5 9.55*10ˆ5
1*(200 points) 0.0362615331589084254661 0.0559968558698675989430

2 0.0585969850989125223683 0.2183875465955682429392
3 0.1476815247399004291038 0.1722687384166216016910
4 0.2423229661816367419105 0.1931459861530763782535
5 0.1980339582371130057155 0.2463981292071246238756
6 0.1603039232499463874824 0.3062092452185299874597
7 0.2545623438519754839573 0.3481391470608648743438



24 P. G. Morrison

As we can see, with the exception of the pathological case 1, the Laguerre method
is highly accurate. This, while not particularly useful for quantitative purposes, may
be of relevance to physical situations where the concept of exponential Brownian
motion is of interest. To the author’s knowledge, these are the most accurate figures
produced for these types of options prices and form a useful sandbox test set for
validating other models.

The low volatility case is specified by the parameter set:

r = 0.02,σ = 0.1,T = 1,K = 2.0 (133)

S0 = 2.0,ν = 3,τ = 0.0025,k = 0.0025 (134)

Understanding why this case is difficult when the values seem reasonable is the
challenge in deriving formulae for Asian options pricing. The low volatility/low
drift approximation of equation can be expected to have some quirks due to lim-
iting behaviour of Whittaker function. We ran some simulations to compare this
method against standard techniques, inc. Monte Carlo, spectral theory, discretised
PDE, other integral approximations. As the data shows, it seems to hold up well
across a variety of situations- with the caveat of an error control term. We can define
our convergence region via the difference between a Monte Carlo sim with a known
tolerance and the output from our formula. Numerical experiments allow us to probe
this region for different parameter sets and to find upper bounds on the number of
abscissa points in the quadrature. The chart below shows this convergence for the
pathological case as discussed in detail in the previous sections.

Fig. 2: Convergence for Case 1- Low volatility, low drift
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13 Spectral Expansions

We shall now discuss some generalities related to the calculation in the previous
sections. Sousa and Yakubovich [24] give the expression for the Titchmarsh-Kodaira
theorem via the integral transform pair:

(F f )i(λ ) = f̃i(λ ) =
∫ b

a
f (x)w∗i (x,λ )r(x)dx (135)

(F−1 f̃ )(x) =
∫

∞

0−

2

∑
i, j=1

f̃i(λ )w j(x,λ )dρi j(λ ) (136)

The measure in the inverse transform is given by the Titchmarsh-Kodaira theorem:

ρi j(λ1,λ2) = lim
δ→0

lim
ε→0

1
2πi

∫
λ2−δ

λ1+δ

[
m+

i j(λ + iε)−m+
i j(λ − iε)

]
dλ (137)

= lim
δ→0

lim
ε→0

1
2πi

∫
λ2−δ

λ1+δ

[
m−i j(λ + iε)−m−i j(λ − iε)

]
dλ (138)

where the kernel of the system is defined through the eigenfunction expansion:

K(x,y;λ ) =
2

∑
i, j=1

m−i j(λ )wi(x,λ )w j(y,λ ∗) (139)

where x < y

K(x,y;λ ) =
2

∑
i, j=1

m+
i j(λ )wi(x,λ )w∗j(y,λ

∗) (140)

analogously, where x > y These different representations give the complex spherical
and hyperbolic decompositions for the kernel. The functions wi(x,λ ) are naturally
then associated with the eigenfunctions of the differential equations which define
the system, via the solutions of the equation for the kernel L u = λu. From this
definition one can go on to generate various representations for the Green’s func-
tion, resolvent and other such operators relevant to the study of such differential
equations.

13.1 Heat Kernel for Hermite Polynomials

We shall now briefly comment on the natural generalisation of this type of system.
Note that this is only strictly true for a system with a single continuous degree of
freedom. As in the previous examples we have examined, a simple system is given
by the Kontorovich-Lebedev transform, where the continuous eigenvalue represents
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a continuum of scattered states. However, in the case where we consider the heat
equation equivalent of the harmonic oscillator, it is simple to see that the relevant
diffusion equation is defined through:

−∂u
∂ t

=−1
2

∂ 2u
∂x2 +

1
2

x2u (141)

hence the eigenvalue equation is given by:

Eφ(x) =−1
2

d2φ

dx2 +
1
2

x2
φ (142)

with solution:
φ(x) =C1φ1(x)+C2φ2(x) (143)

φ1(x) =
ME/2,1/4(x2)
√

x
(144)

=−1
4

Γ (1/4−E/2)√
π2E/2−1/4 x3/2

(
DE−1/2(

√
2x)−DE−1/2(−

√
2x)
)

(145)

φ2(x) =
WE/2,1/4(x2)
√

x
=

HE−1/2(x)

2E−1/2 e−x2/2 =
DE−1/2(

√
2x)

2E/2−1/4 (146)

If we consider known results from quantum mechanics [7], it is clear that the phys-
ical solution is defined through the function φ2(x); to quantise the system in the
appropriate fashion we must therefore have HE−1/2(x) = Hn(x), hence the energy
eigenstates are defined by:

En = n+
1
2

(147)

which, up to scaling, gives the correct equipartition law for blackbody radiation. If
we then calculate the nature of the first solution, we find it must take the form:

φ1(x) =−
1
4

Γ (−n/2)√
π2n/2

(
Dn(
√

2x)−Dn(−
√

2x)
)

(148)

and it is obvious that this represents a solution that is scattered in a forwards and
backwards direction in space. Returning to the physical solution, the Mehler kernel
is given by the infinite sum:

K(x,y; t) =
∞

∑
n=0

e−Ent
ψn(x)ψ∗n (y) (149)

whence, upon simplification

K(x,y; t) =
∞

∑
n=0

e−(n+1/2)t |cn|2Hn(x)Hn(y)e−(x
2+y2)/2 (150)

The normalisation of the eigenfunctions is defined through:
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∞

0
|ψn(x)|2dx = |cn|2

∫
∞

0
H2

n (x)e
−x2

dx = 1 (151)

∫
∞

0
H2

n (x)e
−x2

dx =
√

π2nn! (152)

|cn|2 =
1√

π2nn!
(153)

Writing out the kernel, we find:

K(x,y; t) =
∞

∑
n=0

e−(n+1/2)t
√

π2nn!
Hn(x)Hn(y)e−(x

2+y2)/2

=
e−t/2
√

π

∞

∑
n=0

(e−t/2)n

n!
Hn(x)Hn(y)e−(x

2+y2)/2 (154)

∞

∑
n=0

(ρ/2)n

n!
Hn(x)Hn(y)e−(x

2+y2)/2 =
1√

1−ρ2
exp
(

4xyρ− (1+ρ2)(x2 + y2)

2(1−ρ2)

)
(155)

Using ρ = e−t , the kernel is found via the concise formula:

K(x,y; t) =
e−t/2
√

π

1√
1− e−2t

exp
(

4xye−t − (1+ e−2t)(x2 + y2)

2(1− e−2t)

)
(156)

=
1√

2π sinh(t)
exp
(
xycosech(t)− (x2 + y2)coth(t)/2

)
(157)

This is a known result and demonstrates that using appropriate mathematical logic
that one can derive compact, succinct formulae for kernels by using the eigenfunc-
tion expansions. We shall now show how this relates to the Bessel polynomials as
considered earlier in the paper.

13.2 Bessel Polynomials as Transforms and Kernels

Now, let us consider the fundamental differences here. In the example for the Asian
option pricing equation, as we have shown, there is a discrete and a continuous com-
ponent, both of which contribute to the spectral solution given through the kernel.
The discrete component in this case has only a finite number of energy states, and we
also have a continuous eigenstate which will contribute. The natural generalisation
of the Titchmarsh-Kodaira formula will then be given by:

K(x,y; t) =
nmax

∑
i=0

e−Eit |ci|2Φi(x,λ )Φ∗i (y,λ )+
∫

Ω

e−Eλ t
Ψλ (x)Ψ

∗
λ
(y)dm(λ ) (158)
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In this case we actually have two solutions to the eigenvalue equation L u = Eu
depending on the values of the parameters which define the differential equation. It
is interesting to consider the nature of the integral transform pairs that by necessity
underlay the Bessel polynomials, which are the discrete part complementary to the
Whittaker transform.

(F f )i(λ ) = f̃i(λ ) =
∫ b

a
f (x)w∗i (x,λ )r(x)dx (159)

We shall now briefly discuss the Bessel polynomials and other finite sets of orthog-
onal functions. For any infinite set of orthogonal polynomials, we may write the
following:

f (x) =
∞

∑
n=0

An pn(x) (160)

Assume we have orthogonality defined over some interval, then we may extract the
coefficients using the orthogonality property:

An =
∫ b

a
f (x)pn(x)dx (161)

where ∫ b

a
pn(x)pn′(x)dx = δnn′ (162)

Now if we consider orthogonal polynomials of this type, we indeed have the trans-
form pair:

An =
∫ b

a
f (x)pn(x)dx (163)

f (x) =
∞

∑
n=0

An pn(x) (164)

Although there is an orthogonality implied in the complex plane, we shall not con-
sider this as it is beyond the scope of this simple discussion. Using results from [13],
the following is known for the generalised Bessel polynomials yn(x;a,b) (notation
ours) with support in [0+,∞):∫

∞

0

( x
b

)1−a
e−x/bym(x;a,b)yn(x;a,b)dx = b(n!)Γ (2−a−n)δmn (165)

This is the appropriate form for use in the following. The weight function is then:

wb(x) =
( x

b

)1−a
e−x/b (166)

which we recognise as being gamma distributed in x, and inverse gamma in b. Ob-
viously this case differs significantly from the situation with the standard classical
orthogonal polynomial series. Let us therefore expand a function defined in the pos-
itive plane into the Bessel polynomials via:
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f (x) =
∞

∑
n=0

Anyn(x;a,b) (167)

An =
1

b(n!)Γ (2−a−n)

∫
∞

0
f (x)yn(x;a,b)dx (168)

We shall call this the Bessel polynomial transform pair. Interestingly, there is a result
from [20] which is of relevance in determining the correct expansion. The authors
of the series of papers [21, 20] report the following expansion equation:

x−p =
2−p

2π2

∫
∞

0
usinh(πu)

∣∣∣∣Γ (− p
2
+

iu
2

)∣∣∣∣2 Kiu(x)du

+2−p+1
bp/2c

∑
k=0

(p−2k)!
k!(p− k)!

Kp−2k(x) (169)

which is true for all p. We can see that in this expansion that the first part is given by
a Kontorovich-Lebedev transformation, and the second part is given by a Laguerre-
type summation. It is this second part that is equivalent to the Bessel polynomial
transform as discussed above. Indeed, using the definition of the Bessel polynomial
[19], we may write:

yn(x) =

√
2

πx
e1/xKn+1/2(x

−1) (170)

Kp−2k(x) =
√

π

2x
e−1/xyp−2k−1/2(x

−1) (171)

The finite, discrete polynomial part of the transform is then given by the Bessel
polynomial sum:

T̂disc. f (x) = 2−p+1
bp/2c

∑
k=0

(p−2k)!
k!(p− k)!

√
π

2x
e−xyp−2k−1/2(x

−1) f (x,u) (172)

= 2−p+1
√

π

2x
e−x

bp/2c

∑
k=0

(p−2k)!
k!(p− k)!

yp−2k−1/2(x
−1) f (x,u) (173)

The continuous part of the same transform implied through the formula is, of course,
the generalised Kontorovich-Lebedev transform:

T̂cont. f (x,u) =
2−p

2π2

∫
∞

0
usinh(πu)

∣∣∣∣Γ (− p
2
+

iu
2

)∣∣∣∣2 Kiu(x) f (x,u)du (174)

as required. This completes our discussion of the spectral theory of the Asian option
pricing problem. It is clear that the nature of the solutions to the modified Bessel
equation requires us, for certain ranges of parameters, to take into account both the
discrete and continuous parts which contribute to the solution as a whole. It is easily
seen that there exist certain polynomial subspaces of finite dimensions both for this
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equation, and for the Whittaker equation more generally. In the latter situation, we
know that the Bessel polynomials are of importance, however, it seems to have been
overlooked that this is necessary in order that the completeness relationship be well
defined and analytical in the case of the Bessel equation for all possible values of
the parameters.

14 Index Integration

One simple technique that can be used to determine formulae for index transfor-
mations are the Whittaker-Bessel-Legendre integrals, which allow the reduction of
more complicated integrals to known types involving Legendre equations. We shall
briefly show several integrals in which this method of calculation is effective, and
indicate some further types of problems that may arise for more complicated sce-
narios that may be of interest.

14.1 A Mixed Index Integral

For example, if we take the completeness relationship:

πδ (x− y) =
∫

∞

0
psinh(π p)|Γ (−µ +1/2+ ip)|2Pµ

ip−1/2(x)P
µ

ip−1/2(y)d p (175)

it is possible to show, using some results from integral theory that the following
addition formula is available:

2Γ (1−µ)

π(a+b)
Wµ,1/2(2(a+b))

=
2

π2

∫
∞

0
psinh(π p)|Γ (−µ +1/2+ ip)|2

Wµ,ip(2a)
a

Wµ,ip(2b)
b

d p (176)

We shall now show how another different type of index integral may be found
using the technique of completeness. We shall “mix” over the basis sets defined by
the modified Bessel and Mehler-Fock functions viz.:

I =
∫

∞

0
psinh(π p)

∣∣∣Γ (µ

2
+ ip

)∣∣∣2 Kip(a)P
µ

ip−1/2(y)d p (177)

Using known integral relations between the Macdonald and Mehler-Fock func-
tions, we may write:

∫
∞

1
e−ax(x2−1)−µ/2Pµ

ip−1/2(x)dx =

√
2
π

aµ−1/2Kip(a) (178)
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or:

Kip(a) =

√
π

2
a−µ+1/2

∫
∞

1
e−ax(x2−1)−µ/2Pµ

ip−1/2(x)dx (179)

hence the integral rolls over into the nested formula:

I =

√
π

2
a−µ+1/2

∫
∞

0
psinh(π p)

∣∣∣Γ (µ

2
+ ip

)∣∣∣2 Pµ

ip−1/2(y)d p (180)

×
∫

∞

1
e−ax(x2−1)−µ/2Pµ

ip−1/2(x).dx (181)

Invoking the Fubini theorem and interchanging the order of integrals, we find:

I =

√
π

2
a−µ+1/2

∫
∞

1
dx.e−ax(x2−1)−µ/2 (182)

×
∫

∞

0
psinh(π p)

∣∣∣Γ (µ

2
+ ip

)∣∣∣2 Pµ

ip−1/2(y)P
µ

ip−1/2(x)d p (183)

=

√
π

2
a−µ+1/2

∫
∞

1
e−ax(x2−1)−µ/2

πδ (x− y)dx (184)

=

√
π3

2
a−µ+1/2e−ay(y2−1)−µ/2 (185)

The result then states that∫
∞

0
psinh(π p)

∣∣∣Γ (µ

2
+ ip

)∣∣∣2 Kip(a)P
µ

ip−1/2(y)d p (186)

=

√
π3

2
a−µ+1/2e−ay(y2−1)−µ/2 (187)

This simple technique of expansion, interchange and resolution using the com-
pleteness identity has stark and profound results for a large class of index trans-
forms. As we shall show, many different integrals can be evaluated by this method.

14.2 Second Mixed Integral

We shall now show how to treat another type of mixed integral of a similar kind. In
this case we have e.g.:

I =
∫

∞

0
psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)Kip(y)d p (188)
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=

√
π

2
xy−µ+1/2

∫
∞

0
psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2
√

2
π

yµ−1/2 Wµ,ip(2x)
x

Kip(y)d p

(189)

=

√
π

2
xy−µ+1/2

∫
∞

0
d p.psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 (190)

×
∫

∞

1
e−xu

(
u+1
u−1

)−µ/2

Pµ

ip−1/2(u)du
∫

∞

1
e−yv(v2−1)−µ/2Pµ

ip−1/2(v)dv (191)

It is important at this point to take the correct symmetries for the Whittaker, mod-
ified Bessel and Mehler-Fock functions. Indeed, as they are all spherical functions,
we may extend the support of the function to take in negative values, via.:

Pµ

ip−1/2(u) = Pµ

ip−1/2(−u) (192)

Wµ,ip(2x) =Wµ,ip(−2x) (193)

Kip(y) = Kip(−y) (194)

The integral is invariant if we take these definitions, hence we must ensure that the
final answer respects the same symmetry.

I =
∫

∞

0
psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)Kip(y)d p (195)

Rearrangement via the Fubini-Tonelli theorem yields:

I =

√
π

2
π.xy−µ+1/2

∫
∞

1

∫
∞

1
dudv.e−(xu+yv)

(
u+1
u−1

)−µ/2

(v2−1)−µ/2 (196)

×
∫

∞

0
d p.psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Pµ

ip−1/2(u)P
µ

ip−1/2(v) (197)

=

√
π3

2
xy−µ+1/2

∫
∞

1

∫
∞

1
dudv.e−(xu+yv)

(
u+1
u−1

)−µ/2

(v2−1)−µ/2
δ (u− v)

(198)

=

√
π3

2
xy−µ+1/2

∫
∞

1
du.e−(x+y)u

(
u+1
u−1

)−µ/2

(u2−1)−µ/2 (199)

=

√
π3

2
xy−µ+1/2

∫
∞

1
du.e−(x+y)u

(
u+1
u−1

)−µ/2

(u−1)−µ/2(u+1)−µ/2 (200)

=

√
π3

2
xy−µ+1/2

∫
∞

1
du.e−(x+y)u(u+1)−µ (201)

One way in which to understand this is through the following integral [9] 3.382.2:



Asian Option Pricing via Laguerre Quadrature: A Diffusion Kernel Approach 33∫
∞

u
(x−u)ν e−µxdx = µ

−ν−1e−uµ
Γ (ν +1) (202)

∫
∞

1
(x−1)−ν e−µxdx = µ

ν−1e−µ
Γ (−ν +1) =

∫ 1

∞

(−1)−ν(1+u)−ν eµudu (203)

=−(−1)−ν

∫
∞

1
(1+u)−ν eµudu (204)∫

∞

1
(1+u)−ν eµudu =−(−1)ν

µ
ν−1e−µ

Γ (−ν +1) (205)

The phase factor is therefore cancelled, and we arrive at:

∫
∞

0
psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)Kip(y)d p (206)

=

√
π3

2
xy−µ+1/2e−(x+y)(x+ y)µ−1

Γ (1−µ,−2(x+ y)) (207)

In the sector where the parameters are defined through:

µ ≤ 1/2 (208)

the formula simplifies, yielding that of Oberhettinger [18] pp17, 34

∫
∞

0
psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)Kip(y)d p (209)

=

√
π3

2
xy−µ+1/2e−(x+y)(x+ y)µ−1

Γ (1−µ) (210)

This is a perfect application for complex analysis and residue calculus and shall
form the basis of a future paper.

14.3 Cosine Transform

Asian options may be treated in a similar fashion by expanding the Whittaker func-
tion into the Legendre state. If we take the formula derived for Asian option pricing
and perform this operation, we find:

∫
∞

0
e−p2τ psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)d p (211)

= x
∫

∞

0
e−p2τ psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Wµ,ip(2x)
x

d p (212)
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= x
∫

∞

0
d p.e−p2τ psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 (213)

×
∫

∞

1
e−xu

(
u+1
u−1

)−µ/2

Pµ

ip−1/2(u)du (214)

= x
∫

∞

1
du.e−xu

(
u+1
u−1

)−µ/2

(215)

×
∫

∞

0
d p.e−p2τ psinh(π p)

∣∣∣∣Γ (1
2
−µ +

ip
2

)∣∣∣∣2 Pµ

ip−1/2(u) (216)

Note that we have used the multiplication symbol here to indicate a nested integral
in the interests of brevity. The inner integral here is of primary interest. We note
the connection between integrals of this type and the so-called Yor integrals. We
shall now show some methods that can be used to evaluate this integral by relying
on various transforms between groups of special functions. Calculating the cosine
transform of the Whittaker function:

gc(y) =
∫

∞

0
f (x)cos(xy)dx (217)

gc(y) =
∫

∞

0
Wµ,ip(2u)cos(py)d p (218)

=
∫

∞

0
u
∫

∞

1
e−ux

(
x+1
x−1

)µ/2

Pµ

ip−1/2(x)cos(py).dxd p (219)

= u
∫

∞

1
dx.e−ux

(
x+1
x−1

)µ/2 ∫ ∞

0
d p.Pµ

ip−1/2(x)cos(py) (220)

Oberhettinger [17] 12.85 gives the following cosine transform of the Mehler-
Fock function:

∫
∞

0
d p.Pµ

ip−1/2(x)cos(py) =

√
π

2

(
x2−1

)µ/2
(x− coshy)−µ−1/2

Γ (1/2−µ)
(221)

coshy < a (222)

so we obtain the cosine transform of the Whittaker function via:

gc(y) =

√
π

2
u

Γ (1/2−µ)

∫
∞

1
dx.e−ux (x+1)µ (x− coshy)−µ−1/2 (223)

Using formula from [9] 3.385.3∫
∞

α

dx.e−ax (x+β )2ν−1 (x−α)2ρ−1 (224)
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=
(α +β )ν+ρ−1

aν+ρ
exp
(
(β −α)a

2

)
Γ (2ρ)Wν−ρ,ν+ρ−1/2 ([α +β ]a) (225)

This formula is not quite correct for our application. In the region we need to
have the following definition:∫

∞

α

dx.e−ax (x+α)2ρ−1 (x−β )2ν−1 (226)

=
(α +β )ν+ρ−1

aν+ρ
exp
(
(β −α)a

2

)
Γ (2ν)Wν−ρ,ν+ρ−1/2 ([α +β ]a) (227)

Making the substitutions∫
∞

α

dx.e−ax (x+α)2ρ−1 (x−β )2ν−1 (228)

=
(α +β )ν+ρ−1

aν+ρ
exp
(
(β −α)a

2

)
Γ (2ν)Wν−ρ,ν+ρ−1/2 ([α +β ]a) (229)

α = 1,β =−coshy,2ρ−1 = µ,a = u,2ν−1 =−µ−1/2 (230)

ρ =
µ +1

2
(231)

ν =
1
2
(−µ +1/2) =−µ

2
+

1
4

(232)

ν−ρ =−µ

2
+

1
4
− µ

2
− 1

2
=−µ− 1

4
(233)

ν +ρ−1/2 =−µ

2
+

1
4
+

µ +1
2
−1/2 =

1
4

(234)

ν +ρ = 3/4,ν +ρ−1 =−1/4 (235)∫
∞

1
dx.e−ux (x+1)µ (x− coshy)−µ−1/2 (236)

=
(1+ coshy)−1/4

u3/4 exp
(
−(coshy−1)u

2

)
Γ (1/2−µ)W−µ−1/4,1/4 ([1+ coshy]u)

(237)
Using the hyperbolic identities and some simple trigonometry, it is simple to reduce
this integral further to:

coshy = cosh
( y

2
+

y
2

)
= cosh2 y

2
+ sinh2 y

2
(238)

= 2cosh2 y
2
−1 = 1+2sinh2 y

2
(239)

1+ coshy = 2cosh2 y
2

(240)
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1− coshy =−2sinh2 y
2

(241)∫
∞

1
dx.e−ux (x+1)µ (x− coshy)−µ−1/2 (242)

=
(cosh2 y

2
)−1/4

u3/4 exp
(
−usinh2 y

2

)
Γ (1/2−µ)W−µ−1/4,1/4

(
ucosh2 y

2

)
(243)

Using identities for the Whittaker function and parabolic cylinder functions, we
find:

W−µ−1/4,1/4 (x) =Wµ+1/4,1/4 (x) = D2µ

(√
2x
) x1/4

2µ
(244)

W−µ−1/4,1/4

(
ucosh2 y

2

)
= D2µ

(√
2ucosh

y
2

) u1/4 cosh
y
2

2µ
(245)∫

∞

1
dx.e−ux (x+1)µ (x− coshy)−µ−1/2 (246)

=
(cosh2 y

2
)−1/4

u3/4 exp
(
−usinh2 y

2

)
Γ (1/2−µ)D2µ

(
cosh

y
2

√
2u
) (ucosh2 y

2
)1/4

2µ

(247)

=
1

2µ u1/2 exp
(
−usinh2 y

2

)
Γ (1/2−µ)D2µ

(
cosh

y
2

√
2u
)

(248)

Finalising the result for the index transform, we obtain:

gc(y) =

√
π

2
u

Γ (1/2−µ)

∫
∞

1
dx.e−ux (x+1)µ (x− coshy)−µ−1/2 (249)

=

√
π

2
Γ (1/2−µ)

2µ u1/2

u
Γ (1/2−µ)

exp
(
−usinh2 y

2

)
D2µ

(
cosh

y
2

√
2u
)

(250)

=

√
πu
2

2−µ exp
(
−usinh2 y

2

)
D2µ

(
cosh

y
2

√
2u
)

(251)

which is consistent with a tabulated result of Oberhettinger using an unknown
method [18] 22.28. We have thus established, with the caveat of the admission of
the representation for the shifted confluent hypergeometric function, the following
cosine transform: ∫

∞

0
Wµ,ip(2u)cos(py)d p

=

√
πu
2

2−µ exp
(
−usinh2 y

2

)
D2µ

(
cosh

y
2

√
2u
)
= Jµ(y,u) (252)
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15 Conclusions and Future Directions

This paper has demonstrated a number of techniques that can be used to compute
Asian options pricing. In particular, we have shown that the method of Gauss-
Laguerre quadrature is a highly accurate algorithm that produces answers that are
valid to a degree not possible to achieve via known methods, including the spectral
method. Difficulties in convergence are easily overcome by increasing the number
of abscissa points, which is not simple to achieve using other techniques.

We have also shown that the problem of exponential Brownian motion is deeply
associated with various groups of special functions, including those of Bessel,
Mehler-Fock and Whittaker. By using spectral decompositions of the kernel over
the continuous and discrete eigenfunctions, a large number of formulae related to
various integral transforms are readily derived. This is a fruitful area of research that
has relevance to the fields of quantitative finance as well as physical implications.

There are some further topics of interest that present themselves that may be
amenable to resolution in a similar way to the calculations we have discussed. We
shall outline some advanced techniques related to Whittaker functions that are of
interest in studying these types of spectral theories and pricing algorithms. This
study has skipped over the dynamics associated with the discrete part of the state. It
is possible to show that it contributes via a similar integral, a part given by:

∑
[ν/2]
n=0 e−2n(|ν |−n)τ (−1)n2(|ν |−2n)

Γ (1+ |ν |−n)
(2y)n−1−|ν |e−1/(2y)L(|ν |−2n)

n

(
1
2y

)
(253)

The origin of this term is the poles of the Whittaker W-function. It is important to
realise that the Green’s function can be defined using the Cauchy integral formula,
so we cannot neglect the discrete components contributing at the poles in the com-
plex plane. We can look at both this expression and the continuous counterpart as
being equivalent to the Yor integral which gives the pdf for the particle originating at
zero. Research in the integral theory of special functions has turned up the following
relationship: ∫

∞

0
ν sinh(πν)Γ (λ + iν)Γ (λ − iν)Kiν(a)Kiν(b)dν (254)

=
π3/2Γ (λ +1/2)

2

(
a+b
2ab

)−λ

Kλ (a+b) (255)

There are relationships between the Whittaker systems and other groups of hyper-
bolic functions, i.e. associated Legendre, modified Bessel functions. It is an active
topic of research aimed at better understanding the interaction between eigenstates,
spectral theory and special functions.
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